01;02 Оже-распады дважды возбужденных состояний ионов кислорода, углерода и азота

© Н.О. Васецкая, В.К. Иванов

Санкт-Петербургский государственный политехнический университет E-mail: no_npk@tu.neva.ru

Поступило в Редакцию 1 августа 2008 г.

В рамках приближения Хартри-Фока проведены расчеты вероятностей и энергий Оже-переходов в дважды возбужденных состояниях $3l_i 3l_j$, $3l_i 4l_j$, $4l_i 4l_j$ ионов кислорода, углерода и азота. Получены спектры излучений и проведен анализ изменений спектральных характеристик в зависимости от степени зарядности и наличия дополнительных электронов в основном состоянии исходного иона. Данные используются при интерпретации спектров испускания Оже-электронов в атмосферах планет и комет.

PACS: 78.70.En

В данной работе проводится численный анализ спектров Ожераспадов дважды возбужденных состояний различных ионов кислорода, углерода и азота. Ионы этих элементов присутствуют в солнечном ветре и атмосферах планет, поэтому представляют большой интерес с астрофизической точки зрения, особенно при интепретации электронных спектров, полученных на спутниках. Кроме того, эти данные полезны при исследовании высоковозбужденной плазмы в лабораторных условиях [1].

При низких энергиях столкновения в системе "ион-атом" сопровождаются двухэлектронным захватом, основной причиной которого является процесс перезарядки между многократными ионами солнечного ветра и нейтральными атомами и молекулами атмосферного газа планет и комет [1–3]. При перезарядке налетающий многозарядный ион "обдирает" один или два электрона с нейтрального атома-мишени или молекулы-мишени, что приводит к одноэлектронному или двухэлектронному захвату. Особый интерес для исследователей представляет именно двухэлектронный захват при энергиях в области 100 eV [4–6].

38

Теоретический анализ процессов двухэлектронного захвата позволяет проанализировать спектры излучения комет, получить информацию о распределении плазмы солнечного ветра и нейтрального газа в отдаленных слоях солнечной системы [5].

Двухэлектронный захват с наибольшей вероятностью происходит на высоковозбужденные уровни, которые впоследствии претерпевают радиационный распад возбужденного состояния со стабилизацией обоих электронов на ионе или Оже-распад с отрывом одного из электронов. Радиационный распад одноэлектронных возбуждений в ионах вышеназванных элементов изучен достаточно хорошо. Двухэлектронные возбуждения распадаются в основном за счет Оже-процесса [6], вероятность которого более чем на 3 порядка превышает вероятность радиационного распада.

Целью настоящей работы является определение энергий переходов, вероятностей и скоростей Оже-распада двухэлектронных возбужденных состояний ионов углерода, азота и кислорода, а также изменение спектров Оже-излучения и его характеристик с изменением зарядового состояния ионов. Вычисления проводились в приближении Хартри – Фока.

Вероятность Оже-распада W^A характеризуется шириной уровня γ или временем жизни вакансии, созданной во внутренней оболочке атома. Ширина уровня относительно Оже-распада в рамках теории многих тел определяется следующим образом [7]:

$$\gamma = 2\pi \operatorname{Im} \Sigma. \tag{1}$$

Здесь Σ — собственно энергетическая часть одночастичной функции Грина. Введем следующие обозначения: *i*, *k* и *j*, ε — начальное и конечное состояния первого и второго электрона, характеризующиеся набором квантовых чисел (*n*, *l*, *m*, μ), где *n* и *l* — главное и орбитальное квантовые числа соответственно, *m* и μ — проекции орбитального и спинового момента импульса.

Во втором порядке теории возмущений собственно-энергетическая часть одночастичной функции Грина для заполненных оболочек записывается в следующем виде [8,9]:

$$\Sigma_{ij} = \sum_{\varepsilon,k,j,q} \frac{1}{(2l_i+1)(2q+1)} \frac{(\langle i,\varepsilon \| V_q \| j,k \rangle \langle j,k \| U_q \| i,\varepsilon \rangle)}{-E_i - \varepsilon + E_j + E_k + i\delta}.$$
 (2)

Здесь

$$\langle 1, 4 \| \widehat{U}_q \| 2, 3 \rangle = 2 \langle 1, 4 \| \widehat{V}_q \| 2, 3 \rangle - \langle 1, 4 \| \widehat{V}_q^{exch} \| 2, 3 \rangle,$$
(3)

где $\langle 1, 4 \| \hat{V}_q \| 2, 3 \rangle \equiv V_{direct}$ и $\langle 1, 4 \| \hat{V}_q^{exch} \| 2, 3 \rangle \equiv V_{exch}$ — приведенные матричные элементы прямого и обменного кулоновского взаимодействия соответственно [8,10]:

$$\langle 1, 4 \| \widehat{V}_{q}^{exch} \| 2, 3 \rangle = (2q+1) \sum_{q'=0}^{\infty} (-1)^{q+q'} \begin{cases} l_1 & q & l_2 \\ l_4 & q' & l_3 \end{cases} \langle 1, 4 \| \widehat{V}_{q'} \| 3, 2 \rangle,$$
(4)

где q, q' — переданный момент при прямом и обменном взаимодействии электронов.

Матричные элементы в (2)-(4) вычислялись с использованием волновых функций, полученных в приближении Хартри-Фока как в начальном, так и в конечном состоянии. Волновая функция вылетающего электрона вычислялась в поле остова конечного состояния иона.

При суммировании в (2) по переданным моментам q, q' и квантовым числам состояний j, k, ε , совместимым с законом сохранения энергии, получим следующие выражения для ширины уровня γ (5) и скорости Оже-распада (6) соответственно:

$$\gamma = \frac{2\pi}{(2l_i+1)(2q+1)} \left(V_{direct}^2 + V_{exch}^2 - V_{direct} V_{exch} \right), \tag{5}$$

$$A^{A} = \frac{\gamma}{\hbar} = 1.406 \cdot 10^{16} \cdot \gamma.$$
 (6)

Конкретные расчеты проводились с помощью комплекса вычислительных программ, имеющегося на кафедре экспериментальной физики СПбГПУ.

В работе рассматривался Оже-распад двукратно возбужденных положительных ионов углерода (C^{4+**}, C^{3+**}, C^{2+**}), азота (N^{5+**}, N^{4+**}, N^{3+**}) и кислорода (O^{+6**}, O^{+5**}, O^{+4**}). Для этих ионов построены энергетические спектры Оже-переходов и проведены вычисления амплитуд, ширин и скоростей Оже-распада в различных областях энергий при условии одинаковой заселенности возбужденных состояний [8].

Рассмотрим результаты вычислений скоростей и энергий всех возможных Оже-переходов из возбужденных состояний $3l_i3l_j$, $3l_i4l_j$ и $4l_i4l_j$ в низшие состояния на примере иона кислорода $O^{+6^{**}}$. Каждое из возможных возбужденных состояний распадается в различные конечные состояния с удалением одного из электронов в непрерывный спектр, при этом распад в любое другое состояние происходит с разной

Начальные состояния	Ширина распада <i>γ</i> , 10 ⁻³ Ry	Скорость распада A^{A} , 10^{14} s^{-1}		
$3s^2$	6.91	0.97		
3530	29.19	4.1		
3s3d	30.0	4.22		
$3p^2$	19.86	2.79		
3p3d	34.52	4.85		
$3d^2$	64.44	9.06		
3 <i>s</i> 4 <i>s</i>	1.85	0.26		
3s4p	8.69	1.22		
3s4d	10.51	1.48		
3s4f	3.67	0.52		
3p4s	2.79	0.39		
3 <i>p</i> 4 <i>p</i>	6.84	0.96		
3p4d	11.23	1.58		
3 <i>p</i> 4 <i>f</i>	4.0	0.56		
3d4s	1.32	0.19		
3d4p	5.28	0.74		
3d4d	18.46	2.6		
3 <i>d</i> 4 <i>f</i>	12.0	1.69		
$4s^{2}$	0.48	0.067		
4s4p	1.78	0.25		
4s4d	2.17	0.3		
4s4f	0.62	0.087		
$4p^{2}$	2.58	0.36		
4p4d	4.78	0.67		
4p4f	2.18	0.31		
$4d^2$	11.7	1.65		
4d4f	5.38	0.76		
$4f^2$	2.85	0.4		

Таблица 1. Полные ширины и скорости Оже-распадов дважды возбужденных состояний $4l_i 4l_j$ для иона кислорода $O^{+6^{**}}$

скоростью и энергией. Полные ширины Оже-переходов и скоростей распада определяются суммой всех парциальных каналов распада и для $3l_i 3l_j$, $3l_i 4l_j$ и $4l_i 4l_j$ состояний положительного иона кислорода $O^{+6^{**}}$ приведены в табл. 1.

Таким образом, в ионе $O^{+6^{**}}$ распады с наибольшей скоростью происходят из $3l_i 3l_j$ состояний. Наибольшей скоростью Оже-распада обладает состояние $3d^2$, основной вклад в которое вносят переходы $3d3d \rightarrow 2p \varepsilon f$ и $3d3d \rightarrow 2s \varepsilon g$. Затем наиболее вероятны распады 3p3d и 3s3p состояний, обусловленные переходами $3p3d \rightarrow 2p \varepsilon d$ и $3s3p \rightarrow 2s \varepsilon p$ соответственно. Следует отметить, что с наибольшей скоростью распадаются монопольные переходы (определяются правилом отбора $\Delta l = 0$). Вероятность распада $3l_i 4l_j$ и $4l_i 4l_j$ состояний меньше, чем $3l_i 3l_j$ состояния. Наиболее стабильным состоянием относительно Оже-распада является состояние $4s^2$.

Аналогичным образом определяются ширины и скорости Ожераспада и для всех остальных ионов кислорода $({\rm O}^{+5^{**}},\,{\rm O}^{+4^{**}}),$ углерода $({\rm C}^{4+^{**}},\,{\rm C}^{3+^{**}},\,{\rm C}^{2+^{**}})$ и азота $({\rm N}^{5+^{**}},\,{\rm N}^{4+^{**}},\,{\rm N}^{3+^{**}}).$

Для наиболее удобного анализа полученных результатов построим спектры излучения ионов в различных диапазонах длин волн. При

Рис. 1. Спектр Оже-распада $3l_i 3l_j$ состояний $O^{+6^{**}}$ в диапазоне энергий от 30 до 42 eV.

Таблица 2. Возможные переходы из состояния $3l_i 3l_j$ в состояние $2l_k \varepsilon l$ для иона кислорода $O^{+6^{**}}$

Переходы $3l_i 3l_j ightarrow 2l_k arepsilon l$							
1	$3s3s \rightarrow 2s \varepsilon s$	9	$3s3p \rightarrow 2p \varepsilon d$	17	$3p3d \rightarrow 2p \varepsilon g$		
2	$3s3s \rightarrow 2p \varepsilon p$	10	$3s3d \rightarrow 2s \varepsilon d$	18	$3d3d \rightarrow 2s \ \varepsilon s$		
3	$3p3p \rightarrow 2s \ \varepsilon s$	11	$3s3d \rightarrow 2p \varepsilon p$	19	$3d3d \rightarrow 2s \ \varepsilon d$		
4	$3p3p \rightarrow 2s \ \varepsilon d$	12	$3s3d \rightarrow 2p \varepsilon f$	20	$3d3d \rightarrow 2s \ \varepsilon g$		
5	$3p3p \rightarrow 2p \varepsilon p$	13	$3p3d \rightarrow 2s \varepsilon p$	21	$3d3d \rightarrow 2p \varepsilon p$		
6	$3p3p \rightarrow 2p \varepsilon f$	14	$3p3d \rightarrow 2s \ \varepsilon f$	22	$3d3d \rightarrow 2p \varepsilon f$		
7	$3s3p \rightarrow 2s \varepsilon p$	15	$3p3d \rightarrow 2p \varepsilon s$	23	$3d3d \rightarrow 2p \epsilon h$		
8	$3s3p \rightarrow 2p \varepsilon s$	16	$3p3d \rightarrow 2p \varepsilon d$				

построении спектров будем считать, что вероятности заселения всех уровней nl_inl_i одинаковы [10].

На рис. 1 представлен спектр Оже-распада возбужденных $3l_i 3l_j$ состояний О^{+6**} в области энергий квантов ~ 30–40 eV. Спектр в этой области связан с электронными переходами в состояния оболочки с главным квантовым числом 2 — 2s и 2p. Цифрами на рисунке обозначены линии, соответствующие переходам, перечисленным в табл. 2. При этом с наибольшей скоростью распадаются те возбужденные состояния, в которых один из электронов находится в 3d оболочке.

На рис. 2 представлен спектр Оже-испускания в ионе $O^{+6^{**}}$ в диапазоне энергий от 30 до 140 eV, построенный по результатам теоретических расчетов данной работы. Данный спектр совпадает по Оже-распадам с экспериментальным результатом, полученным при столкновении ионов кислорода $O^{+6^{**}}$ с буферным газом CO₂ [10]. В данном эксперименте измерялась зависимость сечения захвата электронов при распаде возбужденных состояний с различными квантовыми числами в состояния $2l_k \varepsilon l$ от энергии Оже-перехода. Так как измерения проводились в лабораторной системе отсчета, в которой учитывается движение иона, то при сравнении теоретического и экспериментального результатов имеем сдвиг по энергии порядка 20 eV.

Также следует отметить, что в экспериментальном спектре [10] размытость спектра, локализованного около распада $(3, 3) \rightarrow 2$, объясняется сопутствующими линиями, соответствующими распадам трижды возбужденных состояний. В рамках данной работы учет вероятностей

Рис. 2. Спектр Оже-распада состояний $3l_i 3l_j$, $3l_i 4l_j$ и $4l_i 4l_j$ в ионе O^{+6**} в диапазоне энергий от 30 до 140 eV.

распада трижды возбужденных состояний не проводился, поэтому на рис. 3 распаду $(3, 3) \rightarrow 2$, так же как и распадам $(3, 4) \rightarrow 2$ и $(4, 4) \rightarrow 2$, соответствуют "тонкие" линии.

В работе вычислены энергии переходов и скорости Оже-распада двукратно возбужденных ионов кислорода, азота и углерода. Рассмотрены распады тех возбужденных состояний, появление которых наиболее вероятно при двукратной перезарядке ионов солнечного ветра, проходящих через нейтральную среду кометы. Полученные результаты подтверждают то, что появление двукратно возбужденных ионов и их распад являются весьма вероятным процессом, сравнимым с однократным процессом перезарядки, и их учет необходим при расшифровке спектров излучения, полученных при экспериментальном исследовании излучения комет.

С теоретической точки зрения при получении более точных экспериментальных данных следует точнее учитывать межэлектронные

Рис. 3. Экспериментальный спектр Оже-излучения в ионе $O^{+6^{**}}$, полученный при медленном столкновении ${}^{18}O^{+6^{**}} + CO_2$ [10].

корреляции, не рассматриваемые в рамках приближения Хартри-Фока, в частности, учитывать многоконфигурационное взаимодействие. Эти работы планируется провести в ближайшее время.

Работа выполнена при поддержке гранта Швейцарского национального научного фонда (SNSF IB7420-111116).

Список литературы

- Hasan A.A., Eissa F., Ali R. // The Astrophysical Journal. 2001. V. 560. P. L201– L205.
- [2] *Kharchenko V., Dalgarno A.* et al. // Jt. Assem. Suppl. 2005. Abstract #. P41A-03.
- [3] Beiersdorfer P. et al. // Science. 2003. V. 300. P. 1558.

- [4] Van der Hart H.W. et al. // J. Phys. B: At. Mol. Opt. Phys. 2004. V. 37. P. 457-470.
- [5] Repino R., Kharchenko V., Dalgarno A., Lallement R. // The Astrophysical Journal. 2004. V. 617. P. 1352.
- [6] Snowden S.L., Collier M.R., Kuntz K.D. // The Astrophysical Journal. 2004. V. 610. P. 1182.
- [7] Амусья М.Я., Чернышева Л.В. Автоматизированная система исследования структуры атомов. Л.: Наука, 1983.
- [8] Хакен Х. Квантовая теория твердого тела. М.: Наука, 1980.
- [9] Собельман И.И. Введение в теорию атомных спектров. М.: Наука, 1977.
- [10] Moretto-Capelle P., Bordenave-Montesquieu D., Bordenave-Montesquieu A. // J. Phys. B. At. Mol. Opt. Phys. 2000. V. 33. P. L735–L742.