Выращивание и люминесцентные свойства лютеций-гадолиниевого граната, активированного ионами Ce³⁺ и Pr³⁺

© С.В. Нижанковский¹, А.Я. Данько¹, Ю.В. Зоренко²,

В.В. Баранов¹, Л.А. Гринь¹, В.Ф. Ткаченко¹, П.В. Матейченко¹

¹ Институт монокристаллов НАН Украины,

Харьков, Украина

² Львовский национальный университет им. Ивана Франко,

Львов, Украина

09

E-mail: Danko@isc.kharkov.ua

(Поступила в Редакцию 15 января 2010 г.)

Представлены результаты исследований оптических и люминесцентных свойств кристаллов твердых растворов лютеций-гадолиниевого граната ($Lu_{1-x}Gd_x$) Al_5O_{12} ($0 \le x \le 0.6$), активированных ионами Ce^{3+} и Pr^{3+} , полученных методом горизонтальной направленной кристаллизации.

Установлено, что введение гадолиния в решетку лютециевого граната приводит к снижению антиузельной люминесценции (Lu_{Al}-центры) в УФ-области спектра и сенсибилизации люминесценции ионов Ce³⁺. В противоположность этому в присутствии гадолиния происходит тушение люминесценции Pr^{3+} , обусловленное безызлучательной передачей возбуждения от ионов Pr^{3+} к ионам Gd^{3+} .

1. Введение

Вследствие удачного сочетания высокой плотности, механической прочности, химической стабильности и хороших сцинтилляционных характеристик кристаллы на основе алюминатов и силикатов лютеция находят широкое применение в ядерной физике и медицинской технике, в частности в позитронной эмиссионной томографии, а также в устройствах регистрации и визуализации рентгеновского и у-излучений [1]. В последнее время получили развитие исследования лютецийалюминиевого граната (Lu₃Al₅O₁₂, для которого используется также общепринятое обозначение LuAG). На основе этого соединения был создан тяжелый сцинтиллятор Lu₃Al₅O₁₂: Ce³⁺ (6.73 g/cm³) со световыходом до 16 000 photon/MeV и временем затухания 60-70 ns и более быстрый сцинтиллятор Lu₃Al₅O₁₂: Pr³⁺ со световыходом до 24000 photon/MeV и временем затухания, в 2 раза меньшим ($\sim 20 \, \text{ns}$), чем у силикатов лютеция [2]. Дальнейшее улучшение функциональных характеристик сцинтилляторов на основе этих кристаллов существенно ограничивается присутствием в них антиузельных дефектов (АД) Lu_{A1} (катионы Lu в позициях катионов A1), которые выступают в роли центров собственной люминесценции в УФ-области спектра [3] и центров захвата [4]. Реабсорбция собственного излучения ионами активатора и захват носителей заряда приводит к существенному увеличению вклада медленной компоненты люминесценции и снижению световыхода [3,4].

Одним из путей решения этой проблемы может служить поиск более оптимального состава сцинтилляторов на основе кристаллов лютеций-алюминиевого граната. В частности, уменьшение вклада медленных компонентов сцинтилляций было получено для $Lu_3(Al_{1-x}Ga_x)_5O_{12}$: Pr^{3+} при модификации состава кри-

сталлов этого граната ионами галлия [5]. В настоящей работе нами были исследованы кристаллы твердых растворов ($Lu_{1-x}Gd_x$)₃Al₅O₁₂, активированных ионами Ce³⁺ и Pr³⁺. Предпосылкой для модификации состава граната гадолинием послужили ранее полученные результаты [6], согласно которым концентрация антиузельных дефектов существенно зависит от ионного радиуса основного катиона граната и для случая гадолиния принимает наименьшее значение. Основное внимание было обращено на изучение влияния замещения катионов лютеция ионами гадолиния на условия выращивания, а также оптические и люминесцентные свойства этих кристаллов.

2. Экспериментальная часть

2.1. Выращивание кристаллов. Для выращивания кристаллов ($Lu_{1-x}Gd_x$)₃Al₅O₁₂: Ce³⁺, Pr³⁺ был использован модифицированный метод горизонтальной направленной кристаллизации (ГНК) — "газовая" технология ГНК (ГТ ГНК). В основу этой технологии положено использование защитных восстановительных газовых сред и углеродсодержащих теплоизолирующих материалов вместо вольфрам-молибденовых экранов, что позволио существенно улучшить технологические и экономические показатели метода ГНК [7,8].

В результате проведенных экспериментов были получены кристаллы размером до $100 \times 35 \times 20 \text{ mm}$ (рис. 1). Выращивание проводили в тонкостенных (0.2–0.3 mm) молибденовых тиглях ("лодочке") со скоростью 1–2 mm/h в защитной атмосфере аргона. В качестве шихты использовали сплавленные в стехиометрическом соотношении порошки оксидов Lu₂O₃, Gd₂O₃ и Al₂O₃ с чистотой \geq 99.99 wt.%. Активатор вводили

[Gd], at.%

Рис. 1. Кристаллы Lu₃Al₅O₁₂ и (Lu_{1-x}Gd_x)₃Al₅O₁₂: Ce³⁺, Pr³⁺, выращенные методом ГТ ГНК.

в шихту в виде оксидов Pr_6O_{11} и CeO_2 в количестве 1-2 mol.%.

На первом этапе работы было исследовано влияние содержания гадолиния на фазовый состав и структуру кристаллов, а также температуру кристаллизации. Для этого выращивались небольшие кристаллы размерами $10 \times 10 \times 20-40$ mm. Рентгеноструктурные исследования фазового состава кристаллов проводились по схеме $\theta - 2\theta$ на дифрактометре ДРОН-3М с использованием излучения СоКа. В качестве монохроматора применялся пиролитической графит с отражающей кристаллографической плоскостью (002). Температуру измеряли с помощью инфракрасного пирометра спектрального отношения "Marathon" (Raytek Corp.). Проведенные эксперименты показали, что методом ГНК могут быть получены кристаллы твердых растворов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ с содержанием гадолиния в исходной шихте до 60 at.% $(0 \le x \le 0.6)$ (рис. 1). С ростом содержания гадолиния кристаллы характеризуются изменением окраски от зеленоватой до желто-оранжевой.

Согласно [9], получить кристаллы гадолиний-алюминиевого граната $Gd_3Al_5O_{12}$ из расплава невозможно. Поэтому одной из причин, не позволяющих вырастить кристаллы твердых растворов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ с большим содержанием гадолиния, может быть нарушение структурной устойчивости фазы граната и конкурентное образование устойчивой в системе Gd₂O₃-Al₂O₃ фазы перовскита GdAlO₃ [10]. Об этом может свидетельствовать образование в выращенных кристаллах микровключений второй фазы, концентрация которых увеличивалась с ростом содержания гадолиния. Однако проведенный рентгеноструктурный и фазовый анализ кристаллов и включений показал, что даже при содержании гадолиния 60 at.% кристалл представляет собой твердый раствор со структурой граната, а микровключения содержат Al₂O₃. Отсюда следует, что в данных условиях выращивания кристаллов из расплава граница структурной устойчивости лютеций-гадолинийалюминиевого граната не была достигнута и лютеций успешно исполняет роль стабилизатора фазы граната. Поэтому наиболее вероятно, что при высоких концентрациях гадолиния происходит нарушение морфологической устойчивости фронта кристаллизации растворарасплава.

Температура плавления $Gd_3Al_5O_{12}$ (~ 1830°С) имеет наименьшее значение среди редкоземельных алюминиевых гранатов $Re_3Al_5O_{12}$, где Re = Y, Gd, Lu [10]. Следовательно, при введении гадолиния можно ожидать существенного снижения температуры кристаллизации лютециевого граната. Измерения температуры роста показали, что в исследованном диапазоне содержаний гадолиния в квазибинарной системе Lu₃Al₅O₁₂—Gd₃Al₅O₁₂ инвариантной точки с минимумом температуры кристаллизации не существует и происходит плавное, практически линейное снижение температуры (рис. 2). Причем при содержании гадолиния более 30 at/% температура кристаллизации становится ниже соответствующей величины $T_{cr} = 1970$ °C для иттрий-алюминиевого граната $Y_3Al_5O_{12}$.

Поскольку ионные радиусы Gd^{3+} и Lu^{3+} заметно различаются, важным вопросом является степень однородности состава кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ и влияние содержания гадолиния на коэффициент распределения активатора Ce^{3+} и Pr^{3+} . С этой целью

Рис. 2. Температура кристаллизации твердых растворов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$.

были проведены исследования состава вдоль направления выращивания кристаллов методом электроннозондового микроанализа на сканирующем электронном микроскопе JEOL JSM-6390LV с системой рентгеновского анализа INCA Energy350 (Oxford Instruments Analytical ltd.). Анализ распределений компонентов кристалла с помощью уравнений Галливера–Пфанна [11] показал, что коэффициент распределения гадолиния в кристаллах (Lu_{1-x}Gd_x)₃Al₅O₁₂ достаточно высокий и для концентраций $0.1 \le x \le 0.4$ составляет величину ~ 0.8. С повышением содержания гадолиния также наблюдается увеличение коэффициентов распределения Се и Pr в 1.5-2 раза по сравнению с нелегированными кристаллами Lu₃Al₅O₁₂.

2.2. Оптические и люминесцентные свойства кристаллов. На втором этапе работы из полученных кристаллов были изготовлены плоскопараллельные пластины размером $10 \times 10 \times 1 \,\text{mm}$ и исследованы спектры их оптического поглощения и рентгенолюминесценции. Оптическое поглощение было измерено на спектрофотометре Perkin-Elmer Lambda-35. Как видно из приведенных на рис. 3, а и b спектров, введение гадолиния в решетку лютеций-алюминиевого граната в исследованном диапазоне концентраций (0 < x < 0.4) не приводит к заметным изменениям в положении полос поглощения активатора 222, 346, 447 nm для ионов Ce³⁺ и 238, 284, 368, 460 nm для ионов Pr³⁺ в сравнении с кристаллами Lu₃Al₅O₁₂: Се и Lu₃Al₅O₁₂: Pr. Кроме полос поглощения ионов Се³⁺ в спектре поглощения кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Ce³⁺ (рис. 3, *a*)

Рис. 3. Спектры оптического поглощения кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Ce³⁺ (a) и $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Pr³⁺ (b) с различным содержанием гадолиния.

Физика твердого тела, 2011, том 53, вып. 1

Рис. 4. Спектры рентгенолюминесценции кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Се³⁺ (*a*) и $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Pr³⁺ (*b*). АД – антиузельные дефекты.

также наблюдается узкая полоса поглощения 277 nm ионов Gd^{3+} . Наблюдаемое увеличение интенсивности полос поглощения ионов Ce^{3+} и Pr^{3+} свидетельствует о том, что замещение лютеция более крупным гадолинием приводит к улучшению условий вхождения ионов церия и празеодима в кристалл.

Спектры рентгенолюминесценции кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Се³⁺ и Pr^{3+} были получены при возбуждении излучением с энергией $E = 30 \, \text{keV}$ рентгеновской трубки РЕИС-И (Си-антикатод, $U = 30 \, \text{kV}$, $I = 50 \,\mu\text{A}$), фотоприемник ФЭУ-100. Из рис. 4, *a*, *b* видно, что при модифицировании лютеций-алюминиевого граната ионами гадолиния происходит существенная трансформация спектров люминесценции этих кристаллов. Прежде всего наблюдается снижение интенсивности собственной УФ-люминесценции кристаллов в области 250-450 nm, обусловленной наличием АД Lu_{Al}. Этот результат согласуется с предположением о том, что замещение катионов лютеция ионами гадолиния должно приводить к снижению концентрации АД Lu_{Al} вследствие увеличения ионного радиуса основного катиона. Однако для кристаллов твердых растворов этот результат не является столь очевидным. В частности, для твердых растворов гранатов кроме количественного уменьшения концентрации АД Lu_{Al} может также иметь место противоположный эффект взаимного влияния катионов с различным ионным радиусом [6], приводящий к "выдавливанию" крупными ионами гадолиния части ионов лютеция с меньшим ионным радиусом в "антиузельные" октаэдрические позиции. Предсказать результирующую величину концентрации АД Lu_{Al} в этом случае достаточно сложно. Вместе с тем полученные нами результаты могут свидетельствовать о том, что эффект взаимного влияния в кристаллах $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ существенно не проявляется.

Тем не менее причины снижения интенсивности люминесценции антиузельных дефектов в кристаллах $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ могут быть сложными и связанными не только с увеличением ионного радиуса остовного катиона и снижением содержания лютеция. Как видно из рис. 4, а, b спектры люминесценции кристаллов $(Lu_{1-r}Gd_r)_3Al_5O_{12}$ характеризуются интенсивной полосой излучения (314 nm) ионов Gd³⁺. Интенсивность этого излучения имеет максимум при концентрации гадолиния ~ 1 at.%. Кроме того, как показал анализ спектров излучения кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$ с различным содержанием ионов гадолиния, существенное снижение интенсивности собственной люминесценции наблюдается уже при относительно небольшом ($\sim 10 \, \text{at.\%}$) содержании гадолиния. Отсюда следует, что вместе с возможным снижением концентрации АД Lu_{A1} также происходит тушение люминесценции этих дефектов в результате передачи энергии возбуждения от решетки преимущественно к ионам Gd³⁺. На основании люминесценции кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$: Pr³⁺ (рис. 4, b) можно предположить, что ионы гадолиния выступают в роли тушителя 5f - 4d-люминесценции ионов Pr^{3+} в результате безызлучательного переноса энергии с возбужденных состояний ионов Pr^{3+} на состояния ионов Gd^{3+} .

В отличие от кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}:Pr^{3+}$ в кристаллах $(Lu_{1-x}Gd_x)_3Al_5O_{12}:Ce^{3+}$ наблюдается сенсибилизация люминесценции ионов Ce^{3+} излучением ионов гадолиния (рис. 4, *a*). В этих кристаллах также имеет место заметное длинноволновое смещение максимума излучения ионов Ce^{3+} . Это смещение в сочетании с уменьшением пропускания в коротковолновой области спектра (рис. 4, *a*) приводит к изменению окраски кристалла ($Lu_{1-x}Gd_x)_3Al_5O_{12}:Ce^{3+}$ от зеленоватой до желто-оранжевой с ростом содержания гадолиния в этих кристаллах от 0 до 60 at.%.

3. Заключение

Таким образом, можно утверждать, что ионы гадолиния в кристаллах лютеций-алюминиевого граната являются эффективными центрами излучательной рекомбинации и существенно влияют на люминесцентные характеристики кристаллов $(Lu_{1-x}Gd_x)_3Al_5O_{12}$, легированных ионами Ce^{3+} и Pr^{3+} . В частности, в кристаллах $(Lu_{1-x}Gd_x)_3Al_5O_{12}:Pr^{3+}$ ионы Gd^{3+} являются тушителями 5f - 4d-люминесценции ионов Pr^{3+} , тогда как в кристаллах $(Lu_{1-x}Gd_x)_3Al_5O_{12}:Ce^{3+}$ имеет место сенсибилизация люминесценции ионов Ce^{3+} люминесценцией ионов Gd^{3+} . Кроме того, легирование кристаллов лютеций-алюминиевого граната ионами гадолиния приводит к снижению в них концентрации антиузельных дефектов АД Lu_{A1} и интенсивности их люминесценции.

Список литературы

- М.Е. Глобус, Б.В. Гринев. Неорганические сцинтилляторы. Новые и традиционные материалы. Акта, Харьков (2001). 402 с.
- [2] M. Nikl, A. Vedda, T. Fukuda. J. Cryst. Growth 292, 416 (2006).
- [3] M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Yu. Zorenko, K. Nejezchleb. Phys. Status Solidi A 202, 1113 (2005).
- [4] Ю.В. Зоренко, В.И. Горбенко, Г.Б. Стрыганюк, В.Н. Колобанов, Д.А. Спасский, К. Блажек, М. Никл. Опт. и спектр. 99, 6, 957 (2005).
- [5] H. Ogino, A. Yoshikawa, M. Nikl, J.A. Mares, J. Shimoyama, K. Kishio, J. Cryst. Growth **311**, 908 (2009).
- [6] П.П. Феофилов, А.А. Каминский, А.А. Каплянский, Б.З. Малкин, А.И. Рыскин, А.М. Ткачук. Спектроскопия кристаллов. Наука, Л. (1978). 192 с.
- [7] A.Ya. Dan'ko, N.S. Sidelnikova, G.T. Adonkin. Functional Mater. 13, 462 (2006).
- [8] A.Ya. Dan'ko, S.V. Nizhankovsky, V.N. Kanischev. Functional Mater. 13, 426 (2006).
- [9] А.А. Каминский, Л.К. Аминов, В.Л. Ермолаев. Физика и спектроскопия лазерных кристаллов. Наука, М. (1986). 282 с.
- [10] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров. Соединения редкоземельных элементов. Системы с оксидами элементов I–III групп. Наука, М. (1983). 280 с.
- [11] В.Н. Вигдорович, А.Е. Вольпян, Г.М. Курдюмов. Направленная кристаллизация и физико-химический анализ. Химия, М. (1976). 200 с.