## 04;07;12

# Мощный высокоэффективный источник непрерывного дальнего ВУФ излучения для облучения образцов с большой суммарной площадью

### © В.И. Донин

Институт автоматики и электрометрии CO PAH, Новосибирск E-mail: donin@iae.nsk.su

#### Поступило в Редакцию 15 августа 2008 г.

Предлагается оригинальный дуговой источник непрерывного дальнего ВУФ излучения (75–10 nm) с мощностью на уровне  $\sim 10\,\rm kW$  при эффективности  $\sim 10\%$  (по крайней мере, для диапазона 30–70 nm). Такие источники просты в изготовлении, имеют срок службы  $\sim 1000\,\rm h$  и способны облучать образцы с суммарной площадью  $0.1\!-\!1\,\rm m^2.$ 

PACS: 52.25.Jm, 52.25.Os

В настоящее время коротковолновые источники излучения являются объектом интенсивных исследований проводимых многими странами. Более того, для разработки современных технологий изготовления изделий микро-наноэлектроники (прежде всего проекционная литография), а также светоэррозионных, радиационно-наведенных технологий обработки материалов (в том числе с созданием регулярной нанометровой структуры) и других уже сейчас требуются коротковолновые источники, способные работать в близких к промышленным условиях.

Традиционные источники непрерывного дальнего вакуумного ультрафиолетового ВУФ излучения (синхронное излучение и газоразрядные источники с камерами дифференциальной откачки для вывода излучения [1,2]) не получили широкого распространения из-за их громоздкости, низкой эффективности, высокой стоимости и малой площади пучка выходного излучения.

В последнее время появились новые источники дальнего ВУФ излучения: лазеры на свободных электронах [3], генерация высших гармоник излучения мощных короткоимпульсных лазеров [4], плазмен-

66



**Рис. 1.**  $O_1O_2$  — продольная ось разряда (показана точками): *I* — секция трубки, *2* — облучаемый образец, *3* — держатель образца.

ные лазеры (с накачкой мощными импульсами разряда или лазера) на линиях многозарядных ионов [5], спонтанное излучение многозарядных ионов из короткоимпульсной плазмы [6]. Однако из-за указанных выше недостатков они также не находят промышленного применения. Например, наилучший по характеристикам малоиндуктивный разряд в капилляре с Хе обеспечивает эффективность на уровне  $\sim 10^{-4}$  и среднюю мощность спонтанного излучения  $\sim 10$  mW при сроке службы капилляра  $\sim 30$  min [6].

В данном сообщении описывается новый [7] дуговой источник мощного непрерывного дальнего ВУФ излучения, созданный на основе сильноточной плазмы пониженного давления, которая ранее [8,9] использовалась в качестве активной среды мощных ионных аргоновых лазеров. (Плазма создавалась продольным дуговым разрядом постоянного тока в секционированных трубках длиной  $L \sim 0.4-4$  m, диаметром  $D \sim 1-40$  mm при плотностях тока  $\sim 40-4000$  A/cm<sup>2</sup>). Схема отдельной секции и расположение облучаемых образцов в разряде иллюстрируется рис. 1. Облучаемые образцы 2 располагаются



Рис. 2. Переходы с нижних рабочих уровней.

в боковых (по отношению к оси  $O_1O_2$ ) отверстиях, по площади сечения сравнимых с сечением разряда. Используется наиболее мощное излучение резонансных линий ионов, которое не испытывает поглощения в наполняющем газе пониженного давления. В модельном эксперименте при D = 40 mm общая площадь облучаемой поверхности образцов доходила до 65% от всей боковой поверхности столба разряда  $\pi \cdot D \cdot L$ .

Поскольку плазма аргоновых лазеров достаточно хорошо изучена, произведем оценку энергетических характеристик резонансного ВУФ излучения на ионах  $Ar^+$  (см. рис. 2). Непосредственные абсолютные измерения интенсивности резонансного излучения наталкивается на

некоторые технические трудности, так как оно реабсорбировано и требует специальную вакуумную аппаратуру. Однако для лазерных переходов (например, с длиной волны  $\lambda = 4880$  Å) заселенность нижнего рабочего (резонансного) уровня более просто оценить по измеренной заселенности верхнего уровня и определенному коэффициенту поглощения (усиления) в центре доплеровски уширенной рабочей линии:

$$\kappa_0 = -G_0 = \sqrt{\frac{\ln 2}{\pi}} \frac{\lambda^2 A_{mn}}{\Delta \nu_D} \frac{g_m}{4\pi} \left( \frac{N_n}{g_n} - \frac{N_m}{g_m} \right), \tag{1}$$

где  $\Delta v_D$  — ширина линии в s<sup>-1</sup>,  $\kappa_0$  и  $G_0$  в cm<sup>-1</sup>,  $A_{mn}$  — вероятность радиационного перехода с верхнего уровня m на нижний n в s<sup>-1</sup>,  $N_m$  и  $N_n$  — заселенности рабочих уровней в cm<sup>-3</sup>,  $g_m$  и  $g_n$  — их статистические веса.

Измеренная [8,10] заселенность верхнего лазерного уровня в трубке D = 11 mm в зависимости от тока разряда J при разных давлениях наполнения  $p^1$  представлена на рис. 3. Используя измеренные  $G_0$  и формулу (1), можно было видеть, что заселенность нижнего уровня также насыщается, но спадает более резко при увеличении J. Соответственно максимум мощности генерации на рабочем переходе несколько смещен к большим токам (для кривой 3 отмечен стрелкой "M", а стрелкой "N" показано начало развития неустойчивостей в разряде). Полученная в максимуме мощности генерации заселенность  $N_n$  в 2 раза ниже  $N_m$ , а при токах до 200 А заселенности  $N_n$  и  $N_m$  были близки. Таким образом, в рассматриваемых здесь генерационных условиях  $N_n$  и  $N_m$  совпадают с точностью до 2.

Оценим интенсивность излучения (мощность, излученная с 1 cm<sup>3</sup>) на линии 723 Å, пользуясь известным соотношением:

$$I^{723\,\mathrm{A}} = F(\kappa_0 R) \cdot A_{mn} \cdot N_m \cdot h\nu, \qquad (2)$$

где  $N_m$  — заселенность верхнего (для перехода 723 Å) уровня,  $A_{mn}$  — вероятность спонтанного распада уровня в основное состояние,

<sup>&</sup>lt;sup>1</sup> При зажигании разряда давление, близкое к давлению наполнения, устанавливается только в приэлектродных частях (колбах), а вблизи стенок разрядного канала трубки давление в 3–5 раз ниже. Последнее обстоятельство позволяет пренебречь поглощением бокового ВУФ излучения за счет фотоионизации даже в случае Ar (сечения ионизации которого велики ~  $3.5 \cdot 10^{-17}$  cm<sup>2</sup>), поскольку расстояние от столба разряда до подложки ~ 2 cm. (При этом расстоянии резонансное излучение атомных линий Ar (100–85 nm) будет испытывать полное резонансное поглощение).



**Рис. 3.** Интегральная по сечению разряда заселенность верхнего уровня  $N_m$  линии 4880 Å в зависимости от тока разряда *J*: 1 - p = 0.3 mm Hg, 2 - 0.65, 3 - 1.

 $F(\kappa_0 R)$  — фактор выхода излучения (R = D/2), hv — энергия кванта. Фактор  $F(\kappa_0 R)$  можно оценить по измеренной концентрации электронов  $n_e = 1.5 \cdot 10^{14} \text{ cm}^{-3}$ , которая близка к заселенности основного состояния иона. Проведенная для рассматриваемых здесь условий оценка (см. [8], стр. 106) дает значение  $F(\kappa_0 R) \sim 0.4$ . Подставляя в (2) численные значения  $(A_{mn} = 2.5 \cdot 10^9 \text{ s}^{-1}, N_m = 1 \cdot 10^{10} \text{ cm}^{-3})$ , получаем  $I^{723 \text{ Å}} \sim 24 \text{ W/cm}^3$ . Учитывая, что ВУФ излучение иона Ar<sup>+</sup> идет, по крайней мере, на 5-ти сильных линиях в области 550–750 Å

(см., например, рис. 1.37 в [1]), получаем суммарную интенсивность  $I^{\Sigma} \sim 120 \text{ W/cm}^3$ .

В генерационных условиях вкладываемая на единицу длины разряда мощность не зависит от D и составляет  $W_{input} \sim 840$  W/cm [8,9], поэтому легко можно оценить эффективность ВУФ излучения ~ 14%. Хотя с увеличением D заселенность возбужденных уровней Ar<sup>+</sup> падает как 1/D,  $F(\kappa_0 R)$  при этом не меняется. Следовательно, эффективность испускания ВУФ излучения (за счет возрастания сечения разряда как  $D^2$ ) должна увеличиваться пропорционально D.

Помимо обычного цилиндрического разряда для рассматриваемых здесь целей полезным может оказаться использование разряда "щелевого" типа (сечение в виде прямоугольника со значительной разницей сторон) [11], поскольку F в таком разряде будет определяться меньшей стороной.

Плазма сильноточного непрерывного разряда в других инертных газах мало изучена. Тем не менее ясно, что наиболее мощное и наиболее коротковолновое излучение резонансных ионных линий с длинами волн в области 230–304, 330–460 и 550–750 Å соответственно для ионов He<sup>+</sup>, Ne<sup>+</sup> и Ar<sup>+</sup> будет вести себя подобным образом. Перспективным может оказаться использование резонансного излучения сильноточной плазмы в областях 165–199, 100–135 и 85–100 Å соответственно для ионов Li<sup>+</sup>, Li<sup>++</sup> и Be<sup>++</sup>, атомы которых могут быть введены в разряд с инертным газом электрофорезом или ионным распылением.

В заключение следует отметить, что дуговой источник [7] может оказаться полезным и в других применениях, например, при наполнении смесью водорода (при  $p \sim 10-100 \text{ mm Hg}$ ) с небольшой добавкой углеродсодержащего газа он может быть использован для выращивания алмазных пленок [2,12] на подложках с большой общей площадью.

#### Список литературы

- [1] Зайдель А.Н., Шрейдер Е.Я. Вакуумная спектроскопия и ее применение. М.: Наука, 1976.
- [2] Энциклопедия низкотемпературной плазмы (ЭНТП) / Под ред. Фортова В.Е. Т. 4. М.: Наука, 2000.
- [3] Ackermann W. et al. // Nat. Photon. 2007. V. 1. P. 336.
- [4] Hűve J. et al. // Opt. Commun. 2006. V. 266. N 1. P. 261.

- [5] Виноградов А.В., Рокка Дж.Дж. // Квантовая электроника. 2003. Т. 33. В. 1. С. 3.
- [6] Собельман И.И. и др. // Квантовая электроника. 2003. Т. 33. В. 1. С. 3.
- [7] Донин В.И. Универсальный дуговой источник ВУФ-фотонов и химически активных частиц. Патент РФ № 2324255. // Бюл. № 13, 10.05.2008. (Приоритет от 12.07.2006).
- [8] Донин В.И. Мощные ионные газовые лазеры. Н.: Наука, 1991.
- [9] ЭНТП. Сер. Б. Т. ХІ-4 (Газовые и плазменные лазеры / Под ред. Яковленко С.И.). М.: Физматлит, 2005. С. 637.
- [10] Донин В.И. // ЖЭТФ. 1972. Т. 62. В. 5. С. 1648.
- [11] Алферов Г.Н., Донин В.И., Юршин Б.Я. // Журнал прикладной спектроскопии. 1976. Т. 25. В. 1. С. 40.
- [12] Спицын Б.В., Алексеенко А.Е. // Современные проблемы физической химии. М.: ИФХ РАН, 2005. С. 350.