05;06 Электро- и магнетосопротивление двухслойной эпитаксиальной гетероструктуры (30 nm)La_{0.67}Ca_{0.33}MnO₃/(30 nm)La_{0.67}Ba_{0.33}MnO₃

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: yu.boikov@mail.ioffe.ru

Поступило в Редакцию 7 июля 2005 г.

Методом лазерного испарения выращены эпитаксиальные гетероструктуры (30 nm)La_{0.67}Ca_{0.33}MnO₃/(30 nm)La_{0.67}Ba_{0.33}MnO₃/(001)LaAlO₃. Верхний слой в двухслойных гетероструктурах находился под действием растягивающих в плоскости подложки механических напряжений, а слой (30 nm)La_{0.67}Ba_{0.33}MnO₃ был двухосно сжат. Формирование пленки (30 nm)La_{0.67}Ca_{0.33}MnO₃ на поверхности слоя (30 nm)La_{0.67}Ba_{0.33}MnO₃ способствовало возрастанию механических напряжений в последнем. Максимальные значения электросопротивления ρ выращенных двухслойных структур (30 nm)La_{0.67}Ca_{0.33}MnO₃/(30 nm)La_{0.67}Ba_{0.33}MnO₃/(001)LaAlO₃ наблюдались при температурах на 25–30 K ниже, чем максимум на кривых $\rho(T)$ для пленок (30 nm)La_{0.67}Ba_{0.33}MnO₃/(001)LaAlO₃.

Электронные и магнитные свойства тонких слоев перовскитоподобных манганитов $La_{1-x}A_xMnO_3$, где A = Ba, Ca, Sr,..., активно исследуются в последние полтора десятилетия в связи с перспективностью их использования в магнеторезистивных сенсорах [1–3]. Для применения в устройствах спинтроники наиболее привлекательны манганитные пленки, в которых ферромагнитный фазовый переход происходит при температурах, близких к комнатной. Для твердых растворов $La_{0.67}Ca_{0.33}MnO_3$ (LCMO) и $La_{0.67}Ba_{0.33}MnO_3$ (LBMO) температура Кюри имеет значения 270 и 330 К соответственно [4,5]. Процесс ферромагнитного упорядочения спинов в объеме тонкопленочных образцов LCMO и LBMO резко зависит от величины и типа действующих в их объеме двухосных механических напряжений.

В данной работе исследованы структура и электросопротивление ρ двухслойных гетероструктур LCMO/LBMO, выращенных на подложках (001)LaAlO_3 (LAO). Параметр кристаллической решетки LBMO (псев-

81

докубическая, $a_1 = 3.910$ Å [5]) больше соответствующих параметров алюмината лантана (псевдокубическая, $a_2 = 3.780$ Å [6]) и LCMO (псевдокубическая, $a_3 = 3.858$ Å [7]), а температурные коэффициенты линейного расширения LAO, LBMO и LCMO имеют близкие значения [7,8]. Различия в параметрах кристаллических решеток подложки и манганитных слоев в гетероструктуре LCMO/LBMO/LAO должны приводить к сжатию слоя LBMO в плоскости подложки, но к двухосному растяжению пленки LCMO. Реакция электросопротивления манганитной пленки на формирование на ее свободной поверхности тонкого слоя с существенно отличным параметром кристаллической решетки до настоящего времени практически не исследовалась.

Двухслойные гетероструктуры LCMO/LBMO/LAO были выращены методом лазерного испарения (ComPex 200, KrF, $\lambda = 248$ nm, $\tau = 30$ ns). Для сравнения были сформированы в идентичных условиях пленки (30 nm)LBMO/(001)LAO. Технологические параметры роста манганитных пленок детализированы в [9].

Фазовый состав и структура пленок LCMO и LBMO исследовались с использованием рентгеновской дифракции (Philips X'pert MRD, кривые качания, ϕ - и $\omega/2\theta$ -сканы). Параметры кристаллических решеток в манганитных пленках рассчитывались с использованием значений 2θ для (004) и (303) пиков на рентгенограммах [9].

Сопротивление *R* сформированных гетероструктур измерялось в конфигурации Van der Pauw при протекании тока параллельно плоскости положки, в магнитном поле и без него ($\mu_0 H$ до 5 T). Магнитное поле было направлено параллельно плоскости подложки и направлению измерительного тока. Электросопротивление рассчитывалось с использованием соотношения $\rho = d\pi R / \ln 2$ [10] (слои LCMO и LBMO имели толщину d = 30 nm).

Рентгеновская дифрактограмма, полученная для гетероструктуры LCMO/LBMO/LAO, приведена на рис. 1. На рентгеновском скане присутствуют только (00n) пики от манганитных слоев и подложки. Рентгеновские пики от верхнего и нижнего слоев в гетероструктуре четко разрешались (см. вставку на рис. 1). Наличие на рентгеновской дифрактограмме сателлитных пиков Лауэ (отмечены стрелками) указывает на однородность слоев по толщине. Из полученных рентгеновских $\omega/2\theta$ - и ϕ -сканов следует, что слои LCMO и LBMO в выращенных гетероструктурах были четко преимущественно ориентированы как относительно нормали к плоскости подложки, так

Рис. 1. Рентгеновская дифрактограмма (CuK_{*a*1}, $\omega/2\theta$) для гетероструктуры LCMO/LBMO/LAO, полученная, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001)LAO. Δ — пики (001) от пленок LCMO и LBMO в гетероструктуре. На вставке приведен фрагмент того же рентгеновского скана окрестности пиков (002) от манганитных пленок, * — пик от подложки. Сателлитные пики Лауэ отмечены стрелками.

и азимутально. Элементарная ячейка в слое LBMO в гетероструктуре LCMO/LBMO/LAO была существенно искажена — параметр ячейки в плоскости подложки $a_{\parallel} = 3.863 \pm 0.005$ Å был значительно меньше соответствующего параметра, измеренного вдоль нормали к ее поверхности $a_{\perp} = 3.957 \pm 0.005$ Å (см. таблицу). В случае пленки (30 nm) LBMO/LAO отмеченное выше искажение элементарной ячейки уменьшалось (см. таблицу). Следует отметить, что эффективный объем элементарной ячейки $V_{eff} = a_{\parallel}^2 \times a_{\perp} \approx 59.43$ Å³ в слое (30 nm)LBMO/LAO был меньше V_{eff} для соответствующих

Тип гетероструктуры	Слой	Толщина <i>d</i> , nm	a⊥, Å	a _∥ , Å	$V_{eff},\ { m A}^3$	FWHM, deg
LCMO/LBMO/LAO	LBMO	30	3.957	3.863	59.05	0.13
	LCMO	30	3.841	3.865	57.38	0.18
LBMO/LAO	LBMO	30	3.948	3.880	59.43	0.12

Параметры манганитных пленок в выращенных эпитаксиальных структурах

Параметр псевдокубической элементарной ячейки подложки LAO, рассчитанный на основе рентгеновских данных, равнялся $a_{\text{LAO}} = 3.786 \pm 0.005$ Å.

объемных кристаллов ($\approx 59.78 \text{ Å}^3$ [5]), но больше, чем объем ячейки в слое LBMO в гетероструктуре LCMO/LBMO/LAO ($\approx 59.05 \text{ Å}^3$) (см. таблицу). Полученные рентгеновские данные указывают на то, что слой (30 nm)LBMO в гетероструктуре LCMO/LBMO/LAO и пленка (30 nm)LBMO/LAO находились под действием двухосных сжимающих в плоскости подложки механических напряжений. Формирование на поверхности слоя (30 nm)LBMO/LAO пленки LCMO, обладающей меньшим паарметром кристаллической решетки, усиливало искажение элементарной ячейки в его объеме, обусловленное жесткой связью с относительно толстой подложкой. Механизмы, ответственные за изменение V_{eff} в манганитных пленках, выращенных на подложках со значительным рассогласованием в параметрах кристаллических решеток, рассмотрены нами в [11]. В отличие от нижнего манганитного слоя, пленка LCMO в гетероструктуре LCMO/LBMO/LAO находилась под действием двухосных растягивающих механических напряжений, поэтому параметр ее элементарной ячейки, измеренный в плоскости подложки, был больше соответствующего параметра, измеренного вдоль нормали к (001)LAO (см. таблицу). Ширина кривых качания FWHM, измеренная на половине высоты для рентгеновских рефлексов (002) от манганитных слоев LCMO и LBMO в гетероструктуре LCMO/LBMO/LAO, находилась в пределах 0.12-0.18° (см. таблицу), что хорошо согласуются с соответствующими данными, полученными в [12].

Температурные зависимости электросопротивления гетероструктуры LCMO/LBMO/LAO и пленки (30 nm)LBMO/LAO, измеренные при

Рис. 2. Температурные зависимости ρ (*1*-*3*) и $\Delta \rho / \rho_0$ (*4*) для гетероструктуры LCMO/LBMO/LAO. *1* — $\mu_0 H = 0$, *2* — $\mu_0 H = 2$ T, *3* — $\mu_0 H = 5$ T, *4* — $\Delta \rho / \rho_0 (T, \mu_0 H = 2$ T). На вставке (*a*) приведены кривые $\rho(T, \mu_0 H = 0)$ для гетероструктуры LCMO/LBMO/LAO (*1*) и пленки (30 nm)LBMO/LAO (*2*), на вставке (*b*) показан фрагмент зависимости $\rho(\mu_0 H, T = 4.2 \text{ K})$ для гетероструктуры LCMO/LBMO/LAO, полученной при сканировании $\mu_0 H$ в интервале 5 — -5 T.

 $\mu_0 H = 0$, показаны на вставке *a* на рис. 2. Максимум на кривой $\rho(T, \mu_0 H = 0)$ для двухслойной гетероструктуры LCMO/LBMO/LAO наблюдался при температуре $T_M = 285$ K, которая примерно на 25 K меньше величины T_M для пленки (30 nm)LBMO/LAO. Кроме того, электросопротивление гетероструктуры LCMO/LBMO/LAO во всем исследованном интервале температуры (4.2–325 K) было больше, чем ρ для пленки (30 nm)LBMO/LAO (см. вставку *a* на рис. 2). Основной

причиной понижения T_M в упругонапряженных пленках LBMO является относительно высокая, по сравнению с объемными стехиометрическими кристаллами, концентрация ионов Mn⁺⁴ в их объеме [11].

Магнитное поле способствовало уменьшению электросопротивления гетероструктуры LCMO/LBMO/LAO, а максимум на зависимости $\rho(T, H)$ сдвиался в сторону высоких температур с увеличением $\mu_0 H$ (рис. 2). Отрицательное магнетосопротивление $\Delta \rho / \rho_0 = [\rho(\mu_0 H = 2 T) - \rho(H = 0)] / \rho(H = 0)$ двухслойной гетероструктуры LCMO/LBMO/LAO достигало своего максимального значения (≈ -0.55) при $T \approx 270$ K (рис. 2). Максимум $\Delta \rho / \rho_0 (\approx -0.42)$ для пленки (30 nm)LBMO/LAO наблюдался при $T \approx 300$ K. При температурах, близких к T_M , вклад в магнетосопротивление гетероструктуры LCMO/LBMO/LAO вносят оба манганитных слоя. Поэтому ширина пика на температурной зависимости магнетосопротивления гетероструктуры LCMO/LBMO/LAO больше, чем ширина пика на кривой $\Delta \rho / \rho_0(T)$ для отдельно выращенных эпитаксиальных пленок соответствующих перовскито-подобных манганитов [13].

На вставке (b) на рис. 2 показано изменение электросопротивления гетероструктуры LCMO/LBMO/LAO в магнитном поле. При $T = 4.2 \,\mathrm{K}$ и $\mu_0 H = 5 \text{ T}$ вектор намагниченности в обоих слоях гетероструктуры LCMO/LBMO/LAO параллелен направлению магнитного поля. При сканировании $\mu_0 H$ в последовательности 5 T $\rightarrow 0 \rightarrow -5$ T $\rightarrow 0 \rightarrow 5$ T на зависимости $\rho(\mu_0 H)$ наблюдался четкий гистерезис. Максимальные значения ρ были получены при $\mu_0 H \approx \pm 0.2$ T, причем, помимо основного максимума, на зависимости электросопротивления от магнитного поля, измеренной при уменьшении $\mu_0 H$ от 5 до -5 T, присутствовал еще один относительный максимум при напряженности магнитного поля, близкой к нулю (см. вставку (b) на рис. 2). Снижение электросопротивления гетероструктуры с увеличением напряженности магнитного поля (при $\mu_0 H > 0.2 \text{ T}$) происходило вследствие уменьшения пространственной разориентации спинов в манганитных слоях (в первую очередь, в области межкристаллитных границ). Наличие двух максимумов на зависимости $\rho(\mu_0 H)$ для гетероструктуры LCMO/LBMO/LAO обусловлено тем обстоятельством, что величина коэрцитивного поля для двухосносжатого слоя LBMO больше, чем соответствующая величина для двухосно-растянутой пленки LCMO. Согласно [14], вектор спонтанной намагниченности в манганитных пленках, находящихся под действием двухосных растягивающих механических напряжений (в исследованных

В заключение мы хотели бы отметить, что пленка (30 nm)LCMO, выращенная на поверхности слоя (30 nm)LBMO/LAO, способствует усилению искажения кристаллической решетки в нижнем слое гетероструктуры LCMO/LBMO/LAO и уменьшению объема его элементарной ячейки. Это является одной из причин сдвига максимума на температурной зависимости ρ для гетероструктуры относительно его положения на кривой $\rho(T)$ для пленки (30 nm)LBMO/LAO.

Финансовая поддержка для проведения данной работы была частично получена из проекта 9Б19 программы президиума РАН "Низкоразмерные квантовые структуры" и проекта 04–02–16212 Российского фонда фундаментальных исследований.

Список литературы

- Pannetier M., Fermon C., Le Goff G., Simola J., Kerr E. // Science. 2004. V. 304. N 5677. P. 1648.
- [2] Parkin S.S.P., Roche K.P., Samant M.G., Rice P.M., Beyers R.B., Scheuerlein R.E., O'Sullivan E.J., Brown S.L., Bucchigano J., Abraham D.W., Lu Y., Rooks M., Trouilloud P.L., Wanner R.A., Gallagher W.J. // J. Appl. Phys. 1999. V. 85. N 8. P. 5828.
- [3] Goyal A., Rajeswari M., Shreekala R., Lofland S.E., Bhagat S.M., Boettcher T., Kwon C., Ramesh R., Venkatesan T. // Appl. Phys. Lett. 1997. V. 71. N 17. P. 2535.
- [4] Snyder G.J., Hiskes R., DiCarolis S., Beasley M.R., Geballe T.H. // Phys. Rev. B. 1996. V. 53. N 1. P. 14434.
- [5] Weidenhorst B., Höfener C., Lu Y., Klein J., Alff L., Cross R., Freitag B.H., Mader W. // Appl. Phys. Lett. 1999. V. 74. N 24. P. 3636.
- [6] Wyckoff R.W.J. // Crystal Structures. V. 2. 2nd Edition. Interscience. New York, 1964. P. 394.
- [7] Dai P., Zhang J., Mook H.A., Liou S.-H., Dowben P.A., Plummer E.W. // Phys. Rev. 1996. V. 54. N 6. P. R3694.

- [8] Zuccaro C., Berlincourt H.L., Klein N., Urban K. // J. Appl. Phys. 1997. V. 82. N 11. P. 5695.
- [9] Бойков Ю.А., Данилов В.А. // ЖТФ. 2005. Т. 75. В. 7. С. 75.
- [10] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 9. P. 4357.
- [11] Boikov Yu.A., Gunnarsson R., Claeson T. // J. Appl. Phys. 2004. V. 96. N 1. P. 435.
- [12] Бойков Ю.А., Клаесон Т. // ФТТ. 2005. Т. 47. В. 2. С. 274.
- [13] Бойков Ю.А., Данилов В.А. // Письма в ЖТФ. 2005. Т. 31. В. 14. С. 50.
- [14] Wang H.S., Li Q., Liu K., Chien C.L. // Appl. Phys. Lett. 1999. V. 74. N 15. P. 2212.