05;06 Низкотемпературное магнетосопротивление двухосно сжатых пленок (24 nm) La_{0.67}Ca_{0.33}MnO₃

© Ю.А. Бойков, М.П. Волков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург, Россия E-mail:yu.boikov@mail.ioffe.ru Международная лаборатория сильных магнитных полей и низких температур, 53-421 Вроцлав, Польша

В окончательной редакции 26 января 2009 г.

Латеральный параметр элементарной ячейки наноразмерных пленок La_{0.67}Ca_{0.33}MnO₃, выращенных на (001)LaA1O₃, был существенно (примерно на 4%) меныше соответствующего параметра, измеренного вдоль нормали к плоскости подложки. При T < 140 К температурная зависимость электросопротивления ρ пленок La_{0.67}Ca_{0.33}MnO₃ следовала соотношению $\rho - \rho(T = 4.2 \text{ K}) \approx \rho_2 \cdot T^{4.5}$, где коэффициент ρ_2 от температуры не зависел, но уменьшался с увеличением напряженности магнитного поля *H*. Показано, что падение ρ_2 с увеличением *H* обусловлено как затуханием спиновых волн в ферромагнитных доменах, так и трансформацией включений антиферромагнитной фазы в ферромагнитные.

PACS: 73.43.Qt, 73.50.-h

Пленки перовскитоподобных манганитов La_{0.67}(Ba,Ca,Sr)_{0.33}MnO₃ перспективны для использования в ячейках магнитной памяти и в чувствительных элементах магнеторезистивных сенсоров [1,2]. Сильное спин-орбитальное взаимодействие обусловливает резкую зависимость транспортных параметров тонких манганитных слоев от типа и величины действующих в их объеме двухосных напряжений [3]. Напряжения оказывают существенное влияние как на динамику расслоения исходной фазы на составляющие, так и на упорядочение спинов в ферромагнитных доменах в манганитном слое. Это существенно усложняет выявление механизмов, определяющих электро- и магнетотранспортные параметры пленок La_{0.67}(Ba,Ca,Sr)_{0.33}MnO₃ при температурах ниже температуры Кюри $T_{\rm C}$.

В данной работе исследованы температурные и полевые (магнитное поле) зависимости электросопротивления ρ пленок La_{0.67}Ca_{0.33}MnO₃ (LCMO), выращенных на поверхности монокристаллических подложек со значительным (~ 1.7%) рассогласованием в параметрах кристаллических решеток.

Метод лазерного испарения (КF, $\lambda = 248$ nm, $\tau = 30$ ns) был использован для выращивания пленок LCMO толщиной d = 24 nm на поверхности подложек (001)LaA1O₃ (LAO) (толщина пленок не превышала критическую, при которой происходит релаксация напряжений, сопровождающаяся изменением параметров элементарной ячейки слоя LCMO в плоскости подложки). Технологические условия роста манганитных пленок детализированы в [4]. Параметр псевдокубической элементарной ячейки LAO равен ~ 3.79 Å [3].

Структура выращенных манганитных слоев исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, Cu $K_{\alpha 1}$, $\omega/2\theta$ и ϕ -сканы).

Сопротивление *R* пленок LCMO измерялось в конфигурации van der Pauw в магнитном поле *H* ($\mu_0 H$ до 14 T) и без него. Магнитное поле было направлено параллельно плоскости подложки, но под углом 90° к направлению измерительного тока *I*. Электросопротивление ρ пленок рассчитывалось по формуле $\rho = \pi R d / \ln 2$ [5]. Четыре серебряных контакта, расположенные на углах квадрата, формировались на свободной поверхности пленок методом термического испарения в вакууме.

Дифрактограмма ($\omega/2\theta$), полученная в симметричной брэгговской геометрии для пленки (24 nm)LCMO/LAO, показана на рис. 1. На дифрактограмме присутствовали только пики (00n) от пленки и подложки. Это указывает на то, что выращенные пленки были свободны от макровключений кристаллических сопутствующих фаз (оксидов, отличных от LCMO), а ось [001] в их объеме ориентирована вдоль нормали к плоскости подложки. Параметр элементарной ячейки пленки (24 nm)LCMO/LAO, измеренный вдоль нормали в плоскости подложки $a_{\perp} = 3.951 \pm 0.005$ Å, существенно превышал величину соответствующего параметра в плоскости подложки $a_{\parallel} = 3.788 \pm 0.005$ Å. Последний практически совпадал с параметром псевдокубической элементарной ячейки стехиометрических монокристаллов LAO. (Для определения латерального параметра элементарной ячейки в пленках LCMO использовалась схема симметричного отражения с наклоном (на 45°) пленочного образца. Чтобы выставить кристаллографическую плоскость (101) в выращенных пленках LCMO вертикально, использовались

Рис. 1. Рентгеновская дифрактограмма (Си $K_{\alpha 1}$, $\omega/2\theta$) для пленки (24 nm)LCMO/LAO, Δ -(001)LCMO пик. На вставке *a* показаны температурные зависимости электросопротивления ρ (1, 2) и магнетосопротивления MR (3) для той же пленки. $I - \mu_0 H = 0$; $2 - \mu_0 H = 5$ T. На вставке *b* приведены зависимости $\rho(I)$ и $1/\rho_1(2)$ от $\mu_0 H$ для той же пленки. Кривая (1) была получена при 24 K, манганитная пленка была охлаждена до указанной температуры при $\mu_0 H = 0$.

измеренные ϕ -сканы). Эффективный объем $V_{eff} = a_{\perp} \times a_{\parallel}^2 \approx 56.69 \text{ Å}^3$ элементарной ячейки пленки (24 nm)LCMO/LAO был заметно меньше объема элементарной ячейки соответствующих объемных кристаллов (~ 57.42 Å³ [6]). Из рентгеновских данных следует, что пленки LCMO были выращены на (001)LAO когерентно и находились под действием сжимающих в плоскости подложки двухосных напряжений.

Температурные зависимости ρ пленки (24 nm)LCMO/LAO, измеренные при $\mu_0 H = 0$ и 5 T, показаны на вставке (*a*) на рис. 1. При $\mu_0 H = 0$ максимум электросопротивления пленок наблюдался при температуре $T_m \approx 200$ K, которая примерно на 60 K меньше, чем соответствующая

температура для объемных стехиометрических кристаллов LCMO [7]. Основной причиной понижения Т_т манганитного слоя, сформированного на подложке из алюмината лантана, является нарушение его стехиометрии (обогащение кальцием и/или кислородом [3]) из-за двухосных напряжений, действующих в процессе зародышеобразования. Резкое падение *р* пленки (24 nm)LCMO/LAO с понижением температуры $(T < T_m)$ связано с разрастанием высокопроводящих ферромагнитных "каналов протекания" в объеме пленки и с ослаблением рассеяния дырок в ферромагнитных доменах вследствие уменьшения пространственного разупорядочения электронных спинов на ионах марганца. На той же вставке приведена температурная зависимость магнетосопротивления $MR = [\rho(\mu_0 H = 0.4\text{T}) - \rho(\mu_0 H = 0)]/\rho(\mu_0 H = 0)$ пленки (24 nm)LCMO/LAO. Максимальные значения отрицательного магнетосопротивления (-0.27) наблюдались при температуре $T_{MR} \approx 165$ K, причем с понижением температуры от T_{MR} до 50 К MR уменьшалось только на 40%. Вероятной причиной появления широкого максимума на кривой MR(T) является присутствие в объеме манганитных пленок при *T* < *T_m* включений не ферромагнитной фазы. Полученная оценка величины V_{eff} для пленок (24 nm)LCMO/LAO указывает на то, что в их объеме могут находиться включения антиферромагнитной СЕ [8] фазы.

При низких температурах (T < 140 K) кривые $\Delta \rho(T) \equiv \rho - \rho_1$ $[\rho_1 \equiv \rho(T = 4.2 \text{ K})]$, полученные для пленок (24 nm)LCMO/LAO в магнитном поле различной напряженности, хорошо аппроксимировались соотношением

$$\Delta \rho = \rho_2 \cdot T^{4.5},\tag{1}$$

коэффициент ρ_2 не зависел от температуры, но уменьшался с увеличением $\mu_0 H$ (см. рис. 2 и вставку на нем; значения ρ_2 при различных $\mu_0 H$ определялись по наклону касательной к кривой $\rho(T^{4.5})$ при T < 140 K). Согласно [9], электросопротивление манганитов должно увеличиваться с ростом температуры пропорционально $T^{4.5}$, если основным механизмом релаксации носителей заряда является их взаимодействие со спиновыми волнами.

При температурах, близких к температуре жидкого гелия, величина электросопротивления стехиометрических объемных кристаллов LCMO определяется рассеянием носителей заряда на дефектах структуры и практически не зависит ни от температуры, ни от напряженности магнитного поля [10]. Наблюдавшееся увеличение в магнитном поле электропроводности $(1/\rho_1)$ пленок (24 nm)LCMO/LAO (см. вставку *b*

Рис. 2. Зависимости $\Delta \rho$ от $T^{4.5}$, полученные для пленки (24 nm)LCMO/LAO при различных значениях $\mu_0 H$: $I - \mu_0 H = 0$, $2 - \mu_0 H = 2$ T, $3 - \mu_0 H = 5$ T, $4 - \mu_0 H = 10$ T, $5 - \mu_0 H = 14$ T. На вставке показано изменение коэффициента $\rho_2(I)$ и отношения ρ_2/ρ_1 при увеличении $\mu_0 H$ от 0 до 14 T.

на рис. 1) обусловлено "плавлением" включений антиферромагнитной фазы в магнитном поле. Присутствие при низких температурах в объеме пленок (24 nm)LCMO/LAO включений неферромагнитной фазы является одной из причин четко выраженных гистерезисных особенностей на зависимостях их электросопротивления от напряженности магнитного поля (см. вставку *b* на рис. 1). Интенсивность трансформации включений антиферромагнитной фазы в ферромагнитные возрастает с увеличением напряженности магнитного поля и температуры. Обратный процесс при низких температурах и $\mu_0 H = 0$ происходит значительно медленнее. Это является причиной существенных различий в величине $\rho(\mu_0 H = 0, T = 25 \text{K})$ пленки (24 nm)LCMO/LAO до и

после воздействия магнитного поля ($\mu_0 H = 14$ T). Четкий гистерезис наблюдался на зависимостях электросопротивления манганитных пленок от магнитного поля при сканировании $\mu_0 H$ в последовательности $14T \rightarrow 0 \rightarrow -2T \rightarrow 0 \rightarrow 14T$ (см. вставку *b* на рис. 1). При $\mu_0 H$, близких к нулю, гистерезис на указанных зависимостях отчасти обусловлен существенной величиной коэрцитивного поля при переориентации вектора намагниченности в ферромагнитных доменах (ось легкого намагничивания в тонких пленках LCMO, выращенных на LAO, нормальна к плоскости подложки [11]).

Зависимость коэффициента ρ_2 от $\mu_0 H$, полученная для пленки (24 nm)LCMO/LAO, показана на вставке на рис. 2. Уменьшение ρ_2 с увеличением напряженности магнитного поля обусловлено: а) затуханием спиновых волн, б) "плавлением" [12] включений антиферромагнитной фазы. Преобразование включений антиферромагнитной фазы в ферромагнитную под действием магнитного поля приводит к увеличению объемной доли высокопроводящей ферромагнитной фазы в манганитной пленке. Это должно в равной степени сказываться на полевой зависимости параметров ρ_1 и ρ_2 для пленок (24 nm)LCMO/LAO. Поэтому отношение ρ_2/ρ_1 не должно зависеть от фазовых (антиферромагнитная \leftrightarrow ферромагнитная) превращений, происходящих в манганитной пленке под действием магнитного поля. Характер зависимости указанного отношения от $\mu_0 H$ определяется затуханием спиновых волн в манганитной пленке. Изменение отношения ρ_2/ρ_1 при увеличении напряженности магнитного поля для пленки (24 nm)LCMO/LAO показано на вставке на рис. 2. Величина отношения ρ_2/ρ_1 примерно линейно убывала с увеличением $\mu_0 H$. Это хорошо согласуется с данными по полевой зависимости коэффициента ρ_2 , полученной для стехиометрических манганитных пленок LCMO [13], слабо напряженных подложкой, коэффициент ρ_1 для которых практически не зависел ни от температуры, ни от напряженности магнитного поля.

В заключение мы хотели бы отметить, что при $T \ll T_c$ динамика магнетосопротивления наноразмерных, упругосжатых подложкой пленок LCMO в изменяющемся магнитном поле определяется как затуханием спиновых волн, так и расслоением фаз.

Финансовая поддержка для проведения данных исследований была частично получена из проекта NMP3-CT-2006-033191 Европейской программы FP6, Государственного контракта ФАНИ № 02.513.11.3332 и проекта МНТЦ 3743.

Список литературы

- Pannetier M., Fermon C., Goff G. Le, Simola J., Kerr T. // Science. 2004. V. 304. N 5677. P. 1648.
- [2] Parkin S.S.P., Roche K.P., Samant M.G., Rice P.M., Beyers R.B. et al. // J. Appl. Phys. 1999. V. 85. N 8. P. 5828.
- [3] Boikov Yu.A., Gunnarsson R., Claeson T. // J. Appl. Phys. 2004. V. 96. N 4. P. 435.
- [4] Бойков Ю.А., Данилов В.А. // ФТТ. 2006. Т. 48. В. 8. С. 1447.
- [5] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 9. P. 4357.
- [6] Lu C.J., Wang Z.L., Kwon C., Jia Q.X. // J. Appl. Phys. 2000. V. 88. N 7. P. 4032.
- [7] Gong G.-Q., Canedy C., Xiao G., Sun J.Z., Gupta A., Gallaghe W.J. // Appl. Phys. Lett. 1995. V. 67. N 12. P. 1783.
- [8] Goodenough J.B. // Phys. Rev. 1955. V. 100. N 2. P. 564.
- [9] Kubo K., Ohata N. // J. Phys. Soc. Jpn. 1972. V. 33. N 1. P. 21.
- [10] Snyder G.J., Hisker R., DiCarolis S., Beastly M.R., Genalle T.H. // Phys. Rev. B. 1996. V. 53. N 21. P. 14434.
- [11] Wang H.S., Li Q., Liu K., Chien C.L. // Appl. Phys. Lett. 1999. V. 74. N 15. P. 2212.
- [12] Xiao G., Gong G.Q., Canedy C.L., McNiff, jr., Gupta A. // J. Appl. Phys. 1997. N 8. P. 5324.
- [13] Бойков Ю.А., Клаесон Т. // ФТТ. 2005. Т. 47. В. 2. С. 274.