Структура и фазовые переходы твердых растворов цирконата-гафната свинца

© Ю.В. Кабиров, М.Ф. Куприянов, Э.В. Петрович, Ш.И. Дуймакаев, В.О. Пономаренко

Южный федеральный университет, Ростов-на-Дону, Россия E-mail: salv62@mail.ru

(Поступила в Редакцию 13 апреля 2010 г. В окончательной редакции 7 июня 2010 г.)

> Методом твердофазного синтеза из простых оксидов приготовлены твердые растворы двух антисегнетоэлектриков — цирконата и гафната свинца $PbZr_{1-x}Hf_xO_3$, x = 0, 0.3, 0.5, 0.7, 1. Элементный состав образцов и их структура изучены методами рентгенофлуоресцентного анализа и рентгеновской дифракции. Определены фазовые изменения твердых растворов в области температур $20 < t < 300^{\circ}$ C.

Работа поддержана грантом РФФИ № 10-03-00189-а.

1. Введение

06

Структура и фазовые переходы антисегнетоэлектрических двойных оксидов цирконата свинца и гафната свинца хорошо изучены [1,2]. Цирконат свинца служит основой для многочисленных твердых растворов типа цирконата-титаната свинца с особыми свойствами [3]. В PbZrO₃ с повышением температуры орторомбическая (антисегнетоэлектрическая — АСЭ) фаза при 210°С переходит сначала в ромбоэдрическую (сегнетоэлектрическую — СЭ), а затем при 230°С — в кубическую параэлектрическую (ПЭ) фазу. В PbHfO₃ при комнатной температуре определена орторомбическая фаза, такая же как в PbZrO₃ [4]. Фаза PbHfO₃ выше 163°С и ниже 203°C до сих пор однозначно не определена. В различных работах эта фаза интерпретируется как оротормбическая [5], ромбоэдрическая [6], тетрагональная [2,7].

Диэлектрические свойства поликристаллических твердых растворов PbZr_{1-x}Hf_xO₃ (ЦГС) были изучены в [8], отмечено снижение температуры перехода в парафазу с ростом концентрации гафния, а также существование как АСЭ-, так и СЭ-фаз. Диаграмма (t, x, E) для кристаллов твердых растворов ЦГС приведена в [9]. В составе с x = 0.05 в [10] отмечено размытие фазовых переходов АСЭ–СЭ, СЭ–ПЭ.

Цель нашей работы — выявление с помощью метода рентгеновской дифракции температурных последовательностей фазовых переходов и определение областей существования АСЭ- и СЭ-фаз в составах PbZr_{1-x}Hf_xO₃.

2. Эксперимент

Образцы PbZr_{1-x}HfO₃ с x = 0, 0.3, 0.5, 0.7, 1 синтезированы из исходных оксидов PbO (XЧ), HfO₂ (ОСЧ),

ZrO₂ (ОСЧ). Температура обжига — 850°С, длительность — 3 h. После перепрессовки образцы отжигались при 1000°С в течение 4 h. Полученная керамика тестировалась с помощью рентгенофлуоресцентного анализа методом внутреннего стандарта с целью проверки заданных концентраций Pb, Hf, Zr. Рентгеновский спектр одного из образцов показан на рис. 1. Для диэлектрических измерений на образцы были нанесены электроды вжиганием серебра при температуре 800°С.

Рентгеноструктурное изучение образцов проводилось на дифрактометре ДРОН-3М (Си K_{α} -излучение, Ni-фильтр) с компьютерной регистрацией дифракционного профиля в режиме пошагового сканирования методом Брэгга–Брентано (θ –2 θ). Шаг сканирования — 0.02°, время экспозиции в каждой точке — 2 s. Точность измерения параметров ячеек составляла ±0.002 Å. Рентгенограммы обрабатывались с помощью полнопрофильной программы PowderCell 2.4.

Рис. 1. Рентгенофлуоресцентный спектр образца $PbZn_{0.3}Hf_{0.7}O_3$.

Состав	Φ аза $O_1, Pbam$	Фаза <i>О</i> ₂ , <i>А2тт</i>	Фаза Р4тт	Фаза R3m	Фаза Рт3т
PbZrO ₃	20-210	_	—	220-230	> 240-300
$PbZr_{0.7}Hf_{0.3}O_3$	20-170	180 - 220	—	—	> 230-300
PbZr0.5Hf _{0.5} O ₃	20-180	190 - 200	—	-	> 210-300
$PbZr_{0.3}Hf_{0.7}O_3$	20-150	160-190	—	—	> 200-300
PbHfO ₃	20-150	160-180	190-220	—	> 230-300

Температурные области (в °С) существования фаз

Диэлектрические измерения были проведены на частотах от 100 Hz до 1 MHz с помощью прибора Е7-20.

3. Результаты и обсуждение

Анализ рентгенограмм всех составов при комнатной температуре показал, что наблюдаемые дифракционные отражения соответствуют известным сверхструктурным орторомбическим ячейкам PbZrO₃ и PbHfO₃. Фрагмент рентгенограммы PbHfO₃ при комнатной температуре приведен на рис. 2. Уточнение структурных параметров проведено в рамках пр.гр. *Pbam* (O_1), которая достоверно определена ранее для PbHfO₃ [4].

В процессе обработки также были использованы структурные модели различных пространственных групп симметрии: *Pbam*, *Pm*3*m*, *R*3*m* (и *R*3*c*), *P*4*mm*, *C*4*mm*, *A*2*mm*. Проведенный анализ слабых "расщеплений" дифракционных максимумов PbHfO₃ в области температур $150 < t < 180^{\circ}$ С показал, что структура PbHfO₃ является орторомбической (*A*2*mm*) *O*₂, подобной орторомбической фазе в BaTiO₃ вблизи 0°. Это подтверждается также минимумом *R*-фактора (3–4%) в результате полнопрофильного уточнения для *A*2*mm* по сравнению с иными использованными моделями (R = 5-7%).

Группа дифракционных рефлексов типа {111} PbHfO₃ в области температур 190 < t < 220°C представляет собой одиночный максимум, как и в кубической фазе.

Рис. 2. Фрагмент рентгенограммы PbHfO₃ при комнатной температуре.

В то же время группа дифракционных рефлексов типа {200} расщеплена на два близких по углам 20 максимумам. Это позволило с большой вероятностью предположить, что переходная фаза PbHfO₃ (в области $190 < t < 200^{\circ}$ C) является тетрагональной. Отсутствие каких-либо закономерных погасаний и сверхструктурных рефлексов позволяет описывать данную фазу примитивной тетрагональной перовскитовой ячейкой. Для выбора пространственной группы симметрии, описывающей структуру PbHfO₃ в данной фазе, был проведен анализ всех тетрагональных пространственных групп. Из их общего числа (67) мы исключили центросимметричные, объемно центрированные, а также пространственные группы, в которых правильные системы точек не позволяют разместить атомы молекулы АВО3, приходящиеся на одну перовскитовую ячейку. В результате в качестве вероятных осталось шесть пространственных групп: Р4тт, С4тт, Р4, Р422, Р42т и *Р*4*m*2. Дальнейший отбор пространственных групп проводился путем соответствия расчетных и экспериментальных дифракционных профилей с минимизацией их расходимости путем варьирования структурных параметров моделей. В результате минимальное значение *R*-факторов (3–4%) получено для пространственной группы симметрии P4mm — фаза T. При дальнейшем повышении температуры (190-220°С) и до перехода в кубическую РтЗт (ПЭ) фазу существует только фаза Т.

Результаты обработки рентгенограмм, полученных при разных температурах, представлены в таблице.

Температурные зависимости среднего параметра ячейки $\langle a \rangle \ (\langle a \rangle = \sqrt[3]{V})$ и параметров перовскитовых ячеек для различных концентраций представлены на рис. 3, *a*-*e*.

На рис. 4 показана зависимость средних параметров орторомбической и кубической ячеек твердых растворов от концентрации гафния в них. Уменьшение объема ячейки (среднего параметра) при замещении позиций *В* (циркония) гафнием показывает существование твердых растворов $PbZr_{1-x}Hf_xO_3$. Можно отметить, что, несмотря на близость ионных радиусов Hf (0.71 Å) и Zr (0.72 Å) [11], объемы перовскитовых ячеек гафната и цирконата свинца значительно различаются.

Измерения температурных зависимостей диэлектрической проницаемости є и тангенса угла диэлектри-

Рис. 3. Фазовые диаграммы твердых растворов $PbZr_{1-x}Hf_xO_3$. $a - PbZrO_3$, $b - PbZr_{0.7}Hf_{0.3}O_3$, $c - PbZr_{0.5}Hf_{0.5}O_3$, $d - PbZr_{0.3}Hf_{0.7}O_3$, $e - PbHfO_3$. Вертикальные штриховые линии — границы фаз. Фазы R и C — ромбоэдрическая и кубическая соответственно. Остальные фазы описаны в тексте.

ческих потерь в PbHfO₃ показали, что температура максимумов ε не зависит от частоты измерительного поля, а величина $\varepsilon_{\rm max}$ при комнатной температуре закономерно уменьшается с увеличением частоты. На рис. 5 в качестве примера показана зависимость $\varepsilon(t)$ PbHfO₃ на частоте 1 MHz в области температур 50–350°С.

Можно видеть, что переход $O_1 \rightarrow O_2$ проявляется в виде слабого максимума с большим температурным гистерезисом. В составах PbZr_{1-x}Hf_xO₃ (x = 0, 0.3, 0.5, 0.7, 1) зависимости $\varepsilon(T)$ подобны ранее полученным в [8]. Сравнение наших данных с результатами [8] показывает, что СЭ-фаза *R3m* со стороны PbZrO₃, как и обнаруженная нами СЭ-фаза *P4mm* со стороны PbHfO₃, существует в областях относительно малых концентраций вторых компонентов (x < 0.3 и x > 0.7). В области 0.3 < x < 1 выявляется СЭ-фаза *A2mm*, подобная орто-

Рис. 4. Зависимость среднего параметра ячеек от концентрации гафната свинца в цирконате свинца при различных температурах. *1* — при комнатной температуре, *2* — при 300°С (в парафазе).

Рис. 5. Температурная зависимость диэлектрической проницаемости $\varepsilon(t)$ PbHfO₃.

ромбической фазе в ВаТіО₃ вблизи температуры 0°С. Частотной дисперсии диэлектрической проницаемости в изученных образцах твердых растворов не наблюдалось. Найденная последовательность фаз в PbHfO₃ и его твердых растворах не противоречит термодинамической теории [12,13].

4. Заключение

В PbHfO₃ и твердых растворах PbZn_{1-x}Hf_xO₃ (x = 0.3, 0.5, 0.7), как показали структурные и диэлектрические исследования, промежуточная фаза между АСЭ (*Pbam*) и высокотемпературной ПЭ (*Pm3m*) является сегнетоэлектрической (с пр.гр. *A2mm*), подобной сегнетоэлектрическим фазам BaTiO₃ и KNbO₃. В чистом PbHfO₃ эта фаза с повышением температуры последвательно переходит в сегнетоэлектрическую фазу (*P4mm*) и далее в параэлектрическую кубическую (*Pm3m*) фазу. Авторы выражают благодарность Ю.М. Гуфану за полезное обсуждение результатов и С.П. Кубрину за помощь в проведении эксперимента.

Список литературы

- [1] G. Shirane, E. Sawaguchi, A. Takeda. Phys. Rev. **80**, 485 (1950).S
- [2] G. Shirane, R. Pepinsky. Phys. Rev. 91, 812 (1953).
- [3] Б. Яффе, У. Кук, Г. Яффе. Пьезоэлектрическая керамика. Мир, М. (1974). 288 с.
- [4] D.L. Corker, A.M. Glazer, W. Kaminsky, R.W. Whatmore, J. Dec, K. Roleder. Acta Cryst. B 54, 18 (1998).
- [5] Н.Г. Леонтьев, Р.В. Колесова, В.В. Еремкин, О.Е. Фесенко, В.Г. Смотраков. Кристаллография 29, 2, 395 (1984).
- [6] P.D. Dernier, J.P. Remeika. Mater. Res. Bull. 10, 3, 187 (1975).
- [7] H. Fujishita, Y. Ishikawa. Ferroelectrics 269, 1, 135 (2002).
- [8] L. Goulpeau, S. LeMontagner, P. Limou. C.R. Acad. Sci. (Paris) 259, 1095 (1964).
- [9] И.Г. Ким, О.Е. Фесенко, В.Г. Смотраков. Кристаллография 34, 1480 (1989).
- [10] Z. Ujma, J. Handerek, D. Dmytrow, M. Pawelczyk. Ferroelectrics 89, 201 (1989).
- [11] R.D. Shannon, C.T. Prewitt. Acta. Cryst. B 25, 5, 925 (1969).
- [12] Ю.М. Гуфин. Структурные фазовые переходы. Наука, М. (1982). 304 с.
- [13] Г.А. Смоленский, В.А. Боков, В.А. Исупов, И.Н. Крайник, Р.Е. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, Л. (1971). 476 с.