01;06

Энергия связи экситона из пространственно-разделенных электрона и дырки в полупроводниковых квазинульмерных наносистемах

© С.И. Покутний

Институт металлофизики им. Г.В. Курдюмова НАН Украины, Киев E-mail: Pokutnyi_Sergey@inbox.ru

Поступило в Редакцию 17 октября 2012 г.

Обнаружен эффект существенного увеличения энергии связи основного состояния экситона из пространственно-разделенных электрона и дырки (дырка движется в объеме полупроводниковой квантовой точки, а электрон локализован на внешней сферической поверхности раздела квантовая точка — диэлектрическая матрица) по сравнению с энергией связи экситона в монокристаллах сульфида кадмия и селенида цинка.

Применению полупроводниковых наносистем, состоящих из полупроводниковых нанокристаллов сферической формы — так называемых квантовых точек (КТ), в качестве активной области нанолазеров препятствует малая энергия связи экситона $E_{ex}(a)$ (a — радиус КТ) в наносистеме [1,2]. Поэтому исследования, направленные на поиск наноструктур, в которых может наблюдаться существенное увеличение энергии связи экситона $E_{ex}(a)$, являются актуальными.

В данной работе обнаружен эффект существенного увеличения энергии связи основного состояния экситона из пространственноразделенных электрона и дырки (дырка движется в объеме КТ, а электрон локализован на внешней сферической поверхности раздела (КТ — диэлектрическая матрица) по сравнению с энергией связи экситона в монокристаллах CdS и ZnSe.

Рассмотрим модель квазинульмерной наносистемы: нейтральную сферическую КТ радиусом a, которая содержит в своем объеме полупроводник с диэлектрической проницаемостью (ДП) ε_2 , окруженную диэлектрической матрицей с ДП ε_1 . В объеме КТ движется дырка h с эффективной массой m_h , а электрон e с эффективной массой $m_e^{(1)}$

11

находится в матрице. Предположим, что на сферической поверхности раздела (КТ — матрица) существует бесконечно высокий потенциальный барьер. Поэтому в изучаемой модели дырка h не может выйти из объема КТ, а электрон e не может проникнуть в объем КТ. Для простоты, не теряя общности, будем считать, что дырка h расположена в центре КТ. С ростом радиуса a КТ (так, что $a \gg a_{ex}$, где a_{ex} — боровский радиус экситона в полупроводнике с ДП ε_2) сферическая поверхность раздела (КТ — матрица) переходит в плоскую поверхность раздела (полупроводник с ДП ε_2 — матрица с ДП ε_1). Экситон из пространственно-разделенных электрона и дырки становится двумерным. Вкладом энергии поляризационного взаимодействия электрона и дырки с поверхностью КТ в гамильтониан экситона в первом приближении можно пренебречь. Поэтому в потенциальной энергии гамильтониана экситона остается только энергия кулоновского взаимодействия электрона с дыркой [3]

$$V_{eh}(r) = -\left((\varepsilon_1 + \varepsilon_2)/2\varepsilon_1\varepsilon_2\right)(e^2/r),\tag{1}$$

где r — расстояние электрона от центра КТ. Уравнение Шредингера с таким гамильтонианом описывает двумерный экситон из пространственно-разделенных электрона и дырки (электрон движется в матрице с ДП ε_1 , а дырка — в полупроводнике с ДП ε_2), энергетический спектр которого имеет вид [4]

$$E_n^{2D} = -\frac{\mathrm{Ry}_{ex}^{2D}}{(n+(1/2))^2}, \qquad \mathrm{Ry}_{ex}^{2D} = \left(\frac{\varepsilon_1 + \varepsilon_2}{2\varepsilon_1\varepsilon_2}\right)^2 \left(\frac{\mu_0}{m_0}\right) \mathrm{Ry}_0, \qquad (2)$$

где n = 0, 1, 2... — главное квантовое число экситона, $\mu_0 = m_e^{(1)} m_h / (m_e^{(1)} + m_h)$ — приведенная масса экситона, $\text{Ry}_0 = 13.606 \text{ eV}$ — постоянная Ридберга. Боровский радиус и энергия связи основного состояния такого двумерного экситона, согласно (2), принимают вид

$$a_{ex}^{2D} = \left(2\varepsilon_1 \varepsilon_2 / (\varepsilon_1 + \varepsilon_2)\right) (\hbar^2 / \mu_0 e^2),\tag{3}$$

$$E_{ex}^{2D} = -4Ry_{ex}^{2D}.$$
 (4)

При этом энергия связи E_{ex}^{2D} (4) основного состояния двумерного экситона (из пространственно-разделенных электрона и дырки)

$$E_{ex}^{2D} = \left[1 + (\varepsilon_2/\varepsilon_1)\right]^2 (\mu_0/\bar{\mu}) E_{ex}^{3D}$$
(5)

в $[1 + (\varepsilon_2/\varepsilon_1)]^2(\mu_0/\bar{\mu})$ раз больше энергии связи

$$E_{ex}^{3D} = -(\bar{\mu}/m_0)\varepsilon_2^{-2} \text{Ry}_0$$
(6)

основного состояния трехмерного экситона (где $\bar{\mu}$ — приведенная масса экситона в полупроводнике с ДП ε_2).

Найдем полную энергию $E_0(a)$, а также энергию связи $E_{ex}(a)$ основного состояния экситона в наносистеме вариационным методом. Вариационную радиальную волновую функцию основного состояния экситона (1*s*-состояния электрона и 1*s*-состояния дырки) в наносистеме запишем в виде [3]

$$\Psi(r, a) = A(r/a) \exp\left[-(\mu(a)/\mu_0)(r/a_{ex}^{2D})\right],$$
(7)

где A — нормировочный коэффициент, а приведенная масса экситона $\mu(a)$ является вариационным параметром. Энергия связи $E_{ex}(a)$ основного состояния экситона в такой наносистеме определяется выражением

$$E_{ex}(a) = E_0(a) - \langle \Psi(r, a) | (V_{hh'}(a) + V_{ee'}(r, a) | \Psi(r, a) \rangle, \qquad (8)$$

где $\langle \Psi(r, a) | (V_{hh'}(a) + V_{ee'}(r, a)) | \Psi(r, a) \rangle$ описывает средние значения энергий взаимодействия дырки $V_{hh'}$ и электрона $V_{ee'}$ со своими изображениями на вариационных функциях (7). Поскольку величины средних энергий взаимодействия дырки и электрона со своими изображениями вносят в энергию связи $E_{ex}(a)$ (8) вклады с разными знаками, то они в значительной степени компенсируются между собой. Поэтому значения энергии связи $E_{ex}(a)$ (8) основного состояния экситона слабо отличаются от соответствующих значений полной энергии $E_0(a)$ основного состояния экситона в таких наносистемах.

При исследовании образцов стекол с KT CdS и ZnSe в экспериментальных работах [5,6] установлено, что электрон может локализоваться в поляризационной яме вблизи внешней поверхности KT, а дырка при этом движется в объеме KT.

Результаты вариационного расчета полной энергии $E_0(a)$ и энергии связи $E_{ex}(a)$ (8) основного состояния экситона (из пространственноразделенных электрона и дырки) здесь получены для наносистем, содержащих КТ CdS (см. рисунок, *a*) и ZnSe (см. рисунок, *b*), синтезированных в матрице боросиликатного стекла, которые исследовались в экспериментальных работах [5,6]. В [6] обнаружен пик спектра низкотемпературной люминесценции (при температуре T = 4.5 K)

Зависимость энергии основного состояния экситона $(E_0(a)-E_g)$ (сплошная линия), а также энергии связи основного состояния экситона $(E_{ex}(a)-E_g)$ (8) (пунктир) от радиуса *a* KT сульфида кадмия (а) и от радиуса KT селенида цинка (*b*). Здесь E_g — ширина запрещенной зоны в монокристалле сульфида кадмия 2.58 eV (*a*) и 2.823 eV в монокристалле селенида цинка (*b*), боровский радиус и энергия связи основного состояния двумерного экситона $a_{ex}^{2D} = 0.36$ nm (3), $E^{2D}(2)_{ex} = 2.435$ eV (*a*) и 0.573 nm и 1.53 eV (*b*) соответственно.

синтезированных в матрице стекла КТ ZnSe ($\varepsilon_2 = 9.25$) с радиусами a = 2.0-4.8 nm (эффективная масса дырки в КТ (m_h/m_0) $\cong 0.7$;

значение эффективной массы электрона в матрице было вычислено в [7] и равнялось ($m_e^{(1)}/m_0$) \cong 0.537). Сдвиг пика спектра низкотемпературной люминесценции, по отношению к ширине запрещенной зоны $E_g = 2.823$ eV монокристалла ZnSe, в коротковолновую область равнялся $\Delta E = -165$ meV. В работах [5,6] исследовались образцы стекол с малыми концентрациями КТ ($\approx 0.003-0.06\%$). Оптические свойства таких наносистем в основном определяются энергетическими спектрами электрона и дырки, локализованных вблизи сферической поверхности одиночных КТ, синтезированных в матрице стекла.

Сравнивая энергию $(E_0(a)-E_g)$ основного состояния экситона со значением сдвига пика $\Delta E = -165$ meV, получим средний радиус $\bar{a} \approx 4.22$ KT ZnSe (см. рисунок, b). Значение радиуса КТ \bar{a} может быть несколько завышенным, поскольку вариационный расчет может давать несколько заниженные значения энергии $|E_0(a)|$ [4]. Найденное значение среднего радиуса \bar{a} КТ находится в диапазоне средних радиусов $(a \approx 2.0-4.8 \text{ nm})$ КТ ZnSe, исследованных в условиях экспериментов [6].

С ростом радиуса *a* КТ наблюдается увеличение полной энергии $|E_0(a)|$, а также энергии связи $|E_{ex}(a)|$ (8) основного состояния экситона. В интервале радиусов $3.1 \leq a \leq 19.1$ nm (для КТ CdS) и $4.0 \leq a \leq 29.8$ nm (для КТ ZnSe) энергия связи $|E_{ex}(a)|$ (8) основного состояния экситона существенно превышает (в 4.2-79 раз) значение энергии связи экситона $E_{ex}^{3D(1)} \approx -31$ meV (6) в монокристалле CdS и существенно превышает (в 4.1-76 раз) значение энергии связи экситона $E_{ex}^{3D(2)} \approx -21.1$ meV (6) в монокристалле ZnSe. Начиная с радиусов КТ $a \geq a^{(1)} \approx 19.1$ nm (для КТ CdS) и $a \geq a^{(2)} \approx 29.8$ nm (для КТ ZnSe) значения полной энергии $E_0(a)$, а также энергии связи $E_{ex}(a)$ (8) экситона асимптотически следуют к значениям $E_{ex}^{2D(1)} = -2.435$ eV (для КТ CdS) и $E_{ex}^{2D(2)} = -1.529$ eV (для КТ ZnSe), определяющим энергии связи основного состояния двумерного экситона (из пространственно-разделенных электрона и дырки) (см. рисунок).

Таким образом, эффект существенного увеличения энергии связи $|E_{ex}(a)|$ (8) основного состояния экситона (из пространственноразделенных электрона и дырки) в изучаемых наносистемах (по сравнению с энергиями связи экситона в монокристаллах CdS и ZnSe) обусловливается двумя факторами: 1) существенным увеличением энергии кулоновского взаимодействия (1) электрона и дырки с поверхностью КТ (эффект "диэлектрического усиления" [8]); 2) простран-

ственным ограничением области квантования объемом КТ; при этом с увеличением радиусов КТ, начиная с радиусов КТ $a \ge a^{(1)} \approx 19.1$ nm (для КТ CdS) и $a \ge a^{(2)} \approx 29.8$ nm (для КТ ZnSe) экситон становится двумерным с энергиями связи основного состояния $E_{ex}^{2D(1)}$ и $E_{ex}^{2D(2)}$ (4), значения которых, согласно (5), (6), почти на два порядка превышают энергии связи экситона в монокристаллах CdS и ZnSe (отношения $|E_{ex}^{2D(1)}/E_{ex}^{3D(1)}| \approx 78.6$ и $|E_{ex}^{2D(2)}/E_{ex}^{3D(2)}| \approx 72.6$) (см. рисунок).

Автор надеется, что данная работа будет стимулировать экспериментальные исследования наноструктур, которые можно использовать в качестве активной области нанолазеров, работающих на экситонных переходах.

Список литературы

- [1] Алфёров Ж.И. // УФН. 2002. Т. 172. Вып. 9. С. 1068–1091.
- [2] Pokutnyi S.I. // Phys. Lett. A. 2005. V. 342. P. 347–354.
- [3] Pokutnyi S.I. // Phys. Express. 2012. V. 2. P. 1-14.
- [4] Лозовик Ю.Е., Нищанов В.Н. // ФТТ. 1976. Т. 18. В. 11. С. 3267–3272.
- [5] Грабовскис В.Я., Дзенис Я.Я., Екимов А.И. // ФТТ. 1989. Т. 31. В. 1. С. 272– 278.
- [6] Бондарь Н.В., Бродин М.С. // ФТП. 2010. Т. 44. В. 7. С. 915–921.
- [7] Pokutnyi S.I. // Phys. Lett. A. 1995. V. 203. P. 388-394.
- [8] Келдыш Л.В. // Письма в ЖЭТФ. 1979. Т. 29. В. 11. С. 776-780.