06 Влияние электронного облучения на фотоплеохроизм солнечных элементов ZnO/CdS/Cu(In,Ga)Se₂

© Б.Х. Байрамов, Ю.А. Николаев, В.Ю. Рудь, Ю.В. Рудь, Е.И. Теруков, М.В. Якушев

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург С.-Петербургский государственный политехнический университет Strathclyde University, G 40 NG, UK E-mail: rudvas@spbstu.ru

Поступило в Редакцию 20 апреля 2005 г.

Изучено влияние электронного облучения (E = 1 MeV) на фоточувствительность солнечных элементов ZnO/CdS/CuInSe₂ и гетероструктур на основе его компонент: CdS/CuInSe₂ и ZnO/CuInSe₂. Установлено, что коэффициент наведенного фотоплеохроизма солнечных элементов вплоть до доз 10^{17} cm^{-2} остается практически неизменным. Сделан вывод о новой возможности привлечения метода поляризационной фотоэлектрической спектроскопии для исследования влияния электронного облучения на фоточувствительность полупроводниковых фотопреобразователей.

Исследования физико-химических свойств широкого семейства алмазоподобных полупроводников, правила образования которых сформулированы Н.А. Горюновой [1], дали в распоряжение физики и техники полупроводников большую группу новых перспективных материалов, привел к созданию новых типов полупроводниковых приборов. Открытие полупроводниковых свойств у соединений А^{III}В^V создало условия для развития новых представлений физики полупроводников, создания высокоэффективных гетеролазеров, гетерофотоэлементов и т.п. [2]. Начало исследований тройных аналогов бинарных полупроводников привело к синтезу новых прямозонных материалов, открытию фотоплеохроизма, достижению рекордной нелинейной восприимчивости, созданию тонкопленочных солнечных элементов с рекордными квантовой эффективностью и радиационной стойкостью фотопреобразования

49

4

и др. [3–7]. Все это подтвердило продуктивность исследований алмазоподобных фаз в направлении усложения их атомного состава [1–3].

Настоящая работа принадлежит этому перспективному направлению и посвящена первому исследованию наведенного фотоплеохроизма в тонкопленочных поликристаллических солнечных элементов на основе твердых растворов с решеткой типа халькопирита Cu(In,Ga)Se₂ при электронном облучении.

1. Тонкие поликристаллические пленки (толщины $d_1 = 2 \mu m$) твердого раствора CuIn_{0.9}Ga_{0.1}Se₂ выращены одновременным соиспарением элементов Cu, In, Ga и Se на поверхность покрытых пленкой молибдена $(d_1 = 1 \mu m)$ натриевых стекол. Пленки CdS $(d_1 = 50 \text{ mn})$ получены химическим осаждением на постростовую поверхность гомогенных пленок CIGS, после чего на поверхность CdS магнетронным методом наносилась пленка ZnO, которая на толщине $d_1 = 50 \text{ nm}$ специально не легировалась, а при последующем росте осуществлялось легирование ZnO примесью алюминия. В заключительной стадии получения солнечного элемента вакуумным термическим испарением Al на поверхность пленки ZnO: Al через трафарет формировалась токосьемная сетка из чистого алюминия. Исследованные солнечные элементы ZnO/CdS/CIGS в исходном состоянии характеризовались квантовой эффективностью $\eta^{in} \approx 13-14\%$ (AM 1.5) и напряжением холостого хода $V^{in} \approx 620 \text{ mV}$ при T = 300 K.

Наряду с тонкопленочными солнечными элементами ZnO/CdS/CIGS были выращены также фоточувствительные структуры ZnO/CIGS и CdS/CIGS, представляющие собой комбинации пленок, входящих в состав солнечного элемента ZnO/CdS/CIGS. Исследования таких гетероконтактов могут оказаться полезными при оптимизации параметров солнечных элементов ZnO/CdS/CIGS.

2. Облучение полученных структур проводилось на ускорителе электронов дозами $D \approx 10^{16} - 10^{17}$ е/сm² в воздушной среде при комнатных температурах. До и после облучения определялись фотоэлектрические параметры структур и регистрировались спектральные зависимости относительной квантовой эффективности фотопреобразования $\eta(hw)$ в естественном и линейно поляризованном излучении (ЛПИ), а также определялись зависимости коэффициента наведенного фотоплеохроизма P_1 от угла падения Θ при фиксированной энергии падающих фотонов hw и от энергии падающих фотонов при Θ = const.

Рис. 1. Спектральные зависимости относительной квантовой эффективности фотопреобразования солнечного элемента ZnO/CdS/CIGS (1 — до и 2 — после облучения электронами при $D = 10^{17} \text{ cm}^{-2}$) и необлучению структуры ZnO/CIGS (3). T = 300 K. Освещение неполяризованным излучением. На вставке: зависимость $(\eta hw)^2 = f(hw)$ для солнечного элемента ZnO/CdS/CIGS при T = 300 K в неполяризованном излучении до (4) и после облучения электронами дозой $D = 10^{17} \text{ cm}^{-2}$ (5). Зависимости фотонапряжения холостого хода (6), тока короткого замыкания (7) от дозы облучения солнечного элемента ZnO/CdS/CIGS электронами с энергией E = 1 MeV при T = 300 K.

3. На рис. 1 и 2 приведены типичные для изученных тонкопленочных солнечных элементов зависимости $\eta(hw)$, определенные как отношение фототока короткого замыкания к числу падающих фотонов до (i^{in}) и после (i^{ir}) их облучения электронами с энергией $E \approx 1$ MeV. Некоторые параметры фоточувствительности исследованных структур приведены в таблице. Главные итоги этих исследований состоят в слеудющем.

Рис. 2. Спектральные зависимости относительной квантовой эффективности фотопреобразования солнечного элемента CdS/CIGS (1 -до и 2 -после облучения электронами при $D = 10^{17}$ сm⁻²) при T = 300 К. Освещение неполяризованным излучением.

Сравниваемые различные типы тонкопленочных структур, как видно из рис. 1 и 2, обнаружили близкие спектральные зависимости фоточувствительности $\eta(hw)$, которые сохраняются и после облучения электронами до доз $D \approx 10^{17}$ сm⁻². Действительно, во всех таких структурах при близком значении энергии фотонов $hw \approx 1.08$ eV наступает экспоненциальный рост квантовой эффективности фотопреобразования, который описывается характерным для прямых межзонных переходов высоким значением крутизны $S = \delta \ln \eta / \delta(hw) \approx 50 - 110 \text{ eV}^{-1}$, причем наиболее высокие значения *S*, как правило, характерны для солнечных элементов ZnO/CdS/CIGS (см. таблицу). Наблюдаемое снижение крутизны при переходе к структурам ZnO/CIGS и CdS/CIGS может свидетельствовать

Фотоэлектрические свойства тонкопленочных структур на основе Cu(In,Ga)Se₂ при $T = 300 \,\mathrm{K}$

Тип структуры	D, cm ⁻²	$h\omega^m$, eV	δ, eV	$^{S,}_{eV^{-1}}$	E _G , eV	$P_I, \%$ $\Theta \approx 70^\circ$
ZnO/CdS/CIGS	0 10 ¹⁷	1.26; 1.6 1.26; 1.6	1.46 1.38	115 110	1.13 1.13	
CdS/CIGS	$0 \\ 10^{17}$	1.26; 1.6 1.26; 1.55	1.66 1.66	46 58	1.15 1.13	11 10
ZnO/CIGS	0	1.6	1.46	50	1.13	

о размытии краев свободных зон и увеличении роли переходов между хвостами плотности состояний. Важно подчеркнуть, что в столь разных фотопреобразовательных структурах длинноволновый край $\eta(hw)$ следует характерному для прямых межзонных оптических переходов закону [8]

$$\eta h w = A (E_G - h w)^{1/2}, \tag{1}$$

где A — постоянная, а E_G — ширина запрещенной зоны. Экстраполяция зависимостей $(\eta hw)^2 \rightarrow 0$ для изученных типов структур на основе пленок четверного твердого раствора CIGS дает близкое значение ширины запрещенной зоны $E_G \approx 1.13 \text{ eV}$ при T = 300 K как до, так и после их облучения электронами (см. рис. 1 (кривые 4 и 5) и таблицу). Полученное значение E_G согласуется с данными по оптическому поглощению в пленках CIGS, и на этом основании длинноволновый край в спектрах $\eta(hw)$ в исследованных типах структур до и после электронного облучения (рис. 1 и 2) следует связывать с межзонным поглощением в пленках CIGS одинакового атомного состава.

Общим для рассматриваемых структур на основе пленок CIGS является также широкополосный характер спектров их фоточувствительности (рис. 1 и 2). При этом необходимо отметить тот факт, что при облучении электронами и изменении типа структур энергетическое положение максимумов в спектрах фоточувствительности hw^m , обозначенное на рис. 1 и 2 стрелками и приведенное в таблице, хорошо воспроизводится, а фоточувствительность сохраняется на высоком уровне

в широкой области энергий фотонов. В таблице также даны значения полной ширины спектров фоточувствительности на их полувысоте δ , которые к тому же в исследованных структурах оказываются достаточно высокими и близкими между собой величинами. Это позволяет сделать вывод о достаточно хорошем качестве их интерфейса и его устойчивости по отношению к электронному облучению структур дозами до $D = 10^{17}$ сm⁻², во всяком случае. Следует при этом подчеркнуть, что коротковолновый спад в спектрах $\eta(hw)$ структур ZnO/CdS/CIGS (рис. 1, кривые 1 и 2) при облучении электронами не усиливается, тогда как в случае структур CdS/CIGS он к тому же еще и заметно смещается в коротковолновую область (рис. 2, кривая 2). Последнее свидетельствует о том, что вследствие облучения электронами качество интерфейса не падает.

Дозовые зависимости фотонапряжения холостого хода и тока короткого замыкания, нормированные на значениях этих параметров в исходном состоянии, для солнечных элементов ZnO/CdS/CIGS (рис. 1, кривые 6 и 7) свидетельствуют о их высокой радиационной стойкости вплоть до доз $D = 10^{17}$ cm⁻², что согласуется с результатами [5–7]. При переходе к измерениям структур CdS/CIGS было показано, что напряжение холостого хода и ток короткого замыкания в диапазоне доз от 10^{16} до 10^{17} cm⁻² проявляют выраженную деградацию этих параметров под воздействием облучения электронами. Например, $U^{ir}/U^{in} \approx 0.68$ и $i^{ir}/i^{in} \approx 0.1$ при $D = 10^{17}$ cm⁻². В этом плане представляется важным введение в состав тонкопленочных структур пленки ZnO, которая фактически обеспечивает подавление деградации фоточувствительности под воздействием высокоэнергетичных электронов.

4. При освещении ЛПИ сильно облученных структур ZnO/CdS/CIGS было установлено, что во всей области фоточувствительности фототок начинает зависеть от пространственной ориентации вектора электрического поля световой волны **E** в условиях, когда угол падения ЛПИ Θ становится отличным от нуля (рис. 3). В случае освещения приемной плоскости исследованных солнечных элементов ЛПИ в направлении вдоль нормали к ней фототок остается нечувствительным к величине азимутального угла φ между **E** и плоскостью падения излучения, что связано с изотропным характером поглощения образующими гетеропереход поликристаллическими пленками CIGS, CdS и ZnO. Если реализуется случай наклонного падения ЛПИ ($\Theta \neq 0$), величина фототока солнечного элемента в зависимости от угла φ подчиняется

Рис. 3. Зависимости фототоков $i^P(1)$, $i^S(2)$, коэффициента наведенного фотоплеохроизма $P_I(3)$ и $P_I^{1/2}(4)$ от угла падения ЛПИ на приемную плоскость облученного электронами ($D = 10^{17}$ cm⁻²) солнечного элемента ZnO/CdS/CIGS при T = 300 K. hw = 2.07 eV.

периодической зависимости вида

$$i_{\varphi} = i^{P} \cos^{2} \varphi + i^{S} \sin^{2} \varphi, \qquad (2)$$

где фототоки i^P и i^S отвечают ориентации **E** относительно плоскости падения излучения. Типичные для облученных электронами солнечных элементов зависимости фототоков i^P и i^S , а также коэффициента наведенного фотоплеохроизма P_I от угла падения Θ приведены на рис. 4. Их главные закономерности заключаются в следующем. Во-первых, фототоки i^P и i^S с ростом угла падения вблизи $\Theta = 60^\circ$ обнаруживают максимум (рис. 3, кривые I и 2), который свидетельствует об одновременном снижении потерь на отражение излучения обеих поляризаций. Подчеркнем, что если экспериментальные зависимости

Рис. 4. Спектры коэффициента наведенного фотоплеохроизма солнечного элемента ZnO/CdS/CIGS до (1 -эксперимент, 2 -расчет [11]) и после облучения электронами $(3, D = 10^{17} \text{ cm}^{-2})$ при T = 300 K и $\Theta = 70 \text{ deg}$ и зависимость коэффициента наведенного фотоплеохроизма солнечного элемента ZnO/CdS/CIGS от дозы облучения электронами (4). T = 300 K, hw = 2.0 eV, $\Theta = 70 \text{ deg}$.

 $i^{P}(\Theta)$ согласуются с ожидаемыми из анализа процессов прохождения ЛПИ через границу воздух/ZnO, то зависимости $i^{S}(\Theta)$ отличаются от предсказываемых теорией [9,10]. Во-вторых, экспериментальные угловые зависимости коэффициента фотоплеохроизма находятся в соответствии с [11] и подчиняются квадратичному закону $P_{I} \sim \Theta^{2}$ (рис. 3, кривые 3 и 4), причем величина P_{I} при Θ = const остается в пределах всей области фоточувствительности практически постоян-

57

ной. На рис. 4 (кривые I и 3) приведены типичные спектральные зависимости коэффициента наведенного фотоплеохроизма солнечного элемента ZnO/CdS/CIGS до и после его облучения электронами при $\Theta = 70$ deg. Видно, что коэффициент P_I солнечных элементов при их облучении электронами с энергией E = 1 MeV и дозами до 10^{17} cm⁻² остается практически неизменным (рис. 4, кривая 4), что наблюдается и в дозовых зависимостях фотоэлектрических параметров этих элементов в неполяризованном излучении (рис. 1, кривые 6 и 7). С другой стороны, снижение экспериментальной величины коэффициента наведенного фотоплеохроизма относительно его теоретической оценки P_I для границы воздух / ZnO [11] (рис. 4, кривая 2) позволяет сделать вывод о достижении эффекта снижения потерь на отражение в полученных структурах ZnO/CdS/CIGS, причем в пределах всей области высокой фоточувствительности [11,12].

Экспериментальные спектры $P_I(hw)$ позволяют также указать на перспективу дальнейшего повышения эффективности фотопреобразования солнечных элементов ZnO/CdS/CiGS путем оптимизации параметров просветляющих покрытий, что может непосредственно контролироваться методом фотоэлектрической поляризационной спектроскопии в области максимальной фоточувствительности [11,12] и даст возможность превзойти рекордный уровень квантовой эффективности таких фотопреобразователей.

Таким образом, выполнены исследования фоточувствительности солнечных элементов ZnO/CdS/CIGS и структур из образующих их компонент (CdS/CIGS и ZnO/GIGS) в естестенном и линейнополяризованном излучении в зависимости от дозы облучения электронами с энергией E = 1 MeV. Установлено, что для солнечных элементов ZnO/CdS/CIGS эффективность фотопреобразования и коэффициент наведенного фотоплеохроизма в области доз до 10^{17} сm⁻² остаются практически неизменными. Последнее вскрывает новую возможность привлечения явления фотоплеохроизма к анализу влияния облучения на свойства полупроводниковых фотопреобразователей.

Авторы признательны профессору В.В. Козловскому за полезное обсуждение полученных результатов, профессору Г.В. Шоку (IPE, Stuttgart) за предоставление солнечных элементов на основе CIGS и В.Н. Ломасову за облучение структур.

Работа выполнена при поддержке фонда INTAS (проект N 2001–283) и программы ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- [1] Горюнова Н.А. Сложные алмазоподобные полупроводники. М.: Сов. радио, 1968.
- [2] Алфёров Ж.И., Царенков Б.В. // ФТП, 1985. Т. 19. В. 11. С. 2113–2117.
- [3] Прочухан В.Д., Рудь Ю.В. // ФТП. 1978. Т. 12. В. 2. С. 209–227.
- [4] Рудь Ю.В. // Изв. вузов. Физика. 1986. В. 8. С. 68-71.
- [5] Lundberg O., Edoff M., Stolt L. // Abstract book. Solar Wolrd Congress. June 14–19, 2003. Goteborg: Sweden, 2003. P. 57.
- [6] Jasenek A., Rau U. // J. Appl. Phys. 2001. V. 90. N 7. P. 650-653.
- Jasenek A., Rau U., Weinert K., Kotschau I.M., Hanna G., Voorwinden G., Povalla M., Schock H.-W., Werner J.H. // Thin Solid Films. 2001. V. 387. N 2. P. 228-230.
- [8] Зи С. Физика полупроводниковых приборов. М.: Мир, 1984.
- [9] Ландсберг Г.С. Оптика. М.: Наука, 1976.
- [10] Азам Р., Башара Н. Эллипсометрия и поляризованный свет. М.: Мир, 1981.
- [11] Кесаманлы Ф.П., Рудь В.Ю., Рудь Ю.В. // ФТП. 1999. Т. 33. В. 5. С. 512–536.
- [12] Рудь В.Ю., Рудь Ю.В., Хвостиков В.П. // ФТП. 1999. Т. 33. В. 8. С. 747-751.