^{06.2} Тонкопленочные структуры PbSnTe : In/BaF₂/CaF₂/Si для монолитных матричных фотоприемных устройств дальнего ИК-диапазона

© А.Н. Акимов, А.В. Беленчук, А.Э. Климов, М.М. Качанова, И.Г. Неизвестный, С.П. Супрун, О.М. Шаповал, В.Н. Шерстякова, В.Н. Шумский

Институт физики полупроводников СО РАН, Новосибирск Институт электронной инженерии и промышленных технологий АН Молдовы, Кишинев, Республика Молдова E-mail: neizv@isp.nsc.ru

Поступило в Редакцию 17 октября 2008 г.

Впервые описано создание матричных фотоприемников форматом 288 × 2 с размером элемента 25 × 25 μ m на основе структур PbSnTe:In/BaF₂/CaF₂/Si и приведены пороговые характеристики этих структур. Обнаружительная способность около 90% элементов составляет от 7.2 · 10¹² до 8.7 · 10¹² сm · Hz^{0.5}/W при T = 21.2 К. Разработанная технология открывает возможности создания монолитных матричных фотоприемных устройств дальнего ИК-диапазона.

PACS: 81.15.Hi, 85.60.Gz

Большинство монолитных матричных фотоприемных устройств (МФПУ), в которых фоточувствительные элементы и схема предварительной обработки фотосигнала изготовлены на одном и том же кристалле кремния, работают в видимом и ближнем инфракрасном (ИК) диапазоне. Серийно выпускаемые охлаждаемые МФПУ дальнего (до 12 и более μ m) ИК-диапазона являются гибридными, т.е. состоят из двух соединенных между собой полупроводниковых кристаллов: кремниевого кристалла схемы обработки фотосигнала (мультиплексора) и кристалла матрицы фотоприемников (ФП). Единственным применяемым в настоящее время способом сборки такого гибридного МФПУ является технология "флип-чип" (перевернутого кристалла), основанная на использовании индиевых столбов [1]. Сборка гибридных МФПУ сама по себе является достаточно сложной операцией, поэтому

88

переход к МФПУ в интегральном исполнении является актуальной и перспективной задачей.

Исследования в этом направлении ведутся примерно с 80-х гг., а наиболее законченным результатом в этом направлении является создание монолитных МФПУ на основе структур Si/CaF₂/BaF₂/PbSnSe с областью чувствительности до $8-12\,\mu$ m [2,3]. Однако эта разработка не нашла практического применения из-за более низких параметров фотодиодов на основе PbSnSe по сравнению с ФП на основе CdHgTe (КРТ), имеющими тот же диапазон спектральной чувствительности.

Известно, что фоторезисторы на основе PbSnTe: In обладают высокой чувствительностью и очень низкой проводимостью без освещения, что делает его перспективным материалом для решения ряда задач в области дальнего ИК- и субмиллиметрового диапазонов длин волн. Немаловажным достоинством этого материала является его радиационная стойкость: пленки PbSnTe: In выдерживают облучение быстрыми электронами с дозой около 10^{17} сm⁻² без изменения своих параметров. Технология получения эпитаксиальных пленок PbSnTe: In на изолирующей подложке BaF₂ и послеростовой прецизионной доводке свойств этих пленок путем диффузионных отжигов приведена в [4]. Создание гибридных МФПУ форматом 128×2 и квазиматриц форматом 64×64 с высокими пороговыми характеристиками описано в [1,4].

Целью настоящей работы являлась разработка технологии молекулярно-лучевой эпитаксии структур PbSnTe: In/BaF₂/CaF₂/Si для создания монолитных матричных фотоприемных устройств ИК-диапазона и излучения их свойств.

Эпитаксия буферных слоев CaF₂ и BaF₂ проводилась на стандартных кремниевх подложках с ориентацией (111) и с удельным сопротивлением от $7.5 \Omega \cdot \text{сm}$ до $30-40 \text{ k}\Omega \cdot \text{cm}$. В большинстве экспериментов сначала проводилось термическое окисление кремния до толщины окисла примерно 100 nm. Непосредственно перед загрузкой в установку молекулярно-лучевой эпитаксии (МЛЭ) после обезжиривания пластины слой SiO₂ удалялся в плавиковой кислоте. Далее проводились промывка в деионизованной воде, кипячение в HNO₃ и, наконец, окончательная промывка в деионизованной воде. Интервал между последней операцией и началом откачки шлюзовой камеры не превышал 2 min, что обеспечивало минимальное загрязнение поверхности кремния.

После снятия слоя окисла поверхность кремния исследовалась методом атомно-силовой микроскопии (ACM). Микрорельеф имеет

Рис. 1. Микрорельеф поверхности кремния после снятия слоя окисла.

шероховатость порядка 0.5 nm (рис. 1). После отжига в установке МЛЭ на дифракционной картине наблюдались вытянутые рефлексы, что свидетельствует об атомарной гладкости поверхности. В ряде экспериментов с целью понижения температуры отжига кремния перед ростом буферных слоев применялась операция гидрогенизации поверхности. Прогрев гидрогенизированной поверхности в сверхзвуковом вакууме вел к полной очистке от всех зарязнений при температуре примерно на 100°С ниже температуры обычного отжига кремния перед ростом.

Толщина слоя CaF_2 составляла 69–70 nm, слоя $BaF_2 - 130-140$ nm. Атомно-силовое изображение фрагмента поверхности BaF_2 показано на рис. 2. Шероховатость поверхности лежит в пределах 10 nm, т.е. не превышает 5% от толщины буферного слоя. На поверхности полученных слоев отсутствовал характерный рисунок в виде правильных

Рис. 2. Атомно-силовое изображение фрагмента поверхности BaF₂.

треугольников размером в несколько сотен нанометров, связанный с ориентацией подложки (111). Из рис. 2 видно, что характерный латеральный размер неоднородностей в нашем случае составил около 50 nm, а их форма неровная. Тем не менее из рисунка видно, что на поверхности можно выделить три симметричных направления, показанные белыми отрезками прямых, что соответствует ориентации использованных подложек. Для слоев CaF₂ толщиной 70 nm величина напряженности электрического поля пробоя $E_0 = (0.9-1.2) \cdot 10^6$ V/cm, а для бинарных слоев CaF₂ + BaF₂ – $E_0 = (1.5-5) \cdot 10^6$ V/cm.

Рост слоев PbSnTe: In осуществлялся в течение 5 h при температуре подложки $T_{sub} = 320 \pm 5^{\circ}$ C. Использовались два испарителя — Pb_{0.74}Sn_{0.26}Te и In_{0.85}Te_{0.15} для легирования пленок индием в процессе роста. Их температура составляла 640 и 485°C соответственно. Толщина пленок PbSnTe: In составляла от 0.7 до 1.3 μ m. Характерные

Рис. 3. Температурные зависимости тока пленок, выращенных в разных технологических условиях: l, l' — ток в темноте и ток при освещении пленки N₀ 1; 2, 2' — ток в темноте и ток при освещении пленки N₀ 2.

температурные зависимости тока в темноте и при освещении стандартным источником излучения — миниатюрной лампой накаливания для 2 таких пленок с разной концентрацией введенного индия, приведены на рис. 3. В интервале температур 300–30 К токи обеих пленок при и без освещения примерно равны, но ниже 30 К различие между темновыми токами увеличивается и достигает 3 порядков при температуре около 4.2 К. Для пленки № 2, у которой наблюдается больший темновой ток, фототок тоже больше, чем у пленки № 1. Такой широкий диапазон изменения свойств, которые управляются составом и изменением технологических режимов, позволяет хорошо согласовать выходные сопротивления и чувствительность элементов матрицы ФП с входными параметрами мультиплексора.

Структура Si/CaF₂/BaF₂/PbSn: In состоит из слоев с разными коэффициентами температурного расширения, а в процессе работы $\Phi\Pi$, изготовленные на таких структурах, неоднократно охлаждаются до рабочих температур и нагреваются, что может привести к возникновению механических напряжений, изменению параметров пленки и даже к ее отслаиванию. До определения влияния резких скачков температуры на рабочие параметры пленки PbSnTe: In на кремнии с буферным слоем было исследовано влияние термоциклирования — многократного охлаждения структуры Si/CaF₂/BaF₂/PbSnTe: In до 77 K и нагрева до комнатной температуры. Длительность каждого цикла "нагрев-охлаждение" составила 100 \pm 15 s. После проведения 200 циклов "нагрев-охлаждение" изменение концентрации и подвижности, тока в темноте и фототока у исследуемых структур во всем температурном диапазоне находилось в пределах $\pm 20\%$.

На полученных пленках методом фотолитографической техники были изготовлены линейки фотоприемников форматом 288×2 элементов (размер элемента $25 \times 25 \,\mu$ m), смещенных по горизонтали относительно друг друга на $25 \,\mu$ m. Для выборочного контроля параметров 19 фоточувствительных элементов были предусмотрены 20 контактных площадок размером $600 \times 600 \,\mu$ m и тестовая холловская структура с шестью контактными площадками для контроля электрофизических свойств чувствительного слоя PbSnTe:In (рис. 4).

У 18 отдельных приемников были измерены их параметры. Использовался малошумящий источник напряжения на основе батареи напряжением 12 V. Сопротивление нагрузки составляло $R_L = 5 M\Omega$ и

Рис. 4. Фотография кристалла с линейкой. Внизу собственно линейка 288 × 2, вверху слева — контактные площадки для тестирования элементов, вверху справа — холловская структура.

Рис. 5. Гистограмма распределения обнаружительной способности D^* элементов линейки по излучателю — модели абсолютно черного тела с температурой $T_{BB} = 293$ К при рабочей температуре фотоприемника $T_{ph} = 21.2$ К. Q_D — доля элементов с указанной обнаружительной способностью.

при всех значениях температуры, при которых проводились измерения, более чем на порядок превышало сопротивление фотоприемника R_{ph} . В качестве усилителя использовался селективный усилитель "Унипан-237" с предусилителем 233.7, имеющим входное сопротивление 100 М Ω .

Измерения проводились при напряжении смещения U = 0.06 V и температуре излучателя $T_{BB} = 293$ К. Расстояние до излучателя составляло 85 mm; диаметр диафрагмы излучателя был равен 1.0 mm; размер элемента $A = 25 \times 25 \,\mu$ m; поток излучения $P = 0.95 \cdot 10^{-11}$ W/element; ширина шумовой полосы $\Delta f = 20$ Hz.

Гистограмма обнаружительной способности элементов линейки при рабочей температуре T = 21.2 К приведена на рис. 5. Однородность параметров элементов линейки на кремнии существенно выше, чем на подложке из фтористого бария. За исключением 2 элементов с существенным отклонением от средних параметров, разброс чувствительно-

сти и темнового сопротивления отдельных 18 исследованных площадок составляет примерно $\pm 15\%$. Очевидно, более высокая однородность связана с более высокой однородностью подложки из BaF₂/CaF₂/Si по сравнению с подложками из монокристаллического фтористого бария.

Около 90% элементов обладают обнаружительной способностью от $7.2 \cdot 10^{12}$ до $8.7 \cdot 10^{12}$ ст $Hz^{0.5}$ /W. Сравнение обнаружительной способности ФП, изготовленных в структурах Si/CaF₂/BaF₂/PbSnTe:In, и элементов гибридного фотоприемника устройства с мультиплексорами [1] на основе пленок PbSnTe:In, выращенных тем же методом на монокристаллическом BaF₂, показывает, что их параметры сравнимы: мощность, эквивалентная шуму, в первом случае при рабочей температуре $T_{ph} = 15$ K для 90% элементов лучше, чем $8 \cdot 10^{-17}$ W/Hz^{0.5}, а во втором случае, но при $T_{ph} = 21.2$ K для 90% элементов лучше, чем $3 \cdot 10^{-16}$ W/Hz^{0.5}.

Таким образом, впервые были получены пленки PbSnTe, легированные индием, на буферных слоях фторидов CaF₂ и BaF₂, выращенных предварительно на пластинах (111) Si со свойствами, пригодными для создания на их основе фотоприемников. Разработаны фотошаблоны, изготовлен макет линейки фотоприемников и проведены измерения параметров ее элементов, которые показали, что они сравнимы с параметрами линеек $\Phi\Pi$, полученных на BaF₂.

Авторы благодарны Д.В. Щеглову и Т.А. Гавриловой за проведение измерений на атомно-силовом и электронном микроскопах.

Работа выполнена при поддержке Федерального агентства по науке и инновациям (контракт № 02.513.12.3030), РФФИ (грант 07-02-01336) и президиума СО РАН (проект № 107).

Список литературы

- [1] Овсюк В.Н., Курышев Г.Л., Сидоров Ю.Г. и др. Матричные фотоприемные устройства инфракрасного диапазона. Новосибирск: Наука, 2001. С. 376.
- [2] Zogg H., Maissen S., Masek J., Hoshino T., Blunier S. // Mat. Res. Symp. Proc. 1991. P. 373.
- [3] Zogg P., Maissen S., Masek J., Hoshino T., Blunier S., Niwari A.N. // Semicond. Sci. Technol. 1991. V. 6. P. 36.
- [4] Васильева Л.Ф., Петиков Н.И., Климов А.Э., Шумский В.Н. // Неорганические материалы. 2001. V. 37. С. 193.

05 Магнитные свойства пленок кобальта на начальной стадии ионно-лучевого осаждения

© А.И. Стогний, В.Ф. Мещеряков, Н.Н. Новицкий,

F. Fettar, M.B. Пашкевич

Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь E-mail: stognij@ifttp.bas-net.by Московский государственный институт радиотехники, электроники и автоматики (технический университет), Москва, Россия Институт кристаллографии РАН, Москва, Россия Institut NEEL, CNRS & Université Joseph Fourier BP166 F-38042 Grenoble Cedex 9, France Departament de Física,Universitat Autónoma de Barcelona, 08193 Bellatera, Spain

Поступило в Редакцию 23 декабря 2008 г.

Магнитные свойства пленок Со на Si (100) от момента зарождения и до перехода к объемоподобному состоянию были исследованы методами ФМР на частоте 9.55 GHz и SQUID-магнетометрии. Ширина линии ФМР в зависимости от толщины пленки Со характеризуется резким переходом от больших значений в интервале 0.24 < ΔH < 0.33 kOe на начальной стадии осаждения к мало изменяющимся значениям $\Delta H \leqslant 0.16\,\mathrm{kOe}$ при толщине пленки Со более 1 nm. Аналогично, пленки Со толщиной до 1 nm обладают значительной коэрцитивной силой $H_C > 0.54$ kOe при температуре 10 K, а слои большей толщины имеют H_C менее 0.15 kOe во всем интервале температур вплоть до 300 К. Большие значения ΔH и H_C на начальной стадии зарождения пленок объясняются вкладом от переходного слоя Co/Si, формирующегося при воздействии "автооблучения" высокоэнергетической составляющей из общего потока осаждаемых атомов Со, свойственной для процесса ионно-лучевого распыления в высоком вакууме, доля которых не превышает 10% от общего потока, для которых средняя длина пробега в растущем слое Со составляет 0.8 nm, а в Si — 1.2 nm. Обсуждаются условия использования пленок Со из переходного интервала значений толщин $0.8 < t \leq 2 \,\mathrm{nm}$ для инжекции спинполяризованного тока в Si при комнатной температуре.

PACS: 75.70.Ak, 76.50+g, 85.25.Dq

96