02;07 Термостимулированная люминесценция модифицированных монокристаллов ортобората лития и гадолиния Li_{6-x}Na_xGd(BO₃)₃:Се

© Р.П. Явецкий, А.В. Толмачев

Научно-технологический комплекс "Институт монокристаллов" НАН Украины, Харьков E-mail: yavetskiy@isc.kharkov.com

Поступило в Редакцию 15 июня 2004 г.

Проведена модификация натрием сцинтилляционных кристаллов Li₆Gd(BO₃)₃:Се. В выращенных монокристаллах Li_{6-x}Na_xGd(BO₃)₃:Се (0.1 < x < 0.3) дополнительно к пику термостимулированной люминесценции в области 425 К обнаружен новый интенсивный пик при 362 К. Светосумма модифицированных кристаллов более чем в 20 раз выше по сравнению с исходным Li₆Gd(BO₃)₃:Се при близкой концентрации активатора (0.012–0.019 mass.%). Запасание энергии связывается с образованием дырочных ловушек V⁺_{Li}, заполнение которых происходит в поле ростового дефекта Na⁺_{Gd}+ V_O²⁻, способствующего пространственному разделению носителей заряда.

В настоящее время проявляется интенсивный рост интереса к созданию запоминающих сред для регистрации полей тепловых нейтронов на эффектах фото- и термостимулированной люминесценции, в частности с использованием сложных боратов [1]. Твердотельный дозиметр, работающий на эффекте термостимулированной люминесценции (ТСЛ), должен обладать высоким сечением захвата нейтронов, пониженной чувствительностью к гамма-излучению и радиационной стойкостью, допускающей образование при облучении дефектов, которые могут принять участие в излучательной рекомбинации высвобождающихся вторичных носителей заряда. Объектом нашего исследования является смешанный литий-гадолиниевый ортоборат $Li_6Gd(BO_3)_3$:Се (LGBO:Ce), известный как активно развиваемый сцинтилляционный материал для регистрации тепловых нейтронов [2–4]. Монокристаллы исходного $Li_6Gd(BO_3)_3$ обладают высокой радиационной стойкостью —

8

запасание энергии не фиксируется при облучении β -частицами в интервале поглощенных доз до $\approx 10^8$ rad. В [5] впервые сообщалось о проявлении эффекта ТСЛ активированными монокристаллами LGBO: Се в виде малоинтенсивного пика при T = 426 K, обусловленного распадом дырочного центра, связанного с комплексом Ce⁴⁺_{Gd³⁺} + V_{Li⁺}. Таким образом, применительно к данному сложному борату возникает проблема направленной модификации его кристаллической структуры для создания центров запасания энергии. Разумеется, такая модификация должна обеспечивать компромисс между введением в решетку определенного количества дефектов и сохранением монофазности состава и основных мотивов упаковки.

В качестве модифицирующей добавки выбран натрий, допускающий как изовалентное замещение Na⁺ матричного Li⁺, так и гетеровалентное замещение $Na^+ \rightarrow Gd^{3+}$ с образованием зарядокомпенсирующих вакансий кислорода. Монокристаллы Li_{6-x}Na_xGd(BO₃)₃ и $Li_{6-x}Na_xGd(BO_3)_3$: Се (0.1 < x < 0.3) диаметром до 15 mm и длиной до 20 mm выращивались методом Чохральского в воздушной атмосфере на ориентированную вдоль направления [432] затравку из платиновых тиглей [6]. Синтез шихты проведен согласно [7]. Фазовый состав исходной шихты контролировался методом РФА. Согласно [8], в системе Li2O-Na2O-Gd2O3-B2O3 возможно существование монофазного соединения $Li_{6-x}Na_xGd(BO_3)_3$ вплоть до концентраций $x \leq 0.3$. Содержание и валентное состояние ионов церия определяли пламеннофотометрическим методом химического анализа на спектрофотометре СФ-46 (ЛОМО, Ленинград). Для оптических измерений использовались плоскопараллельные полированные образцы размером 7 × 7 × 2 mm, вырезанные перпендикулярно оси роста кристалла. Спектры поглощения кристаллов измерены на спектрофотометре Specord M40 UV-VIS. Кривые ТСЛ измерены на экспериментальной измерительной установке с использованием Φ ЭУ-79 при скоростях нагрева ≈ 5 K/s в интервале температур 300-650 К. Облучение образцов проводилось β-частицами при комнатной температуре с использованием радионуклидного источника ⁹⁰Sr/⁹⁰Y активностью 2 К. Ниже приводятся результаты измерений для монокристаллов стехиометрического состава $Li_{5.7}Na_{0.3}Gd(BO_3)_3:Ce.$

Облучение неактивированных кристаллов Li_{5.7}Na_{0.3}Gd(BO₃)₃ β -частицами (поглощенная доза ~ 10⁷ rad) не приводит к возникновению ТСЛ. В спектрах поглощения кристаллов Li_{5.7}Na_{0.3}Gd(BO₃)₃:Се наблюдается широкая полоса в ближней УФ-области с максимумом

Рис. 1. Спектры поглощения монокристаллов $Li_{5.7}Na_{0.3}Gd(BO_3)_3$: Се 4.5 at. %: 1 - до облучения, 2 - после облучения, 3 - после нагрева в режиме измерения ТСЛ.

вблизи $\lambda \approx 280$ nm и линий в области длин волн 245–255, 275–280 и 300–315, обусловленных f-f-переходами ионов гадолиния Gd³⁺ [9] (рис. 1, кривая 1). Полоса в УФ-области спектра характерна для стекол и кристаллов, содержащих ионы церия в состоянии Ce⁴⁺, и является полосой переноса заряда, соответствующего транспорту электрона с 2*p*-орбитали кислорода на незаполненную 4*f*-орбиталь иона церия: Ce⁴⁺ + O²⁻ \leftrightarrow Ce³⁺ + O⁻ [10,11]. Согласно данным химического анализа, исходное отношение Ce⁴⁺/Ce³⁺ в кристаллах составляет примерно 4:1. После облучения кристаллов Li_{5.7}Na_{0.3}Gd(BO₃)₃: Се интенсивность полосы с максимумом при $\lambda \approx 280$ nm несколько снижается, $\Delta k \approx 1$ cm⁻¹ (рис. 1, кривая 2), т.е. отношение Ce⁴⁺/Ce³⁺ уменьшается:

$$Ce^{4+}_{Gd^{3+}} + V_{Li^+} + O^{2-} \rightarrow o$$
блучение $\rightarrow Ce^{3+}_{Cd^{3+}} + V^+_{Li^+} + O^-.$ (1)

Состояние перезарядки $Ce^{4+}_{Gd^{3+}} \rightarrow Ce^{3+}_{Gd^{3+}}$ является стабильным пока устойчиво состояние литиевой вакансии, захватившей дырку

Рис. 2. ТСЛ кристаллов, облученных β -частицами (поглощенная доза 10⁷ rad): $1 - \text{Li}_{5.7}\text{Na}_{0.3}\text{Gd}(\text{BO}_3)_3$: Се 4.5 at.%; $2 - \text{Li}_6\text{Gd}(\text{BO}_3)_3$: Се 4.5 at.%, увеличено в 10 раз.

 $V_{Li^+} + e^+ \to V_{Li^+}^+$. После термической дезактивации дырочного центра интенсивность полосы с максимумом при $\lambda \approx 280$ nm принимает исходное значение (рис. 1, кривая 3), т.е. происходит процесс, обратный (1), и отношение Ce^{4+}/Ce^{3+} в кристаллах восстанавливается. Отметим принципиальное значение для рассматриваемых ниже механизмов запасания энергии факта преимущественного вхождения ионов активатора в решетку выращенных кристаллов в зарядовом состоянии Ce^{4+} .

На рис. 2 (кривая *I*), приведена кривая ТСЛ облученных кристаллов Li_{5.7}Na_{0.3}Gd(BO₃)₃: Се. В исходных неактивированных кристаллах в температурном интервале 300–620 К эффект ТСЛ не зафиксирован. Кривая ТСЛ представлена двумя пиками, низкотемпературный пик расположен при температуре $T_1 = 362$ К, а высокотемпературный — при $T_2 \approx 420$ К, близкой к пику ТСЛ в кристаллах LGBO: Се. Энергия термической активации ловушек для низкотемпературного пика составляет $E_1 \approx 0.76$ eV, для высокотемпературного — $E \approx 0.82$ eV, что

Рис. 3. Ростовой дефект $Na_{Gd^{3+}}^+ + V_{O^{2-}}$ в кристалле $Li_{5.7}Na_{0.3}Gd(BO_3)_3$; стрелками обозначены возможные места локализации вакансий кислорода. Вакансия лития в составе комплекса $Ce_{Gd^{3+}}^{4+} + V_{Li^+}$ не указана.

также практически совпадает с ранее определенным значением для LGBO:Ce [5]. Можно считать, что в модифицированных кристаллах пик ТСЛ при $T_2 \approx 420$ K, как и в кристаллах LGBO:Ce, связан с термическим распадом комплекса ($Ce_{Gd^{3+}}^{3+} + V_{Li^+}^{+}$).

Анализ экспериментальных результатов позволяет предложить следующую модель запасания энергии кристаллами Li_{5.7}Na_{0.3}Gd(BO₃)₃: Се. Вхождение натрия в позиции гадолиния возможно благодаря близким значениям ионных радиусов элементов ($r_{Na^+}(6) = 1.16$ Å, $r_{Gd^{3+}}(6) = 1.15$ Å) и склонности кристаллов, содержащих близкие по размерам катионы, к катионному разупорядочению [12]. При гетеровалентном замещении Na⁺ \rightarrow Gd³⁺ компенсация избыточного заряда возможна вакансиями кислорода: [Li₆][Gd_{1-x-y}Ce³⁺_xNa_y][B₃][O_{9-y}□_y],

где [] — узел кристаллической решетки, а \Box — вакансия. Вероятными местами локализации кислородных вакансий являются позиции мостиковых ионов кислорода, соединяющих соседние ионы гадолиния в цепочки, расположенные вдоль направления [010] (рис. 3) [13]. В реальном кристалле соседние позиции в цепочке полиэдров гадолиния могут оказаться занятыми одна ионом натрия (при замещении Na⁺ \rightarrow Gd³⁺ с образованием ростового дефекта Na⁺_{Gd³⁺} + V_{Q²⁻}), а другая — ионом церия Ce⁴⁺ (дефект типа Ce⁴⁺_{Cd³⁺} + V_{Li⁺}). В такой структурной схеме дырочный центр будет возмущен вакансиями кислорода V_{Q²⁻}, находящимися в его ближайшем окружении, и, следовательно, должен характеризоваться несколько отличными энергетическими параметрами по сравнению с невозмущенным центром, что приводит к возникновению дополнительного пика ТСЛ при более низкой $T_1 = 362$ K.

Светосумма, запасаемая кристаллами Li_{5.7}Na_{0.3}Gd(BO₃)₃:Се, более чем в 20 раз превышает светосумму, запасаемую кристаллами LGBO:Се при близкой концентрации ионов активатора ($C_{Ce} \approx 0.012 \div 0.019$ mass.%). Мы полагаем, что бо́льшая эффективность запасания энергии кристаллами Li_{5.7}Na_{0.3}Gd(BO₃)₃:Се по сравнению с LGBO:Се обусловлена бо́льшей концентрацией образующихся дырочных центров $V_{Li^+}^+$, чему способствует анионная расстехиометрия модифицированных кристаллов, т. е. наличие дополнительных ростовых дефектов Na⁺_{Gd³⁺} + V_{O²⁻}, в поле которых происходит пространственное разделение электронно-дырочных пар в ионизированной решетке кристалла. Полагая такой механизм запасания светосуммы, следует ожидать аналогичный результат и при контролируемой катионной расстехиометрии, например при модификации кристаллов LGBO:Се магнием и образовании ростовых дефектов типа Mg²⁺_{Li⁺}. Результаты и сследований таких кристаллов будут вскоре опубликованы.

Авторы выражают благодарность О.В. Гайдук за помощь в определении концентрации и валентного состояния церия в выращенных монокристаллах.

Список литературы

- [1] Сидоренко А.В., Родный П.А., van Eijk C.W.E. // Письма в ЖТФ. 2003. Т. 23. В. 14. С. 33–38.
- [2] Chaminade J.P., Viraphong O., Guillen F. et al. // IEEE Transaction on Nuclear Science. 2001. V. 48. N 4. P. 1158–1161.

- [3] Shekhovtsov A.N., Tolmachev A.V., Dubovik M.F. et al. // J. Cryst. Growth. 2002.
 V. 242. P. 167–171.
- [4] Chernikov V.V., Dubovik M.F., Gavrylyuk V.P. et al. // Nucl. Instr. and Meth. in Phys. Res. A. 2003. V. 498. P. 424–429.
- [5] Baumer V.N., Dubovik M.F., Grinyov B.V. et al. // 5th European Conference on Luminescent detectors and Transformers of Ionizing Radiation. Prague, 2003. P. 201.
- [6] Явецкий Р.П., Гринев Б.В., Дубовик М.Ф. и др. // Тезисы X Национальной конференции по росту кристаллов. М., 2002. С. 218.
- [7] Дубовик М.Ф., Толмачев А.В., Явецкий Р.П. и др. // Декларационный патент Украины № 66072 А. Заявлено 21.07.2003, опубл. 15.04.2004. Бюл. № 4.
- [8] Korshikova T.I., Yavetskiy R.P., Tolmachev A.V. // Functional materials. 2003.
 V. 10. N 3. P. 407–412.
- [9] Garapon C.T., Jacquier B.J., Chaminade J.P. et al. // J. Lumin. 1985. V. 34. N 4. P. 211–222.
- [10] Ebendorff-Heidepriem H., Ehrt D. // Optical Materials. 2000. V. 15. P. 7-25.
- [11] Van Pieterson L. Charge transfer and $4f^n \leftrightarrow 4f^{n-1}$ 5d luminescence of lanthanide ions. Ph.D Thesis: Proefschrift Universiteit Utrecht, 2001.
- [12] Блистанов А.А. Кристаллы квантовой и нелинейной оптики. М.: Изд-во МИСИС, 2000. 432 с.
- [13] Долженкова Е.Ф., Баумер В.Н., Гордеев С.И. // Кристаллография. 2003. Т. 48. N 4. С. 614–618.