#### 01;05.4

# Фазовый квантовый бит (кубит) на сверхпроводящем одноконтактном интерферометре

### © И.Н. Аскерзаде, Ш. Амрахов (Sh. Emrah)

Department of Computer Engineering, Engineering Faculty of Ankara University, Aziz Kansu Building Tandogan Kampus, 06100, Tandogan, Ankara, Turkey Институт физики НАН Азербайджана, Баку E-mail: iasker@science.ankara.edu.tr, solstphs@physics.ab.az

#### Поступило в Редакцию 26 июня 2009 г.

Исследуется энергетический спектр фазового квантового бита (кубита) на сверхпроводящем интерферометре с джозефсоновским переходом в рамках гамильтонового формализма. Получена аналитическая формула для расщепления основного уровня в энергетическом спектре кубита и проведен соответствующий анализ.

В последнее время объектами интенсивных теоретических и экспериментальных исследований стали квантовые биты (кубиты) на джозефсоновских переходах [1–3]. Основой применения джозефсоновских систем в кубитах являются "вторичные" квантовые эффекты, реализуемые в макроскопических размерах. Макроскопические квантовые эффекты на джозефсоновских переходах, предсказанные Леггетом в работе [4], экспериментально были обнаружены в работе [5]. Возрастание квантовых флуктуаций при низких температурах приводит к эффекту кулоновской блокады в джозефсоновских переходах малых размеров [6,7]. Такие малые джозефсоновские переходы являются основой при создании "зарядовых" квантовых кубитов [8,9]. Исследование

1

фазового кубита на одиночном переходе проведено в работе [1,10]. Динамические свойства малых джозефсоновских переходов и пары Гото на их основе исследовались в статьях [11,12]. Целью данной статьи является изучение энергетического спектра фазового кубита на сверхпроводящем интерферометре с одним джозефсоновским переходом.

Поведение кубитов анализируется в гамильтоновом формализме, т.е. общий вид гамильтониана для цепи, содержащей разные виды кубитов, таков:

$$H = \sum (K(n_j) + U(\phi_j)), \qquad (1)$$

где кинетическая энергия  $K(n_j)$  связана с электростатической энергией, а потенциальная энергия определяется джозефсоновской энергией  $U(\phi) = -E_j \cos \phi$  и энергией магнитного поля в индуктивности цепи [7]. В последнем выражении  $E_j$  определяется как  $E_j = \frac{\hbar I_c}{2e}$ , где  $I_c$  — критический ток джозефсоновского перехода. В гамильтоновом формализме количество куперовских пар n и джозефсоновская фаза  $\phi$  являются сопряженными операторами и связаны как

$$n = -i \frac{\partial}{\partial \phi}.$$
 (2)

При рассмотрении кубита на основе одноконтактного интерферометра (рис. 1, *a*) [7] гамильтониан приобретает более конкретный вид

$$H = E_C n^2 - E_J \cos \phi + E_J \frac{(\phi - \phi_e)^2}{2l},$$
 (3)

где введены следующие обозначения: кулоновская энергия  $E_C = \frac{(2e)^2}{2C}$ ,  $E_J \frac{(\phi-\phi_e)^2}{2l}$  — энергия магнитного поля, накопленная в сверхпроводящем кольце,  $l = \frac{2\pi I L_e}{\Phi_0}$  — нормированная индуктивность сверхпроводящего кольца, C — электрическая емкость конденсатора. Энергетический потенциал  $U(\phi)$  фазового кубита при  $\phi_e = \pi$ , т.е. при  $\Phi_e = \Phi_0/2$  имеет "двухямный" вид (рис. 1, b). В таком потенциале энергетические уровни в каждой отдельно взятой яме идентичны друг другу при пренебрежении квантовым туннелированием между ними и основное состояние является двухкратно вырожденным. При учете туннелирования между ямами двухкратно вырожденное основное состояние расщепляется и формирует реальную двухуровневую систему, что является очень важным для кубита. Значения расщепленного основного энергетического



**Рис. 1.** Одноквантовый сверхпроводящий интерферометр как фазовый кубит (*a*); "Двухъямный" симметричный потенциал для фазового кубита (*b*).

уровня  $E = E_0 \pm \Delta E$  такой квантово-механической системы образуют базис для рассматриваемого кубита. Расстояние между этими уровнями определяется величиной туннелирования и намного меньше, чем расстояние между энергетическими уровнями в "одноямном" потенциале. Потенциальную энергию  $U(\phi)$  в выражении (3) при малой амплитуде туннелирования можно аппроксимировать формулой

$$U(\phi) = -E_J \cos \phi + E_L \frac{(\phi - \phi_e)^2}{2} \approx E_L \left( -\frac{\varepsilon \tilde{\phi}^2}{2} - g \tilde{\phi} + \frac{1 + \varepsilon}{24} \tilde{\phi}^4 \right), \quad (4)$$

где  $\tilde{\phi} = \phi - \pi$ ,  $g = \phi_0 - \pi$ ,  $\varepsilon = E_J/E_L - 1 \leq 1$ . Последний параметр определяет высоту туннельного барьера.

Вычислим расщепление  $\Delta E$  основного состояния в случае потенциала одноконтактного интерферометра (3). В приближении малой

индуктивности интерферометра джозефсоновская энергия —  $E_J \cos \phi$  служит возмущением к нулевому уравнению Шредингера

$$\left[\frac{Q^2}{2C} + E_J \frac{\phi^2}{2l}\right] \Psi = E_n \Psi.$$
(5)

Как известно, уравнение (5) совпадает с уравнением квантово-механического осциллятора с частотой  $\omega = 1/\sqrt{LC}$  и имеет следующий спектр:

$$E_n = \hbar \omega \left( n + \frac{1}{2} \right). \tag{6}$$

Расщепление пропорционально к  $E_J$  и определяется как поправка к энергетическому спектру (6) в первом порядке теории возмущений, что представляется выражением

$$\Delta E_n = E_J \left( 1 - \cos \phi_e \exp\left(-\frac{\pi^2 \hbar \omega L}{\Phi_0^2}\right) L_n\left(\frac{\pi^2 \hbar \omega L}{\Phi_0^2}\right) \right),\tag{7}$$

где  $L_n(x)$  — полиномы Лагерра порядка *n*. Поскольку в случае фазового кубита нас интересует поправка к основному уровню осциллятора  $(n = 0, L_0 = 1)$ , окончательно имеем:

$$E = E_0 \pm \Delta E = \frac{\hbar\omega_0}{2} \pm E_J \left( 1 - \cos\phi_e \exp\left(-\frac{L}{L_F}\right) \right),\tag{8}$$

где  $L_F = (\frac{\Phi}{\pi})^2 \frac{1}{\hbar \omega}$  — квантовая флуктуационная индуктивность, введенная в [13].

Результаты анализа представлены на рис. 2. Как следует из этого рисунка, расщепление основного уровня  $\Delta E$  определяется величиной  $L/L_F$ , а также параметром  $\cos \phi_e$ , определяемым внешним магнитным полем. При очень больших индуктивностях  $L/L_F \gg 1$  сверхпроводящий ток подавляется квантовыми флуктуациями и величина расщепления слабо зависит от индуктивности кольца. Значение  $\Delta E$  также определяется приложенным к интерферометру магнитным полем. При  $\phi = 0 \Delta E$  является наименьшей и с возрастанием  $\phi_e$  увеличивается при фиксированной геометрии сверхпроводящего интерферометра. Эффект изменения  $\Delta E$  при изменении внешнего магнитного поля также отражен на рис. 2. Выражение (8) имеет важное значение с точки зрения чувствительности  $\Delta E$  к разным физическим параметрам для возможности их



**Рис. 2.** Зависимость расщепления основного состояния фазового кубита от индуктивности интерферометра. Внешний магнитный поток  $\phi_e$  принимает значение, равное  $\pi/4$ ,  $\pi/2$ ,  $2\pi/3$ ,  $3\pi/4$ ,  $\pi$  соответственно снизу вверх.

контроля. Эти параметры важны для определения области возможного применения одноконтактного квантового кубита, а также для решения проблем снятия информации с кубита и его когерентности [1,14]. Значение величины изменения  $\Delta E$  входит непосредственно в выражение гамильтониана, контролирующего эволюцию состояния кубита. Это позволяет создавать кубиты, специализированные на выполнение той или иной логической операции при приложении к кубиту импульса магнитного потока фиксированной длительности.

В случае интерферометра с большой индуктивностью джозефсоновский потенциал в выражении (3) становится превалирующим и в этом приближении реализуется "зарядовый" кубит. Энергетический спектр "зарядового" кубита хорошо описывается в терминах квазизаряда и подробно описан в работах [1,5]. В конце также полезно

провести некоторые оценки, связанные с экспериментальной ситуацией реализации таких кубитов. Для наблюдения реальных макроскопических квантовых эффектов емкость джозефсоновских переходов должна быть на уровне  $C \approx 50 f F/\mu m^2$  с площадью  $A \approx 0.1 \mu m^2$  [14]. Другим важным ограничением является низкая рабочая температура для проявления макроскопческих эффектов [7]. При использовании традиционной технологии на основе низкотемпературного сверхпроводника Nb [7,14] фазовый одноконтактный кубит экспериментально реализуем.

Таким образом, в данной работе получена аналитическая формула для энергетического спектра фазового кубита на сверхпроводящем интерферометре с джозефсоновским переходом. Представлены результаты вычисления расщепления энергии  $\Delta E$  и влияния параметров системы на его величину. Показано, что, меняя размеры джозефсоновских переходов и подбирая отношение  $E_J/E_C$ , а также изменяя величины индуктивности сверхпроводящего кольца L, можно управлять изменением величины  $\Delta E$ . Изучено также влияние приложенного магнитного поля на величину расщепления  $\Delta E$ .

## Список литературы

- [1] Vendin G., Shumeiko V.S. // ФНТ. 2007. T. 33. C. 957–981.
- [2] Pashkin Yu.A., Astafiev O., Yakamoto T., Nakamura Y., Tsai J.S. // Quantum Inf. Process. 2009. V. 8. P. 55.
- [3] Валиев К.А. // УФН. 2005. Т. 175. В. 1. С. 1–39.
- [4] Legget A.J., Carg A. // Phys. Rev. Lett. 1985. V. 54. P. 837.
- [5] Nakamura Y., Pashkin Yu.A., Tsai J.S. // Nature. 1999. V. 398. P. 786.
- [6] Аверин Д.В., Лихарев К.К., Зорин А.Б. // ЖЭТФ. 1985. Т. 88. С. 692.
- [7] Лихарев К.К. // Введение в динамику джозефсоновских переходов. М.: Наука, 1985.
- [8] Snirman A.J., Shön G., Hermon Z. // Phys. Rev. Lett. 1997. V. 79. P. 2372.
- [9] Zorin A.B. // Phys. Rev. Lett. 1996. V. 76. P. 4408.
- [10] Martinis J., Nam S., Aumentado J., Urbina C. // Phys. Rev. Lett. 2002. V. 89.
   P. 117 901.
- [11] Аскерзаде И.Н., Samet R. // Письма в ЖТФ. 2008. Т. 34. В. 17. С. 26.
- [12] Аскерзаде И.Н. // ЖТФ. 2003. Т. 73. В. 11. С. 140.
- [13] Аскерзаде И.Н. // Письма в ЖТФ. 2005. Т. 31. В. 16. С. 8.
- [14] Martini J.M. // Quantum Inf. Process. 2009. V. 8. P. 81.