04

Инверсная функция распределения электронов в тлеющем разряде с полым катодом в смеси азота и гексафторида серы

© В.Ю. Баженов, А.Г. Калюжная, И.А. Солошенко, А.Ф. Тарасенко, А.Г. Терентьева, В.В. Циолко, А.И. Щедрин

Институт физики НАН Украины, Киев E-mail: ahched@iop.kiev.ua

Поступило в Редакцию 22 июня 2005 г.

Проведено экспериментальное и теоретическое исследование функции распределения электронов по энергиям (ФРЭЭ) в смеси азота и гексафторида серы в тлеющем разряде с полым катодом. Показано, что при добавлении к азоту небольшого количества гексафторида серы концентрация электронов на инверсном участке ФРЭЭ $(2-4\,\mathrm{eV})$ возрастает примерно на порядок.

Формирование инверсной функции распределения электронов по энергиям (ФРЭЭ) в низкотемпературной плазме представляет значительный интерес, поскольку такие среды могут быть использованы для создания инверсной заселенности электронных уровней атомов и молекул примесей ([1] и ссылки, приведенные там).

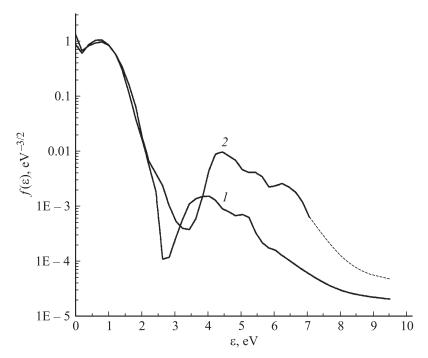
Согласно экспериментальным и теоретическим исследованиям [2], подобные условия могут быть реализованы в азоте в тлеющем разряде с полым катодом. В этом случае инверсный участок стационарной функции распределения лежит в интервале энергий 2–4 eV, что соответствует характерным порогам электронного возбуждения газовых молекул. Инверсия ФРЭЭ в чистом азоте обусловлена особенностями сечений неупругого взаимодействия электронов с его молекулами. Электроны с энергиями 4–7 eV не испытывают никаких неупругих столкновений с молекулами азота, а в ходе упругого рассеяния передают им энергию достаточно медленно и поэтому накапливаются в указанном интервале. В диапазоне 2–4 eV электроны быстро теряют энергию за счет возбуждения колебательных уровней молекул азота, что приводит к образованию в этой области энергий "провала" на

ФРЭЭ. К сожалению, абсолютное большинство электронов сосредоточено в области малых энергий ($\varepsilon < 2\,\mathrm{eV}$), в то время как инверсному участку ФРЭЭ соответствует незначительное их число.

В [1] была теоретически предсказана возможность повышения доли электронов в области инверсного участка за счет добавления к азоту небольшого количества электроотрицательного газа SF_6 или CCl_4 . Интенсивное прилипание низкоэнергетичных электронов к электроотрицательным молекулам должно способствовать снижению их числа в разряде и соответственно увеличению относительного количества электронов в области более высоких энергий и в том числе на инверсном участке. Другие неупругие процессы взаимодействия электронов с примесным газом не оказывают существенного влияния на Φ PЭЭ в силу его низкой концентрации.

В настоящей работе представлены результаты экспериментального исследования $\Phi P \ni B$ смеси азота и SF_6 . Также проведен ее численный расчет для параметров, соответствующих условиям эксперимента. Показано, что добавление к азоту небольшого количества SF_6 приводит к существенному увеличению относительного числа электронов в инверсной области $\Phi P \ni B$.

Экспериментальные исследования ФРЭЭ проводились на установке, подробно описанной в [2]. Вакуумная камера цилиндрической формы диаметром 280 mm и длиной 400 mm (одновременно служащая полым катодом разряда) откачивалась форвакуумным насосом до остаточного давления $\approx 2 \cdot 10^{-3}$ Torr. Скорость откачки практически не зависела от давления в диапазоне $2 \cdot 10^{-3} - 2 \cdot 10^{-1}$ Torr, поэтому для получения необходимой смеси газов N2 и SF₆ использовалась следующая методика. В камеру, откачанную до остаточного давления, в необходимом количестве напускался газ SF₆, после чего она заполнялась азотом до полного давления 0.1 Torr. Парциальное давление SF₆ в экспериментах изменялось в пределах $(1-10) \cdot 10^{-3}$ Torr, что составляет $\approx 1-10\%$ от полного давления газовой смеси. Измерения плотности плазмы и ФРЭЭ проводились при помощи одиночных зондов Ленгмюра, изготовленных из вольфрамовой проволоки диаметром $50-100\,\mu\mathrm{m}$ с длиной приемной части 10-12 mm. Конструкция зондов позволяла перемещать их по длине и радиусу камеры. Во избежание влияния загрязнения поверхности зонда на его вольт-амперную характеристику (ВАХ) после каждого измерения проводилась очистка зонда путем нагрева до $\approx 800^{\circ} \mathrm{C}$.


Для измерения BAX использовался программно-аппаратный комплекс, управляемый персональным компьютером. C его помощью

программно задавался ток зонда с точностью 0.1 μΑ и на каждом шаге одновременно измерялись напряжение зонда относительно анода, анодное напряжение и ток разряда. Изменение тока зонда на каждом шаге измерений автоматически рассчитывалось непосредственно в процессе измерения с помощью специального алгоритма для оптимизашии отношения сигнал/шум во всем лиапзаоне измеряемых значений (при этом количество шагов при измерении одной ВАХ составляло 1500-2000). Измерения выполнялись в стробоскопическом режиме с частотой 100 Hz синхронно с колебаниями напряжения питания во избежание их влияния на результаты измерений. Длительность стробирования измеряемых сигналов составляла 1 µs. Время задержки измерения относительно начала полуволны напряжения питания выбиралось исходя из оптимального отношения сигнал/шум. Результаты измерений записывались в файл в виде зависимости тока зонда от его потенциала при заданных значениях тока и напряжения разряда. Измерения ВАХ повторялись до 30 раз при фиксированных параметрах эксперимента, после чего проводилось усреднение данных. Потенциал плазмы определялся по точке, в которой вторая производная тока зонда по напряжению проходит через нуль, а плотность электронов плазмы вычислялась из электронного тока насыщения на зонд. Для оценки плотности отрицательных ионов плзмы использовался метод, описанный в [3].

При измерении ФРЭЭ для уменьшения систематических искажений в области малых энергий ($\leq 0.2 \div 0.3 \, \mathrm{eV}$) использовался метод, основанный на использовании комбинации первой и второй производных электронного тока на зонд [4]. В этом случае ФРЭЭ имеет следующий вил:

$$f(eV) \approx \frac{1}{C_0} \left(j_e''(eV) - j_e'(eV) \frac{\Psi}{eV} \right),$$
 (1)

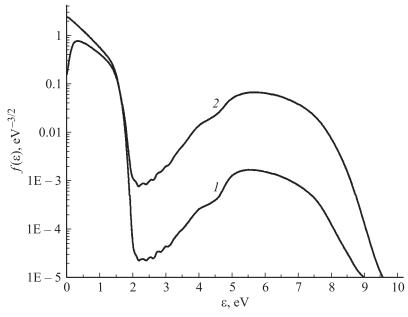

где C_0 — константа нормировки, j_e — плотность электронного тока на зонд, V — потенциал зонда относительно потенциала плазмы, диффузионный параметр зонда $\psi = ac_i/\gamma_0\lambda$, где a — диаметр зонда, λ — длина свободного пробега электронов, $c_i = \ln(\pi l/4a)$, l — длина зонда, a — радиус зонда, $\gamma_0 = 4/3$ при $a \ll \lambda$. При нахождении производных вместо электронного тока использовался полный ток на зонд, поскольку проведенные оценки показали, что в наших условиях вкладом ионного тока в полный ток зонда можно пренебречь вплоть до энергий электронов $\approx 10\,\mathrm{eV}$.

Рис. 1. ФРЭЭ, измеренные в азоте (I) и смеси $N_2: SF_6 = 1:0.057$ (2) при полном давлении 0.1 Torr.

Парциальное давление гексафторида серы в экспериментах не превышало $6\cdot 10^{-3}$ Тогг, поскольку при более высоких его концентрациях в плазме разряда возбуждались интенсивные релаксационные колебания с частотами 10^2-10^5 Hz, препятствующие корректному измерению ее параметров.

Добавление к азоту гексафторида серы приводило к увеличению напряжения на рязряде. Так, для чистого азота оно составляло $\approx 520 \div 540 \, \mathrm{V}$ при токе разряда 1 A, а для смеси с парциальным давлением SF₆ 6 · 10⁻³ Torr достигало $\approx 780-800 \, \mathrm{V}$. Плотность плазмы при указанном давлении SF₆ составляла около 2 · 10¹⁰ cm⁻³, а продольная неоднородность не превышала $\approx 10\%$. Концентрация отрицательных ионов при этом превышала концентрацию электронов

Рис. 2. ФРЭЭ в азоте (1) и смеси $N_2: SF_6=1:0.05$ (2), рассчитанные при полном давлении 0.1 Torr.

в несколько раз. Присутствие в смеси газа SF_6 приводило также к увеличению электрического поля в плазме: при парциальном давлении $SF_6 \approx (5-6) \cdot 10^{-3}$ Тогт продольное электрическое поле увеличивалось почти на порядок по сравнению с его величиной в чистом азоте, достигая значения $\approx 0.1\,\mathrm{V/cm}$. Увеличивалось также и радиальное электрическое поле E_r , причем зависимость его от радиуса приобретала более сложный характер, чем в случае азотной плазмы. Максимального значения $(0.4-0.7\,\mathrm{V/cm})$ радиальное поле достигало в приосевой зоне и на периферии разряда, в то время как в центральной области его величина не превышала $0.1-0.2\,\mathrm{V/cm}$.

На рис. 1 представлена ФРЭЭ, измеренная на радиусе 70 mm при горении разряда на смеси N_2 : SF_6 при парциальном давлении SF_6 около $5.7 \cdot 10^{-3}$ Torr (кривая 2). Для сравнения приведена функция распределения, измеренная при тех же условиях в плазме разряда на чистом

азоте (кривая I). Из сопоставления полученных результатов видно, что присутствие в смеси электроотрицательной добавки приводит к существенному подъему инверсного участка ФРЭЭ, так что относительное число электронов с энергиями, отвечающими инверсному диапазону, возрастает примерно на порядок.

При численном расчете ФРЭЭ решалось уравнение Больцмана в двучленном приближении с учетом упругих и неупругих столкновений электронов с нейтральными частицами, а также электрон-электронного рассеяния и ионизации газовой смеси пучком быстрых электронов. Подробное описание схемы расчета, а также процессы взаимодействия электронов с молекулами смеси, использованные при моделировании, приведены в [1,2]. Расчеты ФРЭЭ проводились для среды N₂ : SF₆ при различных соотношениях компонент смеси и полном давлении 0.1 Torr. Электрическое поле в основной области разряда в соответствии с данными эксперимента выбиралось равным 0.1 V/cm, плотность электронов $\sim 10^{10}\,{\rm cm^{-3}}$. На рис. 2 приведены функции распределения электронов, рассчитанные в чистом азоте и в смеси $N_2: SF_6 = 1:0.05$. Как видно из сопоставления рис. 1 и 2, результаты расчета качественно хорошо согласуются с экспериментальными данными — добавление нескольких процентов SF₆ к азоту приводит к существенному увеличению доли электронов в области инверсии ФРЭЭ.

Список литературы

- [1] Калюжная А.Г., Рябцев А.В., Щедрин А.И. // ЖТФ. 2003. Т. 73. В. 1. С. 42–45.
- [2] Баженов В.Ю., Рябцев А.В., Солошенко И.А. и др. // Физика плазмы. 2001. Т. 27. № 9. С. 859–864.
- [3] Shindo M., Uchino S., Ichiki R.// Rev. Sci. Instrume. V. 72. N 5. P. 2288–2293.
- [4] Горбунов Н.А., Копытов А.Н., Латышев Ф.Е. // ЖТФ. 2002. Т. 72. В. 8. С. 7–12.