⁰⁷ Расчет параметров генерации мощного Не-Ne-лазера на $\lambda = 0.63\,\mu{ m m}$

© В.В. Липский, В.Е. Привалов

С.-Петербургский государственный политехнический университет

Поступило в Редакцию 28 декабря 2004 г.

Существующие методы расчета параметров генерации He-Ne-лазера соответствуют эксперименту при мощностях, меньших 30-50 mW. Предлагается метод расчета для мощности более 100 mW.

Потребность в мощных He–Ne-лазерах определяется их применением в голографии, рамановской спектроскопии [1], а также в фотодинамической терапии [2].

Серийные лазеры ЛГ-38, ЛГН-215, ЛГН-220, ЛГН-222 в лучшем случае позволяют достичь 80 mW на основной TEM_{00q} моде. В [3] сообщается о достижении 108 mW на свернутом резонаторе, а в [4] о 320 mW в многомодовом режиме генерации. Последний лазер в эксплуатации практически не применяется из-за высоких массы и габаритов.

Представляет особый интерес оценка мощности генерации, диаметра пучка, расходимости, стабильности параметров He–Ne-лазеров повышенной мощности в одномодовом режиме.

В [5] приведен расчет мощности He–Ne-лазера ЛГH-222 на пяти длинах волн генерации в красной области спектра. Результат — 84 mW ограничивает величину максимальной мощности на $\lambda = 0.63 \,\mu m$ в указанном лазере.

В настоящей работе, как и в [5], применена формула расчета мощности излучения лазера для случая усиления слабого сигнала:

$$P = AG_m \left[1 - (a_c/G_m)^{1/2} \right]^2 \pi S_0^2 \left[1 - \exp(-2r_0^2/S_0^2) \right], \tag{1}$$

где $A = 30 \text{ W/sm}^2$ — коэффициент насыщения, G_m — суммарный ненасыщенный коэффициент усиления в центре доплеровски уширенного контура усиления атомов Ne, S_0 — радиус пучка на выходном зеркале, r_0 — радиус капилляра.

57

Известно [6,7], что

$$G_m = 3 \cdot 10^{-4} (1/2r_0), \tag{2}$$

где *l* — длина активной части капилляра, а

$$S_0 = (\lambda L/\pi)^{1/2} \left[L(R-L) \right]^{1/4},$$
(3)

где λ — длина волны генерации, R — радиус кривизны зеркала резонатора плоскость-сфера, L — длина резонатора.

Целью работы является расчет возможности достижения уровня $P_{las} \ge 100 \,\mathrm{mW}$ в габаритах излучателя лазера ЛГН-222. Из формулы (1) следует, что для этого нужно увеличить G_m и S_0 , а также уменьшить a_c . Множитель $[1 - \exp(-2r_0^2/S_0^2]$ в нашем случае близок к 1. Увеличение S_0 ограничено сверху предельным значением r_0 , обеспечивающим необходимый коэффициент G_m и одномодовый режим генерации, а минимальные потери в резонаторе $a_{\rm cmin}$ ограничены снизу диссипативными потерями, поэтому в работе проведен расчет P_{las} для увеличенного значения G_m , достигаемого за счет удвоения 1. Практически [3] это достигается за счет использования свернутого П-образного резонатора в базовом излучателе лазера ЛГН-222.

Для оценки вносимых потерь a_c учитывались потери на поглощение в каждом окне Брюстера параллельно расположенных активных элементов a_1 , потери при отражении от зеркал резонатора a_2 , дифракционных потерь a_3 и неучтенных потерь a_4 .

Согласно [7], поглощение в двух кварцевых окнах толщиной 2 mm при полном проходе резонатора составляет $a_{11} = 1.5 \cdot 10^{-3}$. В нашем случае $a_1 = 3 \cdot 10^{-3}$. Потери a_2 в зеркале резонатора, изготовленного методом вакуумного осаждения на кварцевую подложку материалов ZrO₂ и SiO₂, оценивается [7] как $a_{21} = 1.5 \cdot 10^{-3}$. В нашем случае при использовании двух основных и двух поворотных зеркал данные потери $a_2 = 6 \cdot 10^{-3}$.

Оценка дифракционных потерь a_3 проводилась по методу определения чисел Френеля эквивалентного конфокального резонатора [6]. При этом числа Френеля N определялись по формулам:

$$N_1 = a^2 / (\lambda L) \left[g_1 / g_2 (1 - g_1 g_2) \right]^{1/2},$$
(4a)

$$N_2 = a^2 / (\lambda L) \left[g_2 / g_1 (1 - g_1 g_2) \right]^{1/2},$$
(4b)

где a — апертура резонатора, g — параметр резонатора, определяемый как $g_i = 1 - L/R_i, i = 1, 2.$

Таблица 1.

N₂	r_0	N_1	N_2	$a_{31} \cdot 10^{-2}$	$a_{32} \cdot 10^{-2}$	$a_{3c} \cdot 10^{-2}$
1	1.5	0.73	0.46	1	5	3
2	1.6	0.83	0.52	0.2	3	1.6

Таблица 2.

No	$r_{\kappa} = 1.5$	mm	$r_{\kappa} = 1.6 \mathrm{mm}$	
1 42	$a_s = 10^{-2}$	P,mW	$a_s \cdot 10^{-2}$	P, mW
1	4.1	133.2	2.7	151.1
2	5.0	118.9	3.0	142.4
3	6.0	105.5	4.0	122.9
4	7.0	93.8	5.0	106.9
5			6.0	94.3

Расчет *N* проводился для двух значений апертур резонатора *a*, которые определены радиусом капилляра $r_{01} = 1.5$ mm и $r_{02} = 1.6$ mm. Данные значения r_0 выбраны из условий обеспечения генерации основной *TEM*_{00q} моды по методу, изложенному в [6]. В этих пределах отбираются капилляры активных элементов в производстве лазеров ЛГН-215 и ЛГН-222.

Результаты расчета $a_{\rm д}$ приведены в табл. 1.

В [7] неучтенные потери оценивались величиной $a_4 = 1 \cdot 10^{-3}$. В настоящей работе принято удвоенное значение $a_4 = 2 \cdot 10^{-3}$ с учетом присутствия дополнительного активного элемента и поворотных зеркал резонатора. Следовательно, суммарные минимальные потери для резонатора с $r_0 = 1.5$ mm равны $a_s = 4.1 \cdot 10^{-2}$, а для $r_0 = 1.6$ mm — $a_s = 2.7 \cdot 10^{-2}$. Результаты расчета P_{las} для минимальных и типичных значений a_s приведены в табл. 2.

Из табл. 2 следует, что $P_{las} \ge 100 \,\mathrm{mW}$ достигается в случае с $r_0 = 1.5 \,\mathrm{mm}$ при росте потерь до $a_s = 6.0 \cdot 10^{-2}$, а в случае с $r_0 = 1.6 \,\mathrm{mm}$ до $a_s = 5.0 \cdot 10^{-2}$. При этом уровень достигаемой P_{las} при минимальных потерях с $r_0 = 1.6 \,\mathrm{mm}$ выше.

Расчет радиуса пучка проводится по формуле (3) и равен $S_0 = = 0.9 \text{ mm.}$

Расходимость пучка генерации определяется соотношением [6]:

$$\Theta = 2/(kR)^{1/2} + 3.83/(ak), \tag{5}$$

где $k = 2\pi/\lambda$ — волновое число, a — радиус диафрагмы резонатора, R — конфокальный параметр, определяемый как $R = 2L(g_1/(1-g_2))^{1/2} = 9.7$ m.

В формуле (5) первое слагаемое учитывает расходимость, сформированную конфигурацией резонатора, а второе — дифракционную расходимость, возникающую на апертуре активного элемента. В нашем случае $\Theta = 0.46$ mrad.

Отметим совпадения результатов расчета Θ по формуле (5) с формулой, приведенной в [8]: $\Theta = 1.27\lambda/(2S_0) = 0.45$ mrad.

Стабильность характеристик генерации можно оценить, введя понятие критического угла разъюстировки Ψ_c [9], при котором генерация срывается до нуля. В [10] показано, что разъюстировка плоских зеркал резонатора на угол Ψ эквивалентна введению дополнительных потерь мощности:

$$\alpha_{ad.} \approx 3.3 ka \Psi / (N_1)^{1/2}.$$
 (6)

В нашем случае резонатор близок к плоскому ($R_1 = 10 \text{ m}; R_2 = \infty$).

Допустимые потери мощности за счет разъюстировки оцениваются как [6]:

$$a_{ad.} = 2G_m 1 - a_s, (7)$$

где *a*_s — суммарные потери съюстированного резонатора.

Подставив (7) в (6), определим критический угол разьюстировки Ψ_c для величины суммарных потерь $a_s = 5 \cdot 10^{-2}$: $\Psi_c = 0.015$ mrad. Для минимальных потерь $a_s = 2.7 \cdot 10^{-2}$ получим $\Psi_c = 0.016$ mrad.

Расчетные значения критических углов разьюстировки являются приблизительными и не учитывают разьюстировки поворотных зеркал. Поэтому стабильность интенсивности и пространственных характеристик генерации зависят как от расчетных значений Ψ_c , так и от конструкционных особенностей лазера и определяются экспериментально.

В заключение отметим, что приведенный подход согласуется с достаточно общей моделью газоразрядного лазера, предложенной в [11].

Список литературы

- [1] Оптическая голография / Под ред. Г. Колфилда. Т. 2. М.: Мир, 1982. 735 с.
- [2] Тезисы докладов конференции "Лазеры для медицины, биологии и экологии" / Под ред. А.В. Иващенко и В.Е. Привалова. С.-Петербург, 21–
- 22 ноября 2001 г. 48 с. [3] Липский В.В., Привалов В.Е. // Опт. и спектр. 1990. Т. 69. В. 2. С. 459-461.
- [4] Schenermann W., Retter G.J. // Opt. and Laser Technology. 1971. V. 2. P. 45.
- [5] Bondarchuk Y.M., Krysjuk D.S., Lipsky V.V. // Proc. of SPIE. 2000. V. 4316. P. 104–106.
- [6] Ищенко Е.Ф., Климков Ю.М. Оптические квантовые генераторы. М.: Сов. радио, 1968. 469 с.
- [7] Mallik A. Proc. Symp. Quantum and Opto-electronics. Bombey, 1974.
- [8] О'Шиа Д., Коллен Р., Родс У. Лазерная техника. М.: Атомиздат, 1980. 256 с.
- [9] Sinclair D.C. // Appl. Optics. 1964. V. 3. N 9. P. 1067.
- [10] Вайнитейн Л.А. Открытые резонаторы и открытые волноводы. М.: Сов. радио, 1976. 567 с.
- [11] Мольков С.И. Автореф. докт. дис. СПб.: СПбГПУ, 2004. 32 с.