05;06 Электросопротивление пленок La_{0.63}Ca_{0.37}MnO₃, двухосно механически напряженных подложкой в процессе своего роста

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: Yu.Boikov@mail.ioffe.ru

Поступило в Редакцию 23 января 2004 г.

Проведен анализ электросопротивления пленок (20 nm) La_{0.67}Ca_{0.33}MnO₃, выращенных когерентно на монокристаллических подложках со значительным отрицательным и близким к нулю рассогласованием в параметрах кристаллических решеток. Объем элементарной ячейки в манганитной пленке зависел от параметра решетки подложки. При *T* < 200 K и $\mu_0 H = 0$ электросопротивление пленок (20 nm) La_{0.67}Ca_{0.33}MnO₃, сформированных на (001) LaAlO₃, на несколько порядков величины превышало соответствующие данные для манганитных пленок, выращенных на (001) La_{0.29}Sr_{0.71}Al_{0.65}Ta_{0.35}O₃. Деградация проводимости упругонапряженных (двухосное сжатие) манганитных пленок является следствием сверхстехиометрической ($\approx 45\%$) относительной концентрации ионов Mn⁺⁴ в их объеме.

Тонкие слои La_{0.67}(Sr, Ca)_{0.33}MnO₃ перспективны для использования в головках для считывания информации с магнитных дисков [1], в чувствительных элементах детекторов ИК излучения [2] и т.д. Электронный транспорт в объемных образцах и тонких пленках перовскитоподобных манганитов зависит от степени делокализации e_g электронов, которая в свою очередь определяется характером орбитального, зарядового и спинового упорядочения [1]. Двухосные механические напряжения и магнитное поле существенно влияют на процесс структурного и магнитного упорядочения в пленках La_{0.67}(Sr, Ca)_{0.33}MnO₃, так же как и на концентрацию включений неферромагнитных фаз, присутствующих в их объеме при $T < T_{Curie}$ [3,4] (T_{Curie} — температура фазового ферромагнитного перехода). Механические напряжения рассматриваются как один из возможных механизмов для направленного воздействия (с целью оптимизации) на электронные параметры манганитных пленок [5].

12

В данной работе проведено исследование температурных зависимостей удельного сопротивления ρ пленок La_{0.67}Ca_{0.33}MnO₃ (LCMO), когерентно выращенных на двух типах подложек: а) LaAlO₃(LAO), со значительным (~ 1.8%) отрицательным рассогласованием в параметрах кристаллических решеток; b) La_{0.29}Sr_{0.71}Al_{0.65}Ta_{0.35}O₃ (LSATO), с малым (~ 0.3%) положительным рассогласованием в параметрах кристаллических решеток.

Пленки LCMO толщиной d = 20 nm были выращены методом лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ ns). Манганитные пленки осаждались на подложку при температуре 760°C в атмосфере кислорода $P_0 = 0.3$ mbar. Условия роста и особенности структуры тонких манганитных пленок, выращенных на (001) LAO и (001) LSATO, детализированы в [6,7].

Фазовый состав, ориентация, параметры кристаллической решетки сформированных пленок исследовались с использованием рентгеновской дифракции (Philips X'pert MRD, $\omega/2\theta$ - и ϕ -сканы, кривые качания) [7]. Толщина выращенных слоев определялась с использованием данных по ширине сателлитных пиков Лауэ (рис. 1). Сопротивление *R* пленок LCMO измерялось в геометрии Van der Pauw в магнитном поле $\mu_0 H = 0-5$ T, а ρ рассчитывалось с использованием соотношения $\rho = \pi R d / \ln 2$ [8].

Из полученных рентгеновских данных ($\omega/2\theta$ - и ϕ -сканы) следует, что пленки (20 nm) LCMO были выращены эпитаксиально "куб на куб" на подложках обоих типов. Ширина кривой качания, измеренная на половине высоты для рентгеновского рефлекса (002) от пленки LCMO/LAO, примерно вдвое превышала ширину кривой качания для соответствующего рефлекса от пленки LCMO/LSATO и равнялась 0.25°. Параметр элементарной ячейки в пленке (20 nm) LCMO/LAO, измеренный вдоль нормали к плоскости подложки, $a_{\perp} = 3.945 \pm 0.003$ Å, был существенно больше параметра ячейки, измеренного в плоскости подложки $a_{\parallel} = 3.786 \pm 0.003$ Å. Значительная разница в величине a_{\perp} и a_{\parallel} свидетельствует о том, что в процессе зародышеобразования и роста пленка (20 nm) LCMO/LAO находилась под действием сжимающих (в плоскости подложки) двухосных механических напряжений. Это является причиной [7] существенного сокращения эффективного объема элементарной ячейки $V_{eff} = (a_{\parallel}^2 x a_{\perp}) = 56.55 \,\text{\AA}^3$ в пленке (20 nm) LCMO/LAO по сравнению с $V_{eff} = 57.40 \,\text{\AA}^3$ [9] для объемных стехиометрических образцов LCMO. Параметры *а*_⊥ и

Рис. 1. Фрагмент рентгеновской дифрактограммы (CuK_{*a*1}, $\omega/2\theta$) для пленки LCMO толщиной 20 nm, выращенной на (001) LAO. Стрелками отмечены сателлитные пики Лауэ. На вставке приведены зависимости электросопротивления ρ пленки (20 nm) LCMO/LSATO от магнитного поля, измеренные при 240 и 100 К. Магнитное поле направлено параллельно плоскости подложки и направлению тока в образце.

 a_{\parallel} в пленке (20 nm) LCMO/LSATO имели значения 3.838 ± 0.003 Å и 3.868 ± 0.003 Å соответственно, а V_{eff} практически совпадал с объемом элементарной ячейки в массивных кристаллах LCMO. Определенные с использованием рентгеновских данных параметры псевдокубической элементарной ячейки использованных подложек $a_{\rm LAO} = 3.785 \pm 0.003$ Å и $a_{\rm LSATO} = 3.869 \pm 0.003$ Å совпадали с параметром a_{\parallel} в выращенных на их поверхности пленках LCMO.

Уменьшение объема элементарной ячейки пленки LCMO, по сравнению с V_{eff} в объемных образцах, связано с ее обогащением кальцием и/или кислородом (в последнем случае в слое формируются вакансии в катионной подрешетке). Уменьшение объема элементарной ячейки

Рис. 2. Температурные зависимости электросопротивления ρ пленок (20 nm)LCMO, выращенных на (001) LAO (1-3) и (001) LSATO (4-6), измеренные в магнитном поле различной напряженности. Зависимости получены в процессе охлаждения пленок. Магнитное поле направлено параллельно плоскости подложки и направлению тока в образце. 1, 4 - H = 0, 2 - H = 2 Т, 3 - H = 4 T, 5 - H = 1 T, 6 - H = 3 T. На вставке показаны зависимости $\rho(T)$ для пленки (20 nm) LSMO/LAO, измеренные в поле H = 4 T при повышении (1) и понижении (2) температуры. Кривая (1) получена для манганитной пленки, охлажденной в нулевом магнитом поле.

в пленках и объемных образцах LCMO сопровождается увеличением концентрации четырех валентных ионов марганца [10]. Обнаруженное уменьшение V_{eff} в пленках (20 nm)LCMO/LAO соответствует увеличению концентрации ионов Mn⁺⁴ до ~ 45%.

На рис. 2 приведены температурные зависимости удельного сопротивления пленок (20 nm) LCMO, выращенных на (001) LAO и

(001)LSATO. Кривая $\rho(T, H = 0)$ для пленки (20 nm) LCMO/LSATO хорошо согласуется с температурной зависимостью ρ , полученной для объемных стехиометрических образцов и толстых эпитаксиальных пленок LCMO [6]. Максимум на кривой $\rho(T, H = 0)$ для пленки (20 nm) LCMO/LSATO наблюдался при $T_M \approx 250$ К. Магнитное поле способствует ферромагнитному упорядочению спинов на ионах марганца, что увеличивает эфективную подвижность дырок в пленке, при этом ρ уменьшается, а максимум на зависимости удельного сопротивления от температуры сдвигается в сторону высоких температур (рис. 2). Наиболее значительное падение ρ пленок LCMO/LSATO в магнитном поле наблюдалось при температурах, близких к T_M (см. вставку на рис. 1). При T = 240 К отрицательное магнетосопротивление $MR = [\rho(\mu_0 H = 5 T) - \rho(H = 0)/\rho(H = 0)]$ равнялось 83% и уменьшалось до 9% и 3% при T = 100 К и 4.2 К соответственно.

В интервале 300 К- T_M (парамагнитная фаза), абсолютные значения и температурные зависимости электросопротивления пленок (20 nm)LCMO/LAO и (20 nm)LCMO/LSATO (при H = 0) отличались незначительно (рис. 2). При $T < T_M$, однако, различия в характере кривых $\rho(T)$ для указанных пленок становились резко выраженными. В отличие от температурной зависимости электросопротивления плен-ки (20 nm)LCMO/LSATO максимум на кривой $\rho(T, H = 0)$ для плен-ки (20 nm)LCMO/LAO отсутствовал (T = 100-300 K), а производная $d\rho/dT$ существенно возрастала по абсолютной величине в окрестности T = 230 К.

При H = 0 температурные зависимости электросопротивления пленок (20 nm) LCMO, выращенных на обоих типах подложек, четко воспроизводились после многократного термоциклирования (4.2–300 K). Кривые $\rho(T, \mu_0 H = 5 \text{ T})$ для пленки (20 nm) LCMO/LAO, измеренные в процессе понижения температуры в интервале 300–4.2 К и последующего ее повышения в том же интервале практически совпадали.

Возрастание электросопротивления пленок (20 nm) LCMO/LAO с понижением температуры ($T < T_M$) обусловлено формированием ($T \approx 230 \text{ K}$) в их объеме включений (прослоек) ферромагнитной фазы с низкой проводимостью, которая при $T \approx 150 \text{ K}$ трансформируется в антиферромагнитную фазу [11]. Присутствие включений антиферромагнитной фазы в объемных образцах La_{1-x}Ca_xMnO₃ с концентрацией Mn⁺⁴ более 44% было установлено с использованием нейтронной дифракции [10]. Причиной деградации проводимости пленок

(20 nm)LCMO/LAO, по сравнению с проводимостью манганитных слоев на LSATO, является относительно высокая концентрация антиферромагнитных включений (прослоек) в их объеме. Включения не ферромагнитных фаз присутствуют и в объеме пленок (20 nm) LCMO/LSATO, однако их влияние на электронный транспорт незначительно из-за малой концентрации.

Магнитное поле уменьшает пространственную разориентацию спинов в ферромагнитных доменах в пленке (20 nm) LCMO/LAO и уменьшает вероятность зарождения антиферромагнитных включений в ее объеме. В магнитном поле энергетический барьер, определяющий интенсивность формирования стабильных зародышей антиферромагнитной фазы в объеме манганитной пленки, увеличивается на величину энергии Зеемана [12], которая пропорциональна произведению $M \times H$, гле *М* — спонтанная намагниченность. Это способствует уменьшению относительной доли антиферромагнитной фазы в объеме пленки, что сопровождается существенным уменьшением ρ . При $T = 10-50 \, {\rm K}$ удельное сопротивление пленки (20 nm)LCMO/LAO, охлажденной в магнитном поле $\mu_0 H = 4 \text{ T}$, было значительно меньше, чем ρ той же пленки, охлажденной при H = 0 и помещенной в магнитное поле 4 Т (см. вставку на рис. 2). При $T > 50 \,\mathrm{K}$ зависимости $\rho(T, \mu_0 H = 4 \,\mathrm{T})$, измеренные при охлаждении и нагреве (охлажденной при H = 0) пленки (20 nm) LCMO/LAO, совпадали. Скорость нагрева/охлаждения образца при измерении кривой $\rho(T)$ равнялась 10 К/min.

Процесс "плавления" антиферромагнитных включений магнитным полем в пленке (20 nm) LCMO/LAO, охлажденной при $\mu_0 H = 0$, активировался температурой. При T = 4.2 К увеличение $\mu_0 H$ от нуля до 5T сопровождалось резким падением (40–80%) электросопротивления пленки (20 nm) LCMO/LAO вследствие пространственного упорядочения спинов в ферромагнитных доменах, а затем наблюдалось медленное уменьшение ρ во времени ($\approx 2\%$ за 5 min), обусловленное "плавлением" антиферромагнитных включений.

При $T < 180 \,\mathrm{K}$ отрицательное магнетосопротивление пленок (20 nm) LCMO/LAO значительно превышало соответствующие данные для манганитных пленок такой же толщины, выращенных на (001) LSATO.

Финансовая поддержка данной работы была получена из проекта 9Б19, выполняемого в рамках программы Президиума РАН "Низкоразмерные квантовые наноструктуры".

Список литературы

- Tokura Y. // Colossal Magnetoresistive Oxides / Ed. by Y. Tokura, Gordon and Breach Science Publishers. Amsterdam, The Netherlands, 2000. P. 2.
- [2] Goyal A., Rajeswari M., Shreekala R., Lofland S.E., Bhagat S.M., Boettcher T., Kwon C., Ramesh R., Venkatesan T. // Appl. Phys. Lett. 1997. V. 71. N 17. P. 2535.
- [3] Alff L., Philipp J., Reisinger D., Cross R., Carbone G., Vigliante A., Klein J. // Physica B. 2003. V. 329–333. Part 2. P. 965.
- [4] Mathur N.D., Littlewood P.B. // Physics Today. 2003. V. 56. N 1. P. 25.
- [5] Mathur N.D., Littlewood P.B. // Solid State Com. 2001. V. 119. N 4-5. P. 271.
- [6] Бойков Ю.А., Клаесон Т., Бойков А.Ю. // ЖТФ. 2001. Т. 71. В. 10. С. 54.
- [7] Бойков Ю.А., Клаесон Т., Бойков А.Ю. // ФТТ. 2003. Т. 45. В. 6. С. 1040.
- [8] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 11. P. 4357.
- [9] Aarts J., Freisem S., Hendrikx R., Zandbergen H.W. // Appl. Phys. Lett. 1998.
 V. 72. N 23. P. 2975.
- [10] Wollan E.O., Koehler W.C. // Phys. Rev. 1955. V. 100. N 2. P. 545.
- [11] Radaelli P.G., Cox D.E., Marezio M., Cheong S.-W., Schiffer P.E., Ramirez A.P. // Phys. Rev. Lett. 1995. V. 75. N 24. P. 4488.
- [12] Tomioka Y., Tokura Y. // Colossal Magnetoresistive Oxides / Ed. by Y. Tokura, Gordon and Breach Science Publishers. Amsterdam, The Netherlands, 2000. P. 286.