05 Новый ферромагнетик с температурой Кюри выше комнатной легированный Mn халькопирит CdGeAs₂

© Р.В. Демин, Л.И. Королева, С.Ф. Маренкин, С.Г. Михайлов, В.М. Новоторцев, В.Т. Калинников, Т.Г. Аминов, Р. Шимчак, Г. Шимчак, М. Баран

Московский государственный университет им. М.В. Ломоносова E-mail: koroleva@ofef343.phys.msu.ru Институт общей и неорганической химии им. Н.С. Курнакова, Москва E-mail: marenkin@rambler.ru Institute of Physics of Poland Academy of Science, 02668 Warsaw, Poland E-mail: szymr@ifpan.edu.pl

В окончательной редакции 31 мая 2004 г.

При легировании полупроводника CdGeAs₂ марганцем получены ферромагнетики с высокими значениями температуры Кюри, достигающими 355 К. Показано, что это неоднородные магнетики: они состоят из ферромагнитной и парамагнитной фаз. Доля первой фазы увеличивается с уровнем легирования. Возникновение ферромагнетизма в указанной системе связывается с наличием вакансий типа (Cd, V_c, Mn)GeAs₂ или нестехиометрии типа (Cd, Ge, Mn)GeAs₂, так как по теоретическим оценкам только в этих случаях ферромагнитное состояние энергетически более выгодно, чем состояние спинового стекла.

В последнее время много внимания уделяется исследованию разбавленных магнитных полупроводников из-за их возможного применения в устройствах, одновременно использующих магнитные и полупроводниковые свойства [1,2]. Наиболее изученной является система GaAs:Mn, однако температура Кюри T_C в ней не превышает 110 К. Для применений в спинтронике нужны ферромагнитные (Φ M) полупроводники с $T_C > 300$ К. Недавно высокотемпературный Φ M был обнаружен в халькопиритах CdGeP₂:Mn, ZnGeP₂:Mn [3–5] и ZnSnAs₂:Mn [6], в которых точка Кюри значительно выше комнатной температуры. В нашей работе описывается халькопирит CdGeAs₂:Mn, в котором $T_C = 355$ К.

81

Рис. 1. Температурная зависимость намагниченности M(T) в магнитном поле 5 Т монокристалла CdGeAs₂: Mn с 0.5 mass.% Mn (1) и поликристаллических образцов с 1, 3 и 6 mass.% Mn (2, 3, 4 соответственно).

Для выращивания монокристалла CdGeAs₂ с 0.5 mass.% Мп использовался вертикальный вариант метода Бриджмена, поликристаллические образцы были получены с помощью твердотельных реакций. По данным рентгенофазового анализа все образцы имели структуру халькопирита и являлись однофазными. Измерения намагниченности производились СКВИД-магнитометром и электросопротивления — четырехзондовым методом. Парамагнитная (ПМ) восприимчивость была измерена весовым методом с электромагнитной компенсацией.

На рис. 1 приводятся кривые зависимости намагниченности M от температуры T в магнитном поле 5 T всех исследованных образцов и на рис. 2 — кривые M(T) в магнитном поле 100 Ое, полученные при охлаждении образца с 3 mass.% Мп от 370 до 5 K в этом поле (кривая I) и после охлаждения образца в отсутствие поля с последующим нагревом (кривая 2). Изотермы намагниченности при $T > T_C$ имеют нелинейный характер и не насыщаются вплоть до максимальных

Монокристалл (МН) или поликристалл (ПЛ)	<i>T</i> _{<i>C</i>} , K	θ, Κ	μ, μ_B	$T_{ ho\max},\mathrm{K}$
МН с 0.5 mass. % Mn ПЛ с 1 mass. % Mn ПЛ с 3 mass. % Mn ПЛ с 6 mass. % Mn	350 355 355	301 329 321	7.1 7.4 8.0 8.0	276 324 291

полей измерения 5 Т. Коэрцитивная сила поликристаллических образцов мала, она не превышает 0.004 Т, что свидетельствует о малой магнитокристаллической анизотропии. Для монокристалла с 0.5 mass.% экспериментально полученная кривая M(T) в 5 T хорошо аппроксимируется функцией Ланжевена для системы невзаимодействующих магнитных моментов $\mu = 7.1 \mu_B$. Это видно из рис. 1, на котором приводятся экспериментальная кривая (точки) и подгоночная кривая M(T)(сплошная линия). Как видно из рис. 1, для поликристаллических образцов зависимость M(T) более сложная, чем для монокристалла: при $T > 80 \,\mathrm{K}$ она характерна для ферромагнетика, однако при $T < 80 \,\mathrm{K}$ наблюдается резкое возрастание M с падением T и кривые M(T) в этой температурной области похожи на кривую M(T) для монокристалла. Отсюда можно предположить, что в поликристаллических образцах из-за неравномерного распределения ионов Mn часть образца находится в ФМ-состоянии с удельной намагниченностью M₁, а другая часть в состоянии, близком к ПМ с удельной намагниченностью M₂, так что суммарная намагниченность $M = M_1 + M_2$. При $T > 80 \text{ K} M_1 > M_2$ и при T < 80 K M₁ < M₂. Экстраполяцией прямолинейных участков кривых M(T) из области $T > 100 \,\mathrm{K}$ до пересечения с осью M мы получили приблизительные значения M_1 в интервале $5 \leqslant T \leqslant 100 \, \mathrm{K}$ и затем определили $M_2 = M - M_1$. Оказалось, что $M_2(T)$ для поликристаллических образцов хорошо аппроксимируется функцией Ланжевена с магнитными моментами $\mu = 7.4 \div 8 \mu_B$ (см. таблицу), что близко к значению $\mu = 7.1 \, \mu_B$ для монокристалла. При ПМ-состоянии максимальная величина μ равнялась бы 5 μ_B на ион Mn; на опыте $\mu = 7.1 \div 8 \mu_B$, что можно связать с существованием наряду с магнитноневзаимодействующими молекулами с ионами Mn кластеров, включающих в себя несколько подобных молекул, магнитно-взаимодействующих.

Рис. 2. Температурная зависимость намагниченности образца с 3 mass.% Мп в магнитном поле 100 Oe, полученная при охлаждении образца в указанном поле (1), и при нагревании от 5 K после охлаждения от 370 до 5 K в отсутствие поля (2).

Намагниченность M_1 поликристаллических образцов составляет 12% от суммарной намагниченности у состава с 1 mass. % Mn, 76% — у состава с 3 mass.% Mn и 91% — у состава с 6 mass.% Mn. Наличие "почти" ПМ-части ответственно за обнаруженное нами различие кривых M(T), измеренных в слабом поле 0.01 T при охлаждении образца до 5 K в этом поле и после охлаждения образца в отсутствие поля (рис. 2).

Температура Кюри такого магнитно-двухфазного образца есть температура Кюри его ФМ-части. Температуру Кюри в данном случае нельзя определить подгонкой кривых M(T) под функцию Бриллюэна, а также с помощью метода термодинамических коэффициентов Белова—Арротта из-за магнитной неоднородности образцов. Поэтому величина T_C была определена экстраполяцией наиболее крутой части кривой M(T) до ее пересечения с осью T, т.е. таким же способом, как и

Рис. 3. Температурная зависимость удельного электросопротивления монокристаллического образца (вставка) и поликристаллических образцов с 1, 3, 6 mass.% Mn (*1, 2, 3* соответственно).

в работах [4,5]. Полученные таким путем величины T_C представлены в таблице. Применение указанного способа определения T_C вполне оправданно, так как вклад в M от M_2 у образцов с 3 и 6 mass.% в районе T_C меньше на ~ 2 порядка, чем вклад от M_1 , и почти не зависит от температуры. Это наглядно демонстрируется сравнением кривой M(T) для монокристаллического образца с 0.5 mass.%, которая подчиняется функции Ланжевена, с кривыми M(T) для поликристаллических образцов, у которых величины μ примерно одинаковы, однако величина M_2 при каждой температуре меньше, чем величина M для монокристалла, так как в поликристаллических образцах объем "почти" ПМ-части меньше объема ФМ-части. ПМ-восприимчивость поликристаллических образцов подчиняется закону Кюри–Вейсса с величинами парамагнитных точек Кюри θ , приведенными в таблице. Величины θ и T_C близки, что характерно для ферромагнетиков.

На рис. З показана температурная зависимость удельного электросопротивления ρ всех исследованных образцов. Видно, что у монокристалла (см. вставку к рис. 3) зависимость $\rho(T)$ характерна для невырожденных полупроводников. У поликристаллических образцов на кривых $\rho(T)$ наблюдается максимум при $T_{\rho \max} \leqslant T_C$ (величины $T_{\rho \max}$ приводятся в таблице). При $T > T_{\rho \max}$ проводимость имеет полупроводниковый характер, а при $T < T_{\rho \max}$ — металлический. Магнитосопротивление у всех исследованных образцов отсутствует в интервале $80 \leqslant T \leqslant 400$ К в пределах точности эксперимента 0.01%. Определение типа носителей заряда по знаку термоэлектродвижущей силы при 300 К показало, что у всех образцов, за исключением состава с 6 mass.%, преобладающим является дырочный тип проводимости, а у состава с 6 mass.% — электронный.

Происхождение ФМ в разбавленных магнитных полупроводниках было исследовано при вычислении электронной структуры из первых принципов [7,8]. В этих системах эффективное обменное взаимодействие определяется в основном конкуренцией между двойным обменом и сверхобменными взаимодействиями. Если в А^ПВ^{IV}С₂^V ионы Cd²⁺ замещаются ионами Mn²⁺, превалирует сверхобмен и, как показано в [9], основным состоянием является состояние спинового стекла. Если же ионы Ge⁴⁺ замещаются ионами Mn³⁺, являющимися акцепторами в данном случае, в системе будет ФМ, возникающий из-за двойного обмена, осуществляемого дырками. Однако вычисления энергии образования показали, что ФМ-состояние энергетически не выгодно. Для системы CdGeP₂: Мп в работе [10] показано, что наличие в ней вакансий типа (Cd, V_C, Mn)GeP₂ или нестехиометрии типа (Cd, Ge, Mn) GeP2 делает энергетически более выгодным ФМ-состояние, чем состояние спинового стекла. По-видимому, подобным образом можно объяснить ФМ-состояние и высокую проводимость дырочного типа в поликристаллических составах CdGeAs2 : Mn с 1 и 3 mass.% Mn. Однако в составе с 6 mass.% тип проводимости — электронный, и здесь, возможно, часть атомов Mn расположена в междоузлиях.

Список литературы

- [1] Ohno H. // Science. 1998. V. 281. P. 951-952.
- [2] Prinz G.A. // Science. 1998. V. 282. P. 1660-1662.
- [3] Medvedkin G.A., Ishibashi T., Nishi T. et al. // Jpn. J. Appl. Phys. 2000. V. 39. P. L949–L951.

- [4] Medvedkin G.A., Hirose K., Ishibashi T. et al. // J. Cryst. Growth. 2002. V. 236. P. 609–612.
- [5] Sato K., Medvedkin G.A., Nishi T. et al. // J. Appl. Phys. 2001. V. 89. P. 7027– 7029.
- [6] Choi S., Cha G.-B., Hong S.C. et al. // Solid State Commun. 2002. V. 122. P. 165–167.
- [7] Akai H. // Phys. Rev. Lett. 1998. V. 81. P. 3002-3005.
- [8] Akai H., Kamatani T., Watanabe S. // J. Phys. Soc. Jpn. Suppl. A. 2000. V. 69.
 P. 112–116.
- [9] Zhao Y.-J., Geng W.T., Freeman A.J., Oguchi T. // Phys. Rev. B. 2001. V. 63. P. 201202-1 (R)-201202-4 (R).
- [10] Sato K., Medvedkin G.A., Ishibashi T. et al. // J. Phys. Chem. Sol. 2003. V. 64. P. 1461–1468.