01,11

Влияние легирования кобальтом на термоупругие мартенситные превращения и физические свойства магнитных сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ с эффектом памяти формы

© В.Г. Пушин, Н.И. Коуров, А.В. Королев, В.В. Марченков, Е.Б. Марченкова, В.А. Казанцев, Н.Н. Куранова, А.Г. Попов

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: pushin@imp.uran.ru

(Поступила в Редакцию 7 июня 2013 г.)

В многокомпонентных магнитных сплавах с эффектом памяти формы $Ni_{50-x}Co_xMn_{29}Ga_{21}$ (с содержанием Co x = 0, 1, 2, 3, 10 at.%) исследованы магнитные и термоупругие мартенситные превращения и физические свойства (намагниченность, электросопротивление, термоэдс, относительное удлинение и коэффициент теплового расширения), определены критические температуры термоупругих мартенситных превращений и магнитных переходов. В сплаве с 10 at.% Со обнаружено мартенситное превращение в интервале температур 6–10 К.

Настоящая работа выполнена по плану УрО РАН при частичной поддержке РФФИ (№ 11-02-00021), президиума РАН (№ 12-П-2-1060) и УрО РАН (№ 12-У-2-1036). Использовано аналитическое научное оборудование ЦКП ИФМ УрО РАН.

1. Введение

Среди сплавов, способных испытывать термоупругие мартенситные превращения (ТМП), атомноупорядоченные B2-сплавы на основе NiTi и L2₁-сплавы на основе Ni₂MnGa образуют особый класс интеллектуальных конструкционных функциональных материалов с большим инновационным потенциалом благодаря обусловленным ТМП эффектам памяти формы (ЭПФ) и сверхупругости (ЭСУ) [1-7]. Практически важными особенностями метастабильных немагнитных сплавов на основе никелида титана являются их высокие прочностные и пластические свойства, большие по величине обратимые ЭПФ и ЭСУ, реализуемые в широком интервале состояний, биосовместимость и коррозионная стойкость. Тогда как специфическим свойством ферромагнитных L21-сплавов является возможность управления ТМП и связанными с ними ЭПФ и ЭСУ магнитным полем, а не только температурой и внешними усилиями. В данных сплавах ТМП предшествуют предпереходное размягчение ряда модулей упругости и фононных мод и предмартенситные наноструктурные превращения [1-7].

Закономерности поведения физических и механических свойств, фазовые структурные и магнитные превращения, влияние внешних термических и механических воздействий достаточно подробно исследованы, в том числе и нами, в сплавах Гейслера со сверхструктурой типа L_{21} на основе трехкомпонентной стехиометрической системы $Ni_{50}Mn_{25}Ga_{25}$ и в некоторых других [6–21]. Известно, что основные характеристики ферромагнитных сплавов с ЭПФ на основе $Ni_{50}Mn_{25}Ga_{25}$ (везде указаны атомные %) коррелируют с усредненным числом валентных электронов, приходящихся на атом (e/a),

и определяются характером магнитоупругого взаимодействия [6,8]. Обычно в интерметаллидах и твердых растворах на их основе изменение этих параметров достигается за счет отклонения химического состава сплава от стехиометрического или при легировании одними элементами периодической системы за счет других [6–9]. Другим, альтернативным способом их изменения является использование экстремальных внешних воздействий (температурных, деформационных, радиационных), радикально преобразующих дефектность структуры, размеры зерна и параметры дальнего атомного порядка [10–20].

Целью настоящей работы является изучение влияния легирования кобальтом на характеристики фазовых магнитного и мартенситного превращений, магнитной и кристаллической структуры, фазового состава и на изменения физических свойств в магнитных сплавах нестехиометрического состава Ni_{50-x}Co_xMn₂₉Ga₂₁ (at.%) с эффектом памяти формы. В отличие от работы [21], где были исследованы сплавы системы Ni_{53-x}Co_xMn₂₅Ga₂₂, нами в качестве базового выбран тройной квазибинарный сплав Ni₅₀Mn₂₉Ga₂₁ с критическими температурами обоих фазовых переходов выше комнатной. Электронная концентрация, определяющая в том числе температуры магнитного и мартенситного превращений [9], в исследуемом варианте изменяется вследствие замещения атомов никеля, имеющих внешнюю оболочку $3d^84s^2$, атомами кобальта с внешней оболочкой $3d^74s^2$. Параметры кристаллической и, особенно, магнитной структур и, как следствие, величина магнитоупругого взаимодействия в сплавах Ni_{50-x}Co_xMn₂₉Ga₂₁ должны закономерно изменяться в результате замещения атомов слабомагнитного никеля, имеющих эффективный атомный магнитный момент $\mu_{\rm Ni} \sim 0.3 \mu_{\rm B}$, магнитными атомами кобальта с несколько бо́льшим моментом $\mu_{\rm Co} \sim 0.5 \mu_{\rm B}$ [8]. При этом предполагается возможность сохранения непрерывного ряда твердых $L2_1$ -растворов по типу (Ni,Co)₅₀(Mn,Ga)₅₀, что также является предметом настоящего исследования.

Материалы и методики экспериментов

В работе изучены сплавы Ni_{50-x}Co_xMn₂₉Ga₂₁ с содержанием кобальта x = 0, 1, 2, 3 и 10 at.%, синтезированные индукционной плавкой в атмосфере аргона. Поликристаллические слитки гомогенизировали в вакуумной печи при 1073-1173 К в течение 30 h. Фазовый состав и структуру исследовали методами аналитической просвечивающей и сканирующей электронной микроскопии высокого разрешения, в том числе in situ при охлаждении, на микроскопах CM-30, Quanta 200 Pegasus (FEI Company, Нидерланды), JEM-200 CX (JEOL Ltd., Япония), а также с использованием рентгеновского дифрактометра ДРОН-3М (Россия). Магнитные характеристики измеряли на сквид-магнитометре MPMS-5XL (Quantum Design, США) при температурах 2-400 К. Электросопротивление ρ и абсолютную дифференциальную термоэдс S определяли потенциометрическим методом в интервале температур 2-800 К. Для изучения теплового расширения образцов в диапазоне 80-800 К применяли кварцевый дилатометр типа DL-1500 RHP (ULVAK-RIKO, Япония) в динамическом режиме нагрева и охлаждения с постоянной скоростью 3 К/min в атмосфере чистого гелия при давлении 55-70 kPa.

3. Кристаллическая структура

По данным рентгенодифрактометрии и просвечивающей электронной микроскопии образцы сплавов после гомогенизации имеют атомноупорядоченную по типу $L2_1$ поликристаллическую микроструктуру в виде полиэдрических зерен с размером $50-500 \,\mu$ m. В качестве избыточной фазы во всех сплавах присутствуют включения оксидов марганца (~ 3 mass.%). Методом магниточувствительного контраста на сканирующем электронном микроскопе была впервые изучена магнитная доменная структура данных сплавов. Установлено, что она в $L2_1$ -аустените имеет преимущественно лабиринтную микроморфологию, тогда как в сплавах в мартенситном состоянии магнитные домены и двойниково ориентированные первичные пластинчатые кристаллы пакетной морфологии практически совпадают (рис. 1 *a*, *b*).

Тройной сплав с содержанием 21 at.% Ga и четверной с содержанием 1 at.% Со испытывают ТМП при охлаждении до комнатной температуры, тогда как в остальных нестехиометрических, легированных сплавах ТМП происходит при более низких температурах (см. таблицу).

Рис. 1. Электронномикроскопические изображения сплавов Ni₄₉Co₁Mn₂₉Ga₂₁ (a) и Ni₅₀Mn₂₉Ga₂₁ (b), полученные во вторичных электронах в режиме сканирования на отражение.

В пределах зерна мартенсит всегда имеет мультипакетную морфологию пластинчатых, попарно двойниковых первичных кристаллов (рис. 1, a, b). Но в соответствии с данными просвечивающей электронной микроскопии их габитус близок плоскости типа {101} L21 аустенита, а внутренняя субструктура характеризуется наличием тонких вторичных нанодвойников и дефектов упаковки по системе сдвига $\{101\}\langle 10\bar{1}\rangle$ тетрагонального мартенсита с $c/a \approx 1.2$ (рис. 2, *a*, *c*). Наличие на рентгенои микроэлектронограммах первоначально образующегося тонкодвойникованного мартенсита экстрарефлексов между определенными структурными рефлексами на эквидистантных расстояниях, составляющих 1/5, обусловлено формированием в нем длиннопериодной наноструктурированной фазы типа 10М [7,9]. При дальнейшем охлаждении возникают сателлиты на 1/7 от расстояния между основными структурными рефлексами, что характеризует длиннопериодную фазу 14M (рис. 2, b, d) [7,9].

Второе межмартенситное превращение $10M \leftrightarrow 14M$ является по своей природе адаптивным, и по нашим и известным из литературы данным просвечивающей электронной микроскопии при охлаждении реализуется по механизму *in situ* и, как следствие, практически не изменяет микроморфологию и кристаллографическую ориентацию мартенситных кристаллов. То есть в кри-

Рис. 2. Электронномикроскопические изображения на просвет (*a*, *b*) и соответствующие микроэлектронограммы пакетного 10*M*- (*c*) и 14*M*-мартенсита (*d*) сплава Ni₄₉Co₁Mn₂₉Ga₂₁.

сталлах мартенсита постепенно модифицируется длиннопериодная модуляция укладки базисных плоскостей типа (001) в обозначении Жданова от вида ($3\overline{2}$) к виду ($5\overline{2}$). Соответственно в измерениях физических свойств эти межмартенситные превращения практически не идентифицируются и могут быть выявлены только при прямых структурных дифракционных исследованиях. Таким образом, все сплавы испытывают при охлаждении прямые ступенчатые ТМП $L2_1 \rightarrow 10M \rightarrow 14M$, а при последующем нагреве $14M \rightarrow 10M \rightarrow L2_1$ [6,7,9]. Отметим, что в работе [21] для описания мартенситных фаз был использован другой (тетрагональный) тип кристаллической структуры.

4. Магнитные свойства

Данные магнитных измерений J(H, T) нестехиометрических сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ представлены на рис. 3 и в таблице. Из них следует, что и в слабых, H = 80 kA/m, и в сильных, H = 4 MA/m, магнитных полях, точка Кюри T_C в сплавах обнаруживается по изменению намагниченности J(T) при понижении температуры, типичному для магнитных фазовых переходов второго рода. Превращение аустенитной $L2_1$ -фазы в мартенситную фазу в сильных магнитных полях сопровождается в точке ТМП T_M скачкообразным возрастанием намагниченности. Величина этого скачка на

кривой J(T) с ростом концентрации кобальта несколько уменьшается. При охлаждении в слабых полях в точке начала прямого ТМП T_M при несколько меньших (на градусы) температурах отчетливо выявляется резкое снижение J(T), а при последующем нагреве в точке обратного ТМП T_A , напротив, происходит увеличение намагниченности. Это связано с тем, что при переходе в низкосимметричную мартенситную фазу заметно увеличивается константа магнитокристаллической анизотропии, которая в слабых магнитных полях в основном и контролирует наблюдаемое поведение намагниченности.

Величина спонтанной намагниченности J_S при замене атомов никеля атомами кобальта с бо́льшим магнитным моментом возрастает особенно сильно для сплава с его максимальной концентрацией 10 at.%. Легирование кобальтом нестехиометрического сплава Ni₅₀Mn₂₉Ga₂₁ приводит к заметному увеличению температуры Кюри и уменьшению коэрцитивной силы H_C (см. данные, приведенные на рис. 3 и в таблице). Данные изменения температуры Кюри и спонтанной намагниченности при росте концентрации кобальта в нестехиометрических сплавах Ni_{50-x}Co_xMn₂₉Ga₂₁ обусловлены в основном уменьшением количества атомов никеля, замещаемого более магнитными атомами кобальта, расположенными в ближайшем друг от друга окружении.

Возрастание концентрации кобальта до 10 at.% сопровождается снижением электронной концентрации в

 $a \cdot 10^4$, $b \cdot 10^{6}$, $\rho_0 \cdot 10^2$, e/a T_C , T_M , T_A , J_S , H_C , Состав, х Am²/kg $\mu\Omega\cdot m/K^2$ Κ Κ kA/m $\mu\Omega\cdot m$ $\mu \Omega \cdot m/K$ Κ 0 7.66 381 312 321 81.1 32.2 38.0 1.35 5.54 79.6 25.0 47.4 4.05 1 7.65 391 313 319 1.10 2 7.64 414 278 294 81.7 23.1 59.3 0.48 7.57 3 420 242 246 82.4 16.0 63.3 0.85 4.49 7.63 10 107.0 7.56 495 6 10 16.1 94.7 0.07 9.83

Химический состав и свойства сплавов $Ni_{50-x}Co_xMn_{29}Ga_{21}$

Рис. 3. Температурные зависимости намагниченности J(T), измеренные при H = 80 kA/m (кривые 1) и при H = 4 MA/m (кривые 2) для сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁: a - x = 0, b - x = 1, c - x = 2, d - x = 3, e - x = 10. Сплошные линии показывают для этих же сплавов процесс намагничивания во внешнем магнитном поле.

сплавах $Ni_{50-x}Co_xMn_{29}Ga_{21}$ на величину $\Delta e/a = 0.1$. Это коррелирует с соответствующим уменьшением температур ТМП, как прямого T_M , так и обратного- T_A (см. таблицу). Более того, в исследованном сплаве $Ni_{40}Co_{10}Mn_{29}Ga_{21}$ ТМП не обнаруживается по экспериментальным данным, приведенным на рис. 3. В остальных изученных сплавах в области фазового структурного перехода первого рода, каким является ТМП, естественно, фиксируется температурный гистерезис физических свойств, что обусловлено гистерезисом тем-

5. Электрические свойства

двухфазности сплавов.

Электросопротивление сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ вблизи температур структурного и магнитного фазовых переходов характеризуется обычными особенностями: изломом на кривых $\rho(T)$ при T_C и аномалией в виде скачка $\rho(T)$ с гистерезисом в окрестности температуры ТМП (рис. 4). Важно отметить, что для всех сплавов наблюдается также незначительный температурный гистерезис $\rho(T)$ при $T \leq 600$ K, что, по-видимому, связано в основном с некоторым повышением степени дальнего атомного порядка вследствие дополнительного отжига образцов при высоких температурах [22,23]. Явные признаки предпереходного состояния обнаруживаются в исследованных нами сплавах по нелинейному поведению $\rho(T)$ уже в преддверии магнитного перехода.

ператур начала прямого и обратного мартенситных

превращений $\Delta T_M = T_A - T_M$, определяющим интервал

В области низких температур электросопротивление после дополнительного отжига образцов практически не изменяется. Как видно из рис. 5 и таблицы, при $T \ll [\theta_D, T_M, T_A \, \mathrm{u} \, T_C]$ (здесь θ_D — температура Дебая) зависимости $\rho(T)$ исследованных сплавов в пределах погрешности измерений описываются выражением, характерным для ферромагнитных металлов [24]

$$\rho = \rho_0 + a \cdot T + b \cdot T^2. \tag{1}$$

В этом выражении ρ_0 — остаточное электросопротивление, характеризующее рассеяние носителей заряда на неоднородностях кулоновского потенциала. Можно полагать, что в исследуемых сплавах неоднородности кулоновского потенциала возникают вследствие отклонения химического состава сплавов от стехиометрического, а также из-за замещения слабомагнитных атомов никеля более магнитными атомами кобальта. При увеличении концентрации кобальта величина ρ_0 возрастает достаточно сильно и максимальной становится при содержании 10 at.% Со.

Величина коэффициента *b* в формуле (1) обусловлена, прежде всего, механизмом электрон-электронного рассеяния, усиленного за счет переходов из *s*- в *d*-зону. Однако его величина в исследованных нами сплавах более чем на порядок превышает значения, обычно наблюдаемые в переходных металлах [25]. При этом

Рис. 4. Температурные зависимости электросопротивления $\rho(T)$ (кривые 1) и термоэдс S(T) (кривые 2) для сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁: a - x = 0, b - x = 1, c - x = 2, d - x = 3, e - x = 10.

коэффициент *b* в целом незначительно изменяется в результате легирования кобальтом нестехиометрического сплава Ni₅₀Mn₂₉Ga₂₁. Зависимость, пропорциональная T^2 , может быть связана и с электрон-магнонным рассеянием, что установлено для ферромагнитных переходных металлов, например в [26].

Природа линейной по температуре составляющей в (1) исследована как теоретически, так и экспериментально [24]. Наиболее известные механизмы, определяющие этот вклад в $\rho(T)$, обусловлены рассеянием подмагниченных электронов проводимости на спиновых волнах, а также учитывают взаимодействия орбиты электрона проводимости со спином локализованного электрона. В данном случае коэффициент a > 0 и уменьшается с ростом концентрации кобальта. Следует отметить, что температурно зависящая часть $\rho(T)$ нестехиометрических сплавов Ni_{50-x}Co_xMn_{28.5}Ga_{21.5} в области низких температур может быть описана и выражением

$$\rho = \rho_0 + c \cdot T^{3/2}.$$
 (2)

Вклад в $\rho(T)$, пропорциональный $T^{3/2}$, для ферромагнитных сплавов переходных металлов обычно связывают с рассеянием электронов проводимости на двухмерных спиновых волнах, возникающих внутри доменных границ [24]. Однако наши результаты измерения электросопротивления во внешнем магнитном поле для тройного нестехиометрического сплава Ni₅₀Mn₂₉Ga₂₁ не выявили существенных изменений коэффициента с при $T^{3/2}$, равного $5.4 \cdot 10^{-5} \mu \Omega \cdot m/K^{3/2}$ в нулевом поле и $5.55 \cdot 10^{-5} \mu \Omega \cdot m/K^{3/2}$ при H = 8 МА/m. Следовательно, вклад в $\rho(T)$, определяемый рассеянием электронов проводимости на спиновых волнах, возникающих внутри границ доменов, в изучаемых сплавах является незначительным. Более сильное влияние магнитное поле оказывает на величину остаточного электросопротивления, что связано с упорядочением магнитных неоднородностей под действием внешнего поля. Для сплава Ni₅₀Mn₂₉Ga₂₁ величина $ho_0 = 38.06 \cdot 10^{-2} \, \mu \Omega \cdot m$ в нулевом магнитном поле, $\rho_0 = 37.54 \cdot 10^{-2} \, \mu \Omega \cdot m$ при H = 8 MA/m.

Слабое влияние внешнего магнитного поля на вид температурных зависимостей электросопротивления данных сплавов указывает также на то, что значения коэффициентов a и b в выражении (1) определяются, прежде всего, параметрами электронной зонной структуры вблизи поверхности Ферми. По-видимому, для коэффициента a основным является механизм, учитывающий рассеяние подмагниченных электронов на спиновых волнах, при котором в зависимости от вида закона дисперсии электронов может изменяться даже знак коэффициента a [24]. Соответственно, величина коэффициента b, скорее всего, обусловлена рассеянием s-электронов проводимости в d-зону.

Интересный экспериментальный факт был выявлен нами при низкотемпературных измерениях электросопротивления и заключается в обнаружении аномалии на зависимости $\rho(T)$ при $T \le 6.6 \,\mathrm{K}$ для сплава Ni₄₀Co₁₀Mn₂₉Ga₂₁, наиболее богатого кобальтом. Эффект такого вида на кривых $\rho(T)$ обычно наблюдается в окрестности ТМП, который в исследованных сплавах других составов реализуется в области более высоких температур (см. рис. 3 и 4). Как уже отмечалось, на температурных зависимостях намагниченности, измеренных в сильных и слабых магнитных полях, в области низких температур какие-либо особенности не были выявлены. Однако при измерениях мнимой части динамической магнитной восприимчивости, проведенных в нулевом статическом магнитном поле, обнаружен аномальный рост $\chi''(T)$ при $T \le 10$ K, что свидетельствует о резком усилении поглощения электромагнитного поля и харак-

Рис. 5. Низкотемпературное электросопротивление, измеренное в нулевом магнитном поле (кривые *I*) и при H = 8 MA/m (кривые 2) в сплавах Ni_{50-x}Co_xMn₂₉Ga₂₁: a - x = 0, b - x = 1, c - x = 2, d - x = 3, e - x = 10. Сплошные кривые — результат описания экспериментальных данных согласно выражению (1). Для сплава Ni₄₀Co₁₀Mn₂₉Ga₂₁ приведена также зависимость мнимой части динамической магнитной восприимчивости (кривая 3).

терно для фазового превращения. Кроме того, на зависимостях $\chi''(T)$, полученных в процессе нагрева и охлаждения образцов, при T < 10 К наблюдается гистерезис, типичный для мартенситного механизма структурного фазового перехода. Отмеченные особенности поведения кривых $\rho(T)$ и $\chi''(T)$ указывают на то, что в сплаве с 10 at.% Со при столь необычно низкой температуре в интервале $\leq (6-10)$ К реализуется ТМП.

Термоэдс S исследованных сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ имеет отрицательный знак, то есть основными носителями электрического тока в них являются электроны. Достаточно сложный вид зависимостей S(T), представленных на рис. 4, в магнитоупорядоченном состоянии при $T < T_C$ определяется раздвижкой подполос электронов проводимости со спинами, направленными вдоль и против вектора намагниченности [27,28]. Мартенситные превращения в сплавах тройном (без Со) и четверных (с 1, 2 и 3 at.% Со) выявляются в виде сглаженных изломов и минимумов на кривых S(T) из-за того, что термоэдс измерялась в условиях достаточно большой разницы температур на концах образцов ($\Delta T \sim 10$ K). Природа минимума S для сплава с 10 at.% Со не вполне ясна, так как *Т*_{*M*} для него гораздо ниже по температуре (см. рис. 5). Как видно из рис. 4, температурный гистерезис на зависимостях S(T), измеренных при нагреве и охлаждении образцов, в области ТМП слабо выражен и преобладает, в отличие от $\rho(T)$, при температурах ниже T_M , возможно, выявляя слабые эффекты, связанные с завершением ТМП $10M \rightarrow 14M$.

6. Тепловое расширение

Тепловые свойства (относительное удлинение $\Delta L/L$ и коэффициент теплового расширения α) исследованных сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ приведены на рис. 6. Для сплава Ni₄₀Co₁₀Mn₂₉Ga₂₁ с наибольшей концентрацией кобальта и наименьшей величиной коэффициента теплового расширения на зависимости $\alpha(T)$ вблизи точки Кюри наблюдается ожидаемая для фазовых переходов

Рис. 6. Относительное удлинение $\Delta L/L$ (кривые 1) и коэффициент теплового расширения α (кривые 2) для сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁: a - x = 0, b - x = 1, c - x = 2, d - x = 3, e - x = 10.

второго рода аномалия, близкая по виду к λ -типу. Для всех других исследованных сплавов Ni_{50-x}Co_xMn₂₉Ga₂₁ температуры Кюри по поведению кривых $\Delta L/L(T)$ и $\alpha(T)$ экспериментально не выявляются. В то же время ТМП вызывает на зависимостях $\Delta L/L(T)$ аномалии в виде скачка (1–2%), а на кривых $\alpha(T)$ обнаруживаются δ -особенности при температурах T_M и T_A . Следует отметить, что структурные изменения при ТМП достаточно велики и иногда приводят к некомпенсируемому удлинению образцов при прямом и обратном ходе температуры. При повышенных температурах ($T > T_M$, T_A и T_C) в исследованных сплавах при охлаждении после цикла нагрева наблюдается температурный гистерезис, по-видимому, связанный с дополнительным атомным упорядочением в образцах [23].

7. Заключение

Выполненные исследования показывают, что в результате легирования нестехиометрического сплава Ni₄₀Mn₂₉Ga₂₁ кобальтом в никелевую подрешетку в изученных сплавах происходят закономерные изменения их структуры и свойств, свидетельствующие о формировании в них твердых растворов на основе сверхструктуры $L2_1$.

В сплавах Ni_{50-x}Co_xMn₂₉Ga₂₁ при замещении слабомагнитных атомов никеля более магнитными атомами кобальта (от 1 до 10 at.%) увеличивается спонтанная намагниченность и температура Кюри, тогда как температуры ТМП и электронная концентрация e/a уменьшаются. Обнаружено, что ТМП при охлаждении и отогреве в сплаве с 10 at.% Со происходит при (6–10) К.

Электрические свойства исследованных сплавов при происходящих фазовых переходах также демонстрируют соответствующие особенности. На зависимостях $\rho(T)$ выявляются в области ТМП аномалии типа скачков с температурным гистерезисом, а в окрестности точки Кюри безгистерезисные изломы. При $T > T_C$ электросопротивление является практически линейной функцией температуры, что в основном связано с электронфононным взаимодействием. В магнитоупорядоченном состоянии $\rho(T)$ отличает более сильная температурная зависимость, что обусловлено определяющей ролью рассеяния электронов проводимости на тепловых возбуждениях магнитной подсистемы. Величина ρ_0 связана, главным образом, с неоднородностями кулоновского потенциала, возникающими при замещении разнородных магнитных атомов (Ni, Mn и Co). Температурная зависимость термоэдс S(T) в исследованных сплавах определяется раздвижкой подполос электронов проводимости со спином вдоль и против вектора намагниченности и, как правило, имеет сглаженные минимумы в интервале ТМП.

Коэффициент теплового расширения $\alpha(T)$ для всех исследованных сплавов в парамагнитной области температур практически является константой. Среди сплавов

исследованных составов сплав Ni₄₀Co₁₀Mn₂₉Ga₂₁ обладает наименьшими величинами теплового расширения. В этом сплаве точка Кюри выявляется по характерной λ -аномалии $\alpha(T)$. В остальных сплавах, в том числе содержащих Со, вблизи T_C какие-либо особенности $\alpha(T)$ не обнаружены. Наиболее существенные аномалии δ -вида демонстрирует коэффициент теплового расширения при температурах ТМП T_M и T_A во всех исследованных сплавах.

Список литературы

- К. Ооцука, К. Симидзу, Ю. Судзуки, Ю. Сэкигути, Ц. Табаки, Т. Хомма, С. Миядзаки. Сплавы с эффектом памяти формы. Металлургия, М. (1990). 224 с.
- [2] В.Н. Хачин, В.Г. Пушин, В.В. Кондратьев. Никелид титана: Структура и свойства. Наука, М. (1992). 160 с.
- [3] V.G. Pushin. Phys. Met. Metallography **97**, Suppl. 1, S1 (2004).
- [4] V.G. Pushin. Phys. Met. Metallography 90, 1, S68 (2000).
- [5] В.А. Лободюк, Ю.Н. Коваль, В.Г. Пушин. ФММ 111, 2, 169 (2011).
- [6] А.Н. Васильев, В.Д. Бучельников, Т. Такаги, В.В. Ховайло, Э.И. Эстрин. УФН 173, 6, 577 (2003).
- [7] В.Г. Пушин, Н.И. Коуров, А.В. Королев, В.А. Казанцев, Л.И. Юрченко, В.В. Коледов, В.Г. Шавров, В.В. Ховайло. ФММ 99, 4, 64 (2005).
- [8] S. Fujii, S. Ishida, S. Asano. J. Phys. Soc. Jpn. 58, 36 (1989).
- [9] N. Lanska, O. Soderberg, A. Sozinov, Y. Ge, K. Ullakko, V.K. Lindroos. J. Appl. Phys. 95, 12, 8074 (2004).
- [10] Н.И. Коуров, А.В. Королев, В.Г. Пушин, В.В. Коледов, В.Г. Шавров, В.В. Ховайло. ФММ 99, 4, 38 (2005).
- [11] V.G. Pushin, R.Z. Valiev, Y.T. Zhu, D.V. Gunderov, A.V. Korolev, N.I. Kourov, T.E. Kuntsevich, E.Z. Valiev, L.I. Yurchenko. Mater. Transact. 47, 03, 546 (2006).
- [12] Н.И. Коуров, В.Г. Пушин, А.В. Королев, В.А. Казанцев, Е.Б. Марченкова, А.Н. Уксусников. ФММ 103, 3, 280 (2007).
- [13] Н.И. Коуров, В.Г. Пушин, Ю.В. Князев, А.В. Королев. ФТТ 49, 9, 1690 (2007).
- [14] Н.И. Коуров, В.В. Марченков, В.Г. Пушин, А.В. Королев,Е.Б. Марченкова, Н.W. Weber. ФТТ 50, 11, 2037 (2008).
- [15] E.B. Marchenkova, N.I. Kourov, V.V. Marchenkov, V.G. Pushin, A.V. Korolev, H.W. Weber. J. Physics: Conf. Ser. 150, 2, 022054 (2009).
- [16] E.B. Marchenkova, V.V. Marchenkov, N.I. Kourov, V.G. Pushin, A.V. Korolev, H.W. Weber. J. Low Temp. Phys. 159, 249 (2010).
- [17] N.I. Kourov, V.G. Pushin, A.V. Korolev, V.V. Marchenkov, E.B. Marchenkova, V.A. Kazantsev, H.W. Weber. Solid State Phenomena 168–169, 553 (2011).
- [18] Н.И. Коуров, В.Г. Пушин, А.В. Королев, В.В. Марченков, Е.Б. Марченкова, В.А. Казанцев, Н.W. Weber. ФТТ 53, 89 (2011).
- [19] Н.И. Коуров, В.Г. Пушин, А.В. Королев, В.А. Казанцев, Е.Б. Белозеров, Е.Б. Марченкова. ЖТФ 82, 2, 50 (2012).
- [20] Н.И. Коуров, А.В. Королев, В.Г. Пушин, Е.Б. Марченкова. ФТТ 54, 10, 1999 (2012).
- [21] D.Y. Cong, S. Wang, Y.D. Wang, Y. Ren, L. Zuo, C. Esling. Mater. Sci. Eng. A 473, 213 (2008).

- [22] M. Kreissl, K-U. Neymann, T. Spephens, K.R.A. Ziebeck. J. Phys.: Cond. Matter. 15, 3831 (2003).
- [23] R.W. Overholser, M. Wuttig. Scr. Mater. 40, 10, 1095 (1999).
- [24] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [25] M.J. Rice. Phys. Rev. Lett. 20, 25, 1439 (1968).
- [26] Е.А. Туров. Известия АН СССР. Сер. физ. **19**, *4*, 474 (1955).
- [27] N.V. Volkenshtain, V.P. Dyakina, V.E. Startsev. Phys. Stat. Sol. 57, 9 (1973)
- [28] Ф.Дж. Блат, П.А. Шредер, К.Л. Фойлз, Д. Грейг. Термоэлектродвижущая сила металлов. Металлургия. М. (1980). 248 с.