07

Оптические исследования системы полиимид—фуллерен в ближнем ИК-диапазоне спектра ($\lambda = 1047$ nm)

© Н.В. Каманина, М.О. Искандаров, А.А. Никитичев

Всероссийский научный центр "ГОИ им. С.И. Вавилова", С.-Петербург E-mail: kamanin@ffm.ioffe.rssi.ru Институт лазерной физики, С.-Петербург

Поступило в Редакцию 18 февраля 2003 г.

Впервые проведены исследования структуры polyimide—фуллерен в ближнем инфракрасном диапазоне спектра ($\lambda = 1047$ nm). Показаны возможности использования материалов на основе изученной системы для целей ограничения лазерного излучения указанного спектрального диапазона.

Введение. Известно, что оптимизировать характеристики материалов, пригодных для использования в различных областях науки и промышленности, — довольно сложная задача. Однако в настоящее время существует класс веществ, введение которых в матричную среду существенно изменяет спектральные, фотопроводниковые и нелинейные оптические свойства последней. К указанным материалам относятся фуллерены. Так, в работе [1] рассмотрен эффект введения фуллерена С₆₀ в поли [(дисиланилен) олигофенилен]. Показано, что фотопроводимость исследуемой системы существенно увеличивается, хотя происходит тушение люминесценции в изученных образцах. Исследованы также спектры поглощения фуллеренсодержащих полисиланов в диапазоне длин волн 200-500 nm и найдено некоторое увеличение поглощения вблизи 250-275 nm при введении 5-10 mol.% фуллерена C₆₀. Увеличение фотопроводимости в системе поливинилкарбазол при сенсибилизации ее фуллеренами С₆₀ и С₇₀ обнаружено в работе [2], а в публикации [3] на основе исследования аналогичной структуры С₆₀-поли (*N*-винилкарбазол) исследован процесс фотоиндуцированного переноса заряда и показано наличие широкой полосы поглощения в диапазоне 400-700 nm при введении 0.7 mol.% фуллерена С₆₀. Увеличение фотопроводимости в фуллеренсодержащей системе поливинилкарбазола

29

связывается с образованием нового комплекса между молекулой C_{60} и карбазол-фрагментом органической матрицы. Для аналогичных структур авторами работы [4] была осуществлена запись голографических решеток, что не только определило перспективы потенциального применения карбазолсодержащих материалов с фуллеренами как уникальных проводящих фоточувствительных структур, но и показало их возможное использование в качестве материалов нелинейной оптики. Уникальные оптические, фотоэлектрические свойства растворимых ароматических полиимидов, определяемые возможностью возбуждения π -электронных систем данных материалов, позволили использовать фуллерены C_{60} и C_{70} для эффективного регулирования донорно-акцепторного взаимодействия в них и проявления эффекта ограничения оптического излучения и светоиндуцированного изменения показателя преломления в видимом и ближнем инфракрасном диапазонах спектра [5,6].

Таким образом, показано, что существует достаточно убедительная возможность варьирования свойствами оптических материалов за счет введения фуллеренов. Однако заметим, что вплоть до настоящего времени научные исследования, посвященные изучению свойств органических структур в ИК-диапазоне спектра, были немногочисленны, что определяет актуальность проведения исследований именно в данной области спектра. В работе [7] было обнаружено нелинейное пропускание в системе фталоцианин-цинк, сенсибилизированной фуллереном С₆₀, при облучении последней импульсами лазера на длине волны λ = 1064 nm в наносекундном диапазоне длительностей. Установлено, что при начальном пропускании ~75-80% (при малых плотностях падающей энергии) система практически прозрачна и ограничивает лазерный луч вдвое при высоких значениях падающей энергии. Авторы [7] объяснили свои результаты проявлением процесса комплексообразования в системе с ярко выраженным донорно-акцепторным взаимодействием. В публикации [8] изучались углеродные суспензии в воде и CS₂. Обнаружено восьмикратное ослабление лазерного излучения при облучении образцов импульсами наносекундной длительности на длине волны 1064 nm. Показано, что нелинейное пропускание обусловлено сложными термодинамическими процессами в жидкости при ее нагреве лазерными импульсами с плотностью энергии падающего пучка $\sim 10-100 \, \text{J} \cdot \text{cm}^{-2}$. В работе [9] рассмотрено проявление нелинейного поглощения в тонких пленках С60-поли (3-октилтиофен) на основе межмолекулярного взаимодействия с образованием комплексов

с переносом заряда и рассчитано также светоиндуцированное изменение показателя преломления в диапазоне 1100–1130 nm. Определена перспектива изучения пленок C_{60} -поли(3-октилтиофен) в миллиметровой области спектра с целью обнаружения нелинейного поглощения. В работе [10] были зарегистрированы комплексы с переносом заряда между молекулами фуллеренов C_{60} и C_{70} и группой органических доноров, ответственные за поглощение на $\lambda = 900$ nm. Двухступенчатый характер ограничения излучения за счет двухспектрального управления был продемонстрирован в работе [11] для системы π -сопряженная молекула полиимида-фуллерен C_{70} на длине волны 1315 nm, для аналогичной системы в работе [12] изучена генерация третьей гармоники пикосекундного излучения Nd: YAG-лазера (первая гармоника на длине волны 1064 nm).

В настоящей работе исследовались нелинейные оптические свойства нанокомпозита на основе системы полиимид-фуллерен с целью возможного применения указанных нанокомпозиционных фуллеренсодержащих материалов для ограничения оптического излучения ближнего ИК-диапазона. Показаны первые результаты иследования эффекта ограничения лазерного излучения в данных системах на длине волны 1047 nm. Приведены сравнительные данные по эффекту ограничения аналогичных систем в видимом диапазоне спектра.

Экспериментальные условия и результаты. В экспериментах был использован фоточувствительный полиимид 6В (ПИ6В), на основе которого готовили 3-5%-ные растворы в тетрахлорэтане (ТХЭ). В качестве сенсибилизаторов применялись фуллерены C_{60} и/или C_{70} , применение анизотропной молекулы C_{70} вызывало более яркое проявление нелинейно-оптических свойств, что обусловило дальнейший выбор образцов именно с данным типом фуллеренов. При изготовлении тонких пленок полиимида 6В использовался метод центрифугирования с последующей сушкой структур в течение 12-20 h. Пленки готовились на кварцевых подложках с предварительно напыленными электродами на основе индия и олова. Толщина пленок составляла $2-5\mu$. Концентрация фуллеренов находилась в диапазоне значений 0.1-0.5 wt.%.

Спектральные исследования были выполнены на спектрометреспектрофотометре Perkin-Elmer Lambda 9 в диапазоне длин волн 200-3000 nm. Изучение эффекта оптического ограничения лазерного излучения в средах указанного состава проводилось в условиях однопроходовой схемы [13]. В качестве источника излучения использовался

Рис. 1. ИК-спектр поглощения системы полиимид-С₇₀. На вставке показан общий вид образца полиимида, сенсибилизированного 0.2 wt.% С₇₀. *I* — оптическая плотность.

импульсный Nd: YLiF₄-лазер с длительностью импульса 8 ns. Длина волны выходного излучения была 1047 nm. Диаметр лазерного пятна на образце составлял ~ 2 mm. Регистрировались падающая и прошедшая через образец энергии. Регистрация входного и выходного сигналов осуществлялась непосредственно измерителями энергии лазерного излучения.

На рис. 1 представлен спектр поглощения структуры полиимид- C_{70} для ИК-диапазона спектра. Видно, что пропускание полиимидных систем в ИК-диапазоне, в частности на длине волны 1047 nm, составляет ~ 79-85%. На рис. 2 приведены спектры поглощения чистых фуллеренов C_{70} в тетрахлорэтане и толуоле. На рис. 3 приведены результаты исследования эффекта ограничения лазерного излучения для системы полиимид- C_{70} на длине волны 1047 nm. Показаны зависимости плотности выходной энергии излучения (W_{out}) от плотности входной энергии (W_{in}) для трех структур полиимида: с содержанием 0.5 wt.% C_{70} (рис. 3, кривая 1), 0.2 wt.% C_{70} (рис. 3, кривая 2) и 0.1 wt.% C_{70} (рис. 3,

Рис. 2. Спектры поглощения фуллерена С₇₀ в тетрахлорэтане (основной график) и в толуоле (на вставке). По оси *Y* для обоих графиков указаны оптические плотности.

кривая 3). Учитывая, что линейное пропускание систем находилось в диапазоне 79-85%, а погрешность эксперимента была 5-7%, данные, приведенные на рис. 3, адекватно свидетельствуют о проявлении нелинейного ограничения излучения в системе полиимид-фуллерен на длине волны 1047 nm. Заметим, что сравнительные результаты настоящего исследования и известные из литературы характеристики эффекта ограничения [14-18], наблюдаемого для твердотельных систем различного состава, а также растворов и суспензий и облучаемых импульсами микро-, нано- и пикосекундного диапазонов на длинах волн

Рис. 3. Зависимости плотностей выходной энергии излучения от плотностей падающего излучения для системы полиимид $-C_{70}$ на длине волны 1047 nm: I = 0.5 wt.% C_{70} ; 2 = 0.2 wt.% C_{70} ; 3 = 0.1 wt.% C_{70} .

ИК-области спектра, показаны в таблице. Там же приведены данные для структур, сенсибилизированных фуллереном C₆₀.

Итак, для системы полиимид— C_{70} на длине волны 1047 nm наблюдается нелинейное ограничение излучения указанного спектрального диапазона, что, по-видимому, возможно объяснить следующими причинами. Во-первых, основная полоса поглощения полиимидных систем лежит в области 270–275 nm, что не исключает проявления многофотонного поглощения в ИК-диапазоне и не противоречит спектральным особенностям (рис. 1) системы полиимид— C_{70} . Во-вторых, резонансная полоса поглощения чистого фуллерена C_{70} находится в диапазоне 430–520 nm (рис. 2), что делает возможным проявление двухфотонного поглощения на длине волны 1047 nm. В-третьих, найденный порог ограничения вблизи 0.6–0.7 J · cm⁻² для системы полиимид— C_{70} предполагает проявление светоиндуцированного изменения показателя преломления изучаемой среды за счет высокочастотного эффекта Керра, поскольку, как было показано в работах [5,19], изменение показателя преломления при

	5	
-	~	
	*	

Система	Началь- ное	Длина волны,	Длитель- ность	Порог ограниче-	Порог разру-	Возможные механизмы ограничения	Ссылка
	кание, %		ns ns	$J \cdot cm^{-2}$	$J \cdot cm^{-2}$		
1	2	3	4	5	6	7	8
Композит на основе галогенида серебра с наночастицами металлического серебра		3800-4200	250	0.005-0.025		Сдвиг полосы поглощения, связанной с плазмонным резонансом при одновременном увеличении коэффициента поглощения; изменение диэлектрической проницаемости компонент композита за счет тепловых эффектов	[14]
2-(n-prolinol)-5- nitropyridine $-C_{60}$	65-70	2940	500 µs	0.9-1	≥ 1.5	Светоиндуцированное комплексообразование	[15]
Polyimide-C ₇₀	~ 80	1315	50	0.08-0.1	~ 2	Светоиндуцированное комплексообразование, влияние эффекта двухспектрального управления	[6,11]
Zn-Pc-C ₆₀	75-80	1064	Наносе- кундный диапазон			Светоиндуцированное комплексообразование	[7]

Письма в ЖТФ, 2003, том 29, вып. 16

35

1	2	3	4	5	6	7	8
Carbon-black suspensions (SBS) в воде и в CS ₂	~ 80	1064	10	0.12-0.7		Термодинамические процессы в суспензиях при их нагреве лазерными импульсами с высокой плотностью энергии входного пучка ≥ 10 J · cm ⁻²	[8]
Carbon nanotube suspensions в воде и в хлороформе	≥ 90	1064	6	0.15-0.35		Нелинейное рассеяние, сублимация углеродных наночастиц	[16]
С ₆₀ (раствор)	~ 85	1064	35 ps	~ 3		Двухфотонное поглощение	[17]
Polyimide—C ₇₀	~ 79–85	1047	8	0.6-0.7	~ 2.5-3	Влияние двухфотонного поглощения фуллерена С ₇₀ , многофотонного поглощения полиимидной матрицы, а также возможное изменение показателя преломления системы за счет высокочастотного эффекта Керра	Насто- ящая рабо- та
С ₆₀ (раствор)	84	710-740	10	2		Обратное насыщенное поглощение	[18]

Письма в ЖТФ, 2003, том 29, вып. 16

36

данных плотностях падающего излучения в наносекундном диапазоне длительностей импульса составляют $\sim 10^{-3}$, что влияет на проявление эффекта ограничения за счет дифракционных потерь.

Заключение.

1. В настоящем исследовании проведено изучение сопряженной структуры полиимид-фуллерен на длине волны $\lambda = 1047$ nm с целью определения перспектив функционирования нелинейных абсорберов на основе указанных выше систем в ближнем ИК-диапазоне.

2. Дискутировалось, что многофотонное поглощение, двухфотонные процессы, а также высокочастотный эффект Керра вносят вклад в проявление нелинейных особенностей изученных структур, что проявляется в реализации эффекта оптического ограничения излучения на используемой длине волны.

3. Результаты первых экспериментов на длине волны 1047 nm могут быть положены в основу создания нелинейных абсорберов ближнего инфракрасного диапазона спектра и пространственно-временны́х модуляторов света на основе сенсибилизированных фуллеренами молекул полиимида.

Авторы благодарят В.И. Берендяева (ГНЦ НИФХИ им. Л.Я. Карпова, Москва) за помощь в работе.

Исследования частично поддержаны грантами РФФИ № 00–15– 99067 и 01–03–33162.

Список литературы

- Hosoda K., Tada R., Ishikawa M., Yoshino K. // Jpn. J. Appl. Phys. 1997. Part 2. V. 36. N 3B. P. L372–L375.
- [2] Wang Y., Herron N., Casper J. // Mater. Sci. Eng. B. 1993. V. 19. P. 61-66.
- [3] Itaya A., Sizzuki I., Tsuboi Y., Miyasaaka H. // J. Phys. Chem. B. 1997. V. 101. N 26. P. 5118–5123.
- [4] Orczyk M.E., Zieba J., Prasad P.N. // Proceed. SPIE. 1993. V. 2025. P. 298-309.
- [5] Kamanina N.V. // Synthetic Metals. 2002. V. 127. N 1-3. P. 121-128.
- [6] Kamanina N.V., Bagrov I.V., Belousova I.M., Kognovitskii S.O., Zhevlakov A.P. // Opt. Commun. 2001. V. 194. N 4–6. P. 367–372.
- [7] Ruani G., Biscarini M., Cavallini M., Fontnini C., Murgia M., Taliani C. // Abstract booklet of 2nd Intern. Symposium on Optical Power Limiting. Venice (Italy), July 2–5, 2000. P. 69.

- [8] Riehl D., Fougeanet F. // Nonlinear Optics. 1999. V. 21. N 1-4. P. 391-398.
- [9] Lee K., Miller E.K., Saricifici N.S., Hummelen J.C., Wudl F., Heeger A.J. // Phys. Rev. B. 1996. V. 54. N 15. P. 10 525.
- [10] Konarev D.V., Zubavichus Y.V., Slovokhotov Yu.L., Shul'ga Yu.M., Semkin V.N., Drichko N.V., Lyubovskaya R.N. // Synthetic Metals. 1998. N 92. P. 1.
- [11] Каманина Н.В., Багров И.В., Белоусова И.М., Жевлаков А.П. // Оптика и спектроскопия. 2001. Т. 91. № 1. С. 5–7.
- [12] Ganeev R.A., Ryasnuansky A.I., Kamanina N.V., Kulagin I.A., Kodirov M.K., Usmanov T. // J. Optics B: Quantum and Semiclassical Optics. 2001. V. 3. N 3. P. 88.
- [13] Белоусов В.П., Белоусова И.М., Будтов В.П., Данилов В.В., Данилов О.Б., Калинцев А.Г., Мак А.А. // Оптический журнал. 1997. Т. 64. № 12. С. 3–37.
- [14] Багров И.В., Жевлаков А.П., Михеева О.П., Сидоров А.И., Судариков В.В. // Письма в ЖТФ. 2002. Т. 28. Вып. 13. С. 40–43.
- [15] Каманина Н.В., Искандаров М.О., Никитичев А.А. // Письма в ЖТФ. 2003. Т. 29. В. 8. С. 62–68.
- [16] Vivien L., Riehl D., Lancon P., Hache F., Anglaret E. // Nonlinear Optics. 2001.
 V. 27. N 1–4. P. 395–403.
- [17] Ганеев Р.А., Каманина Н.В., Кулагин И.А., Ряснянский А.И., Тугушев Р.И., Усманов Т. // Квантовая электроника. 2002. Т. 32. № 9. С. 781–788.
- [18] Mishra S.R., Rawat H.S., Mehendale S.C. // Journal: Applied Physics Letters. 1997. V. 71. N 1. P. 46–48.
- [19] Kamanina N.V. // Оптика и спектроскопия. 2001. Т. 90. № 6. С. 959–963.