06,04 Индуцированное электрическим полем сегнетоэлектричество в перовскитах PbBO₃ со сложным замещением в *B*-позиции

© В.К. Ярмаркин, С.Г. Шульман, Н.В. Зайцева, В.В. Леманов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: v.yarmarkin@mail.ioffe.ru

(Поступила в Редакцию 17 июня 2010 г.)

Исследованы процессы переключения поляризации в керамических образцах релак- $Pb(Mg_{1/3}Ti_{1/3}W_{1/3})O_3$, $Pb(Mg_{1/4}Sc_{1/4}Nb_{1/4}W_{1/4})O_3,$ $Pb(Mg_{1/5}Sc_{1/5}Ti_{1/5}Nb_{1/5}W_{1/5})O_3$ соров и Pb(Mg_{1/6}Sc_{1/6}Ti_{1/6}Sn_{1/6}Ta_{1/6}W_{1/6})O₃ в диапазоне частот 50 Hz-2 kHz и температур 90-300 К при амплитуде измерительных полей до 20 kV/cm. Показано, что при определенных условиях эти материалы обнаруживают насыщенные петли диэлектрического гистерезиса, указывающие на возникновение в них индуцированного электрическим полем сегнетоэлектрического состояния. Получены сведения о зависимости спонтанной поляризации и коэрцитивного поля исследованных релаксоров от их химического состава, температуры и частоты измерительного напряжения.

Работа поддержана грантами РФФИ № 10-02-00286 и 10-02-00564, ГК 02.740.11.5162, ГК 02.740.11.0544 и программой ОФН РАН.

1. Введение

Открытое Смоленским с соавторами в 1958 г. соединение Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN), обладающее уникальными диэлектрическими свойствами [1–3], является классическим представителем обширного семейства релаксоров типа Pb(B'B")O₃ (см. монографию [4] и приведенные там ссылки). В продолжение этих исследований в работах [5,6] проведен синтез керамических образцов с более сложным замещением в *B*-позиции согласно формуле Pb($B_{x1}^{Z1} \dots B_{xn}^{Zn}$)O₃ с n = 3, 4, 5, 6 и $x_i = 1/n$, где в качестве *B*-заместителей были выбраны ионы Mg²⁺, Sc³⁺, Ti⁴⁺, Sn⁴⁺, Nb⁵⁺, Ta⁵⁺ и W⁶⁺. При таком замещении, как очевидно, должны выполняться условия $\sum_{1}^{n} x_i = 1, \sum_{i}^{n} x_i Z_i = 4.$

В работах [5,6] показано, что керамические образцы со сложным замещением в В-позиции при комнатной температуре имеют кубическую структуру перовскита, значительную степень неупорядоченности и обладают релаксорными свойствами. При охлаждении до низких температур без приложения к образцам внешних электрических полей большинство ранее полученных релаксоров (кроме соединений Pb(Sc_{1/2}Nb_{1/2})O₃ [7] и $Pb(Sc_{1/2}Ta_{1/2})O_3$ [8]) характеризуется отсутствием спонтанной поляризации при неизменной пространственной симметрии в отличие от "нормальных" сегнетоэлектриков, таких как титанат бария, триглицинсульфат (ТГС) и др. Представлялось интересным изучить влияние электрического поля на диэлектрические свойства перовскитов со сложным замещением в В-позиции. Этому вопросу и посвящена настоящая работа.

2. Методика эксперимента

В качестве объекта исследований использовались керамические образцы следующих составов: $Pb(Mg_{1/3}Ti_{1/3}W_{1/3})O_3$ (n = 3, $x_i = 1/3$) в формуле $Pb(B_{x1}^{x1}...B_{xn}^{2n})O_3$, $Pb(Mg_{1/4}Sc_{1/4}Nb_{1/4}W_{1/4})O_3$ (n = 4, $x_i = 1/4$), $Pb(Mg_{1/5}Sc_{1/5}Ti_{1/5}Nb_{1/5}W_{1/5})O_3$ (n = 5, $x_i = 1/5$) и $Pb(Mg_{1/6}Sc_{1/6}Ti_{1/6}Sn_{1/6}Ta_{1/6}W_{1/6})O_3$ (n = 6, $x_i = 1/6$). Кроме того, для сопоставления свойств полученных материалов со свойствами всесторонне исследованного релаксора PMN [4] были изучены образцы и этого соединения.

Технология изготовления образцов подробно описана в работе [6]. В качестве исходных реактивов использовались оксиды *В*-ионов: Mb₂O₅, Ta₂O₅, Sc₂O₃, TiO₂, SnO₂, WO₃, карбонат магния MgCO₃ и оксид свинца PbO. На первом этапе проводилась реакция в твердой фазе между оксидами. Предварительный обжиг смеси всех реактивов, за исключением оксида свинца, проводился в течение 20h при температуре 1100°C, а затем после добавления PbO отжиг продолжался также 20 h при 875°C. Керамические диски полученных составов прессовались при давлении 2 · 10⁸ Ра и спекались при температуре 1050°C в течение 1 h с последующим снижением температуры со скоростью 50°С/тіп. Для предотвращения потерь свинца принимались специальные меры: при окончательном обжиге образцы на пластине из платины покрывались двумя платиновыми чашками, между которыми помещался порошок PbZrO₃. В результате потери образцов по весу составляли не более 1%, а плотность — 90-95% от рентгеновской плотности. Структура приготовленных образцов исследовалась рентгеновским дифрактометром ДРОН-3

Рис. 1. Петли диэлектрического гистерезиса релаксора Pb(Mg_{1/3}Nb_{2/3})O₃.

с излучением CuK_{α} . В рентгенограммах всех образцов (кроме PMN) наблюдались сверхструктурные рефлексы, которые свидетельствовали о частичном упорядочении структуры с удвоением решетки.

Спеченные образцы представляли собой диски толщиной 0.4 mm и диаметром 9 mm. Образцы сошлифовывались до толщины 0.05–0.15 mm, после чего на одну из их поверхностей наносились электроды путем вжигания серебряной пасты при температуре 600°С, а на другую — металлические покрытия (палладий и сплав индия с оловянно-свинцовым припоем) диаметром около 0.5 mm, наносимые методом вакуумного напыления и методом пайки соответственно). Использование указанных относительно малых размеров электрода было обусловлено необходимостью уменьшения вероятности электрического пробоя образцов при подаче на электроды напряжения 100-300 V частотой 50 Hz-2 kHz в температурном интервале от 80 до 300 К. Измерения температурных зависимостей проводились при охлаждении со скоростью 1 K/min.

3. Результаты и их обсуждение

Рассмотрение и анализ полученных экспериментальных данных удобно начать с петель диэлектрического гистерезиса классического релаксора PMN (рис. 1). Вид и характер изменения этих петель при изменении температуры согласуются с приведенными в пионерских работах [3,9] для керамики и монокристаллов PMN, демонстрируя плавный переход из состояния нелинейного диэлектрика (параэлектрика), не обладающего остаточной поляризацией при комнатной температуре, в состо-

Рис. 2. Петли диэлектрического гистерезиса релаксоров $Pb(Mg_{1/3}Ti_{1/3}W_{1/3})O_3$ (*a*), $Pb(Mg_{1/4}Sc_{1/4}Nb_{1/4}W_{1/4})O_3$ (*b*), $Pb(Mg_{1/5}Sc_{1/5}Ti_{1/5}Nb_{1/5}W_{1/5})O_3$ (*c*) и $Pb(Mg_{1/6}Sc_{1/6}Ti_{1/6}Sn_{1/6}Ta_{1/6}W_{1/6})O_3$ (*d*) при температуре 180 K на частоте 50 Hz.

яние, характерное для нормальных сегнетоэлектриков, с величиной остаточной поляризации $P_r \approx 20 \,\mu$ C/cm² при 150 К. Однако дальнейшее снижение температуры в нашем случае в отличие от цитированных выше работ сопровождается не увеличением остаточной поляризации, а ее уменьшением вплоть до практически полного подавления петли гистерезиса при 90 К. Уменьшение остаточной поляризации, измеренной по петле гистерезиса, наблюдалось нами в РМN и при увеличении частоты измерительного напряжения (приблизительно в 1.5 раза при изменении частоты от 100 Hz до 2 kHz при температуре 200 K и амплитуде измерительного поля $E_a = 6 \, \text{kV/cm}$).

Качественно подобные изменения параметров петель диэлектрического гистерезиса при изменении температуры и частоты измерительного напряжения наблюдались и при исследовании перечисленных выше релаксоров со сложными замещениями в октаэдрических позициях структуры перовскита. В этих релаксорах, как и в PMN, при снижении температуры наблюдается плавный переход из состояния нелинейного диэлектрика, не обладающего остаточной поляризацией при комнатной температуре, в состояние, характерное для нормальных сегнетоэлектриков с величиной P_r в максимуме приблизительно от 1 до $10 \,\mu$ C/cm², а также уменьшение значений P_r при дальнейшем снижении температуры и/или увеличении частоты измерительного поля. В качестве иллюстрации на рис. 2 приведены петли диэлектрического гистерезиса исследованных релаксоров при температуре 180 К, при которой все перечисленные релаксоры обладали заметной остаточной поляризацией.

На рис. 3 приведены температурные зависимости остаточной поляризации исследованных материалов, определенные из петель диэлектрического гистерезиса при частоте 50 Hz и при амплитуде измерительного напряжения $E_a = 20 \, \text{kV/cm}$. Отметим, что подобный "колоколообразный" характер зависимости остаточной поляризации от температуры наблюдался в [10] при исследовании материалов состава (Sr_{1-1.5x}Bi_x)TiO₃ при x = 0.0533 и Ba(Ti_{0.8}Ce_{0.2})O₃ и рассматривался авторами этой работы в качестве одного из доказательств релаксорной природы указанных материалов. В то же время, как показали наши исследования, такой же характер зависимости P_r от температуры может быть получен и на образцах нормальных сегнетоэлектриков, таких как титанат бария, триглицинсульфат и др., в результате возрастания при охлаждении величины коэрцитивного поля до значений, близких к амплитуде используемых измерительных полей Еа (так, практически полное подавление петли гистерезиса в монокристаллах ТГС при измерениях на частоте 2 kHz с амплитудой измерительного поля $E_a = 4 \, \text{kV/cm}$ наблюдалось при температуре около 150 К в результате увеличения коэрцитивного поля E_c до значения $E_c \approx E_a$). При использовании же

Рис. 3. Температурные зависимости "кажущихся" значений остаточной поляризации, определенные из петель диэлектрического гистерезиса при амплитуде измерительного поля 20 kV/ст на частоте 50 Hz для различных релаксоров: Pb(Mg_{1/3}Nb_{2/3})O₃ (1), Pb(Mg_{1/4}Sc_{1/4}Nb_{1/4}W_{1/4})O₃ (2), Pb(Mg_{1/3}Ti_{1/3}W_{1/3})O₃ (3), Pb(Mg_{1/5}Sc_{1/5}Ti_{1/5}Nb_{1/5}W_{1/5})O₃ (4) и Pb(Mg_{1/6}Sc_{1/6}Ti_{1/6}Sn_{1/6}Ta_{1/6}W_{1/6})O₃ (5).

достаточно сильных измерительных полей, существенно превышающих значения коэрцитивного поля во всем диапазоне температур измерения, релаксоры обнаруживают монотонное возрастание остаточной поляризации при снижении температуры — так же, как и нормальные сегнетоэлектрики (см., например, [9], где это было показано для монокристаллов PMN при их охлаждении от 360 до 90 К с амплитудой измерительных полей более 40 kV/cm при частоте 50 Hz). Отметим, что в наших образцах при амплитуде измерительного поля E_a более 20 kV/ст происходил электрический пробой. Таким образом, максимальное значение Е_a в наших экспериментах составляло 20 kV/cm, так что полученная нами остаточная поляризация, которая уменьшалась при снижении температуры, является лишь "кажущейся". Кроме того, как показали измерения, температура максимума P_r зависела от амплитуды измерительного поля (при фиксированной частоте измерений). Так, например, для релаксора $Pb(Mg_{1/4}Sc_{1/4}Nb_{1/4}W_{1/4})O_3$ при измерениях на частоте 50 Hz при $E_a = 6 \, \text{kV/cm}$ максимальное значение остаточной поляризации ($P_r \approx 7.5 \,\mu\text{C/cm}^2$) наблюдалось при температуре около 200 К, а при увеличении E_a до 20 kV/cm температура максимума снижалась до примерно 180 К при величине P_r около $10\,\mu\text{C/cm}^2$. Увеличение частоты измерительного поля, напротив, смещало максимум P_r в область более высоких температур.

Для объяснения полученных результатов полезно напомнить, что релаксор PMN с неупорядоченным распределением ионов Mg^{2+} и Nb^{5+} в октаэдрических узлах решетки перовскита имеет кубическую симметрию Pm3m, O_h^1 с центром инверсии вплоть до гелиевых температур и в отсутствие электрического поля не обладает спонтанной поляризацией. Наблюдаемое при уменьшении температуры от комнатной до температуры максимума P_r увеличение остаточной поляризации объясняется увеличением количества и размеров имеющихся в материале полярных нанообластей (polar nano regions, PNRs) с выстраиваемой под действием электрического поля поляризацией [11,12]. Предполагается [13], что эти полярные области ромбоэдрической симметрии образуются в релаксоре в процессе его охлаждения от высоких температур и возникают при температуре Бернса ($T_B \approx 620 \,\mathrm{K}$ в случае PMN) в результате конденсации мягкой поперечной оптической фононной моды. Показанное на рис. 3 уменьшение "кажущейся" величины остаточной поляризации PMN (вплоть до полного подавления петли гистерезиса) при дальнейшем снижении температуры может быть объяснено увеличением коэрцитивного поля E_c в этом материале до значений [10], близких к амплитуде использованного в наших измерениях измерительного поля. Увеличение Е_с в релаксорах при снижении температуры объясняется замораживанием поляризации PNRs [12] и/или их взаимодействием со структурными дефектами [14]. Наблюдаемое при этом увеличение времен релаксации поляризации объясняет и отмеченное выше влияние частоты измерительного напряжения на температурную зависимость остаточной поляризации исследованных релаксоров: чем выше частота, тем меньшая часть суммарного объема PNRs участвует в их переполяризации.

Таким образом, проведенные исследования показывают, что наблюдаемые в эксперименте сегнетоэлектрические свойства рассматриваемых релаксоров инициированы (как и в PMN) сильными электрическими полями, которые понижают их симметрию до симметрии полярной группы.

Список литературы

- [1] Г.А. Смоленский, А.И. Аграновская. ЖТФ 28, 1491 (1958).
- [2] Г.А. Смоленский, А.И. Аграновская, С.Н. Попов, В.А. Исупов. ЖТФ 28, 2153 (1958).
- [3] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, С.Н. Попов. ЖТФ 2, 2906 (1960).
- [4] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, А.И. Соколов, Н.К. Юшин. Физика сегнетоэлектрических явлений. Наука, Л. (1985). 396 с.
- [5] В.В. Леманов, Е.П. Смирнова, Н.В. Зайцева. ФТТ 51, 1590 (2009).
- [6] В.Г. Залесский, В.В. Леманов. ФТТ 52, 1365 (2010).
- [7] N. Setter, L.E. Cross. J. Appl. Phys. 51, 4356 (1980).
- [8] F. Chu, I.M. Reaney, N. Steer. J. Appl. Phys. 77, 1671 (1995).
- [9] В.А. Боков, И.Е. Мыльникова. ФТТ 3, 841 (1961).
- [10] C. Ang, Z. Yu, Z. Jung. Phys. Rev. B 61, 957 (2000).
- [11] L.E. Cross. Ferroelectics 76, 241 (1987).
- [12] D. Viehland, S.J. Hang, L.E. Cross. J. Appl. Phys. 68, 2916 (1990).
- [13] G. Xu, G. Shirane, J.R.D. Copley, P.M. Gehring. Phys. Rev. B 69, 064 112 (2004).
- [14] B.-S. Li, G.-R. Li, Q.-R. Yin, Z.-G. Zhu, A.-L. Ding, W.-W. Cao. J. Phys. D: Appl. Phys. 38, 1107 (2005).