05;07

О решении задач нестационарной термоупругости для твердотельных объектов в квазистатическом приближении

© К.Л. Муратиков

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: klm.holo@mail.ioffe.ru

Поступило в Редакцию 22 января 2010 г.

Предложен общий подход к решению задач нестационарной термоупругости для твердотельных объектов в квазистатическом приближении. В рамках трехмерной модели получены аналитические выражения для термоупругих деформаций объекта, ограниченного с одной стороны плоскостью, при воздействии на него нестационарными тепловыми потоками. Получены аналитические выражения для нормальной к поверхности объекта компоненты вектора термоупругих деформаций при его облучении нестационарным лазерным излучением. Проанализированы характеристики интерферометрического сигнала при регистрации таких деформаций.

Нестационарные теплофизические и термоупругие процессы играют все большую роль в ходе эксплуатации современных конструкций и приборов [1,2]. Непрерывное повышение их эксплуатационных нагрузок, часто сопровождающееся выделением значительного количества тепла в малых объемах материала, обусловливает необходимость рассмотрения вопросов подобного рода. С другой стороны, в ряде современных диагностических методик локализованные теплофизические и термоупругие процессы специально используются для решения широкого круга задач неразрушающего контроля [3,4]. Необходимость рассмотрения вопросов подобного рода также непрерывно стимулирует разработку новых подходов к решению задач термоупругости. При этом на практике достаточно часто реализуются условия, соответствующие квазистатическому приближению, при котором размеры объекта и длина возбуждаемых в нем тепловых волн оказываются существенно меньше длин акустических волн [5,6].

90

В общем случае для анализа нестационарных термоупругих деформаций необходимо использовать уравнение движения для твердых тел

$$\rho \, \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_i},\tag{1}$$

где ρ — плотность материала, u_i — компоненты вектора деформации; σ_{ii} — компоненты тензора напряжений, действующих в объекте.

В рамках квазистатического приближения в уравнении (1) можно пренебречь действием сил инерции. При этом компоненты тензора напряжений в задачах термоупругости задаются в виде

$$\sigma_{ij} = 2\mu u_{ij} + \left[\lambda u_{kk} - \gamma (T - T_0)\right] \delta_{ik}, \qquad (2)$$

где λ и μ — коэффициенты Ламэ, γ — коэффициент термоупругой связи, u_{ij} — компоненты тензора деформации, T — распределение температуры, создаваемое в объекте некоторыми тепловыми источниками; T_0 — температура окружающей среды.

В литературе [7] описан способ решения задач упругости в квазистатическом приближении для тел, ограниченных с одной стороны плоскостью, при известном распределении на ней поверхностных сил. При этом компоненты вектора деформации определяются методом функций Грина с помощью соотношения

$$u_i(x, y, z) = \int dx' \int dy' G_{ik}(x - x', y - y', z) P_i(x', y'), \qquad (3)$$

где $P_i(x, y)$ — распределение поверхностных сил, а компоненты тензорной функции Грина G_{ik} можно считать известными для ряда граничных условий [7].

В выражении (3) интегрирование по координатам "х" и "у" производится по плоскости z = 0. При этом граничное условие, например для случая свободной поверхности, имеет вид

$$\sigma_{ik} \mathbf{n}_k \big|_{z=0} = P_i, \tag{4}$$

где **n** — вектор нормали к поверхности объекта.

При решении задачи упругости фактически рассматривается случай, в котором в тензоре напряжений $\gamma = 0$. Покажем, как рассматриваемый подход может быть просто обобщен для задач термоупругости, в которых $\gamma \neq 0$. Для этого, прежде всего, отметим, что уравнение движения (1) в задаче термоупругости становится неоднородным изза появления слагаемого, пропорционального градиенту температуры. Чтобы сделать это уравнение однородным, можно представить вектор деформации u_i в виде

$$u_i = f_i + U_i, \tag{5}$$

где f_i — некоторое частное решение уравнения движения, соответствующее вкладу градиентов температуры.

Таким образом, в результате представления (5) вектор U_i будет удовлетворять уже однородному уравнению движения. В соответствии с [8] такое частное решение в квазистатическом приближении определяется выражением

$$f_i(\mathbf{r},t) = \frac{\gamma}{4\pi(\lambda + 2\mu)} \int d^3r \, \frac{T(\mathbf{r}',t)}{|\mathbf{r} - \mathbf{r}'|^3} \, (x_i - x_i'). \tag{6}$$

Нетрудно найти граничные условия для компонент вектора деформации U_i . Выбирая вектор нормали **n** направленным в отрицательном направлении по отношению к оси *z*, указанные граничные условия получим в следующем виде:

$$2\mu U_{xz}\big|_{z=0} = -P_x - \mu \left(\frac{\partial f_x}{\partial z} + \frac{\partial f_z}{\partial x}\right)\Big|_{z=0} = -P_x^{(eff)},$$

$$2\mu U_{yz}\big|_{z=0} = -P_y - \mu \left(\frac{\partial f_y}{\partial z} + \frac{\partial f_z}{\partial y}\right)\Big|_{z=0} = -P_y^{(eff)},$$

$$(\lambda U_{ll} + 2\mu U_{zz})\big|_{z=0} = -P_z - \left(\lambda div \mathbf{f} + 2\mu \frac{\partial f_z}{\partial z} - \gamma (T - T_0)\right)\Big|_{z=0} = -P_z^{(eff)}.$$
(7)

В выражениях (7) введено распределение эффективной поверхностной силы $\mathbf{P}^{(eff)}$. Сравнение граничных условий (7) с граничными условиями теории упругости показывает, что для компонент вектора деформации U они имеют ту же форму, что и в теории упругости, но с заменой силы P на эффективную силу $\mathbf{P}^{(eff)}$. При этом вектор

$$u_{i}(x, y, z, t) = f_{i}(x, y, z, t) + \int dx' \int dy' G_{ik}(x - x', y - y', z) P_{k}^{(eff)}(x', y', t).$$
(8)

Выражение (8) позволяет решить достаточно широкий класс задач термоупругости, так как характер зависимости температуры от координат и времени при его выводе не конкретизировался. Вместе с тем следует отметить, что непосредственное применение выражения (8) к решению задачи подобного рода из-за наличия двойного интегрирования по координатам x и y может приводить к необходимости вычисления довольно сложных интегралов. Поэтому в ряде задач удобно разложить входящие в него функции в интегралы Фурье по переменным x, y. В рамках данной статьи также удобно произвести такое преобразование и по t. Для выполнения указанных преобразований необходимо воспользоваться соотношениями типа

$$T(x, y, z, t) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} d\omega \int_{-\infty}^{\infty} dk_x \int_{-\infty}^{\infty} dk_y e^{i\omega t} e^{ik_x x + ik_y y} \tilde{T}(k_x, k_y, z, \omega).$$
(9)

После этого выражение (8) для рассматриваемых величин приобретает вид

$$\tilde{u}_{i}(k_{x}, k_{y}, z, \omega) = \tilde{f}_{i}(k_{x}, k_{y}, z, \omega) + \tilde{G}_{ik}(k_{x}, k_{y}, z)\tilde{P}_{k}^{(eff)}(k_{x}, k_{y}, \omega).$$
(10)

В качестве примера применим полученные результаты к задаче определения термоупругих деформаций, генерируемых в твердотельном объекте нестационарным лазерным излучением, падающим на его поверхность (см. рисунок). Будем считать, что на поверхность объекта не действуют какие-либо дополнительные силы, кроме сил, образующихся в результате теплового расширения материала при поглощении энергии лазерного излучения. Тогда можно считать, что все $P_i = 0$ и деформации в объекте возникают только благодаря появлению

Геометрия расположения образца и возбуждающего лазерного излучения. 1 — возбуждающее лазерное излучение, 2 — образец.

в нем температурного поля, обусловленного поглощением лазерного излучения.

Рассмотрим случай, когда пространственно-временно́е распределение плотности мощности лазерного излучения по поверхности объекта w(x, y, t) определяется законом

$$w(x, y, t) = \frac{W}{\pi a^2} \frac{1 + \cos \omega t}{2} e^{-\frac{x^2 + y^2}{a^2}},$$
(11)

где *W* — мощность лазерного излучения, *a* — радиус лазерного пучка на поверхности изучаемого объекта.

Выражение (11) соответствует случаю облучения объекта лазерным излучением, сфокусированным на поверхность объекта в пятно с радиусом a и изменяющимся во времени по гармоническому закону. В силу линейности рассматриваемой задачи для получения решения с законом изменения лазерного излучения во времени достаточно знать распределение температуры, соответствующее временной зависимости $e^{i\omega t}$. Фурье-образ этого распределения может быть представлен в следующей форме [9]:

$$\tilde{T}(k_x, k_y, z, \omega) = \frac{W}{4K} e^{-\frac{a^2 k_{\perp}^2}{4}} \frac{e^{-\xi z}}{h + \xi},$$
(12)

где h = H/K, H — коэффициент, характеризующий теплообмен образца с окружающей средой, K — теплопроводность материала образца,

 $\xi = \sqrt{k_{\perp}^2 + \frac{2i}{\lambda_T^2}}, \ k_{\perp} = \sqrt{k_x^2 + k_y^2}, \ \lambda_T = \sqrt{\frac{2\kappa}{\omega}}$ — длина тепловой волны в образце, κ — его температуропроводность.

Представленный способ решения задач термоупругости позволяет по известному Фурье-образу распределения температуры в объекте определить все компоненты вектора деформации. В рамках данной работы ограничимся рассмотрением деформаций поверхности образца, т.е. при z = 0. Для этого можно воспользоваться знанием компонент функции Грина G_{ik} [7]. Не останавливаясь на деталях расчетов, приведем сразу окончательный результат, например, для *z*-компоненты Фурье-образа вектора деформации поверхности

$$\tilde{u}_{z}(k_{x}, k_{y}, 0, \omega) = \frac{\gamma \tilde{T}(k_{x}, k_{y}, 0, \omega)}{4(\lambda + 2\mu)} \left[\frac{1 - 2\nu}{k_{\perp} + \xi} - 16 \frac{1 - \nu}{k_{\perp}} \right], \quad (13)$$

где *v* — коэффициент Пуассона.

Для определения компоненты вектора деформации $u_2(x, y, 0, \omega)$ необходимо сделать обратное преобразование Фурье от правой части равенства (13). Для облегчения этой задачи можно воспользоваться тем обстоятельством, что для большинства материалов коэффициент Пуассона ν лежит в диапазоне 0.2–0.3. Поскольку всегда $|k_{\perp} + \xi| > 2k_{\perp}$, то при $\nu = 0.2$ первый член в выражении (13) не превосходит 2.4% от второго, а при $\nu = 0.3$ он составляет не более 2% от него. Поэтому при вычислении u_z можно с достаточно хорошей точностью в выражении (13) пренебречь первым слагаемым по сравнению со вторым. Кроме того, при вычислении u_z можно воспользоваться соотношениями $\gamma = E\alpha$ (E — модуль Юнга, α — коэффициент теплового расширения) и $\lambda + 2\mu = E \frac{1-\nu}{(1-2\nu)(1+\nu)}$ [7].

С учетом сделанных замечаний для искомой компоненты вектора деформации поверхности образца получим следующее выражение:

$$u_{z}(r,0,\omega) = -\frac{\alpha(1-2)(1+\nu)}{2\pi} \frac{W}{K} \int_{0}^{\infty} dk_{\perp} \frac{e^{-\frac{a^{2}k_{\perp}^{2}}{4}}}{h + \sqrt{k_{\perp}^{2} + \frac{i\omega}{\kappa}}} J_{0}(k_{\perp}r), \quad (14)$$

где $r = \sqrt{x^2 + y^2}$ — расстояние от центра лазерного пучка на поверхности объекта до точки наблюдения, $J_0(k_{\perp}r)$ — функция Бесселя нулевого порядка.

В соответствии с выражением (14) термоупругие деформации объекта не зависят от модуля Юнга материала, а определяются только

его коэффициентом теплового расширения, коэффициентом Пуассона и теплофизическими параметрами. В общем случае интеграл, входящий в выражение (14), не может быть вычислен аналитически. Однако во многих случаях (например, в фотоакустической микроскопии [10]) для генерации термоупругих деформаций используется лазерное излучение, промодулированное во времени на достаточно высоких частотах. В этой ситуации существенные значения k_{\perp} при интегрировании лежат в диапазоне $k_{\perp} \leq a$. Поэтому, например, для частот модуляции, при которых $\lambda_T > \sqrt{2a}$ в выражении (14) можно пренебречь k_{\perp}^2 под знаком корня. Тогда интеграл в (14) вычисляется аналитически и компонента вектора деформации u_z на поверхности образца может быть представлена в следующей форме:

$$u_{z}(r,0,\omega) = -\frac{\alpha(1-2\nu)(1+\nu)}{2\sqrt{\pi}} \frac{W}{K} \frac{e^{\frac{r^{2}}{2a^{2}}}}{a\left(h+\sqrt{\frac{2i}{\lambda_{T}^{2}}}\right)} I_{0}\left(\frac{r^{2}}{2a^{2}}\right), \quad (15)$$

где $I_0(\frac{r^2}{2a^2})$ — функция Бесселя нулевого порядка от мнимого аргумента.

Выражение (15) позволяет оценить величину термоупругих деформаций, генерируемых в твердотельных объектах лазерным излучением. В соответствии с равенством (15) максимальные деформации образца и_г реализуются непосредственно в центре возбуждающего лазерного пучка. Так, например, при возбуждении деформаций в образцах их стали амплитуда и₇ в центре пучка при частоте модуляции возбуждающего лазерного излучения 1 kHz, его мощности 10 mW и радиусе пучка 1 µ будет составлять примерно 10 nm. Отметим, что подобные значения надежно регистрируются средствами современной интерферометрии [11]. При удалении от центра возбуждения амплитуда и_г монотонно убывает. На малых расстояниях от центра при $r \ll a$ она убывает по закону $u_z \sim 1 - \frac{r^2}{2a^2}$, а на больших при $r \gg a$ как $\frac{1}{r}$. При рассмотрении теплофизических процессов в объектах, находящихся в контакте с воздушной средой при нормальных условиях, для коэффициента теплообмена может быть принято значение $H = 7.6 \frac{W}{m^2 K}$ [12]. Анализ выражений (14) и (15) показывает, что в этом случае можно считать h = 0 вплоть до частот возбуждения порядка 1 MHz для объектов из практически любых материалов. Следует отметить, что предложенным способом могут быть найдены и компоненты вектора деформации и_x, y_y. Их знание позволяет проанализировать поведение сигналов при регистрации деформаций и

другими методами (например, пьезоэлектрическим), а также определить компоненты тензора термоупругих напряжений. Однако рассмотрение этих вопросов выходит за рамки данной публикации.

В заключение автор выражает благодарность РФФИ за поддержку данной работы в рамках проекта 06-02-17148.

Список литературы

- [1] Lau J.H. // Microelectronics International. 1991. V. 8. N 2. P. 11–15.
- [2] Li Q, Steven G.P., Xie Y.M. // J. of Thermal Stresses. 2001. V. 24. N 4. P. 347– 366.
- [3] Jumel J., Rochais D., Enguehard F., Lepoutre F.// Rev. Sci. Instrum. 2003. V. 74. N 1. P. 608–611.
- [4] Muratikov K.L., Glazov A.L. // J. of Thermal Stresses. 2009. V. 32. N 4. P. 322– 340.
- [5] Муратиков К.Л. // Письма в ЖТФ. 2004. Т. 30. В. 22. С. 58-64.
- [6] Муратиков К.Л. // Письма в ЖТФ. 2005. Т. 31. В. 19. С. 59-66.
- [7] Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1987. 246 с.
- [8] Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1979. 560 с.
- [9] Глазов А.Л., Муратиков К.Л. // ЖТФ. 1987. Т. 57. В. 11. С. 2184–2191.
- [10] Лямшев Л.М. Радиационная акустика. М.: Наука, 1996. 304 с.
- [11] Дарзнек С.А., Желкобаев Ж., Календин В.В., Новиков Ю.А. // Труды ИОФАН. 2006. Т. 62. С. 14–37.
- [12] Кислицын А.А. Основы теплофизики. Тюмень: Изд-во Тюменского гос. унта, 2002. 152 с.