05;07

Гексагональные структуры в нитевидных нанокристаллах GaAs

© И.П. Сошников, Г.Э. Цырлин, Н.В. Сибирёв, В.Г. Дубровский, Ю.Б. Самсоненко, D. Litvinov, D. Gerthsen

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский физико-технологический научно-образовательный центр РАН

Институт аналитического приборостроения РАН, Санкт-Петербург Technical University of Karlsruhe, D-76128 Karlsruhe, Germany E-mail: NickSibirev@yandex.ru

Поступило в Редакцию 26 декабря 2007 г.

Проведены экспериментальные исследования кристаллографической структуры нитевидных нанокристаллов GaAs, выращиваемых методом молекулярнопучковой эпитаксии на поверхности GaAs(111)В, активированной Au. Методами дифракции быстрых электронов на отражение и просвечивающей электронной микроскопии показано, что нитевидные нанокристаллы GaAs могут образовывать кристаллическую структуру сфалерита, вюрцита или промежуточной фазы, близкой к политипу 4*H*, в зависимости от условий осаждения и размера капель катализатора. Полученные результаты интерпретируются в рамках термодинамической модели.

PACS: 68.70.+w, 61.50.Ah, 61.50.Nw

Нитевидные нанокристаллы (ННК) полупроводниковых соединений III-V представляют большой интерес с точки зрения фундаментальных исследований процессов формирования вертикальных одномерных наноструктур, а также благодаря перспективным применениям массивов ННК в наноэлектронике, нанофотонике и наносенсорах. Физические свойства ННК зависят от их размеров и формы. Недавно было теоретически показано [1,2], что уменьшение размеров твердотельных наноструктур может сопровождаться изменением типа кристаллической решетки. Для большинства соединений III-V (кроме нитридных) стабильной объемной фазой является кубическая решетка типа цинковой обманки. В случае GaAs разность объемных энергий образования вюрцитной и сфалеритной фаз по разным оценкам составляет вели-

88

Одним из наиболее удивительных эффектов, происходящих при росте III-V ННК, является преимущественное формирование гексагональной вюрцитной фазы (АВ). Гексагональная структура наблюдается экспериментально [5-9] для большинства III-V материалов с решеткой цинковой обманки в различных условиях осаждения, при каталитическом росте и в отсутствие катализатора. Модель образования зародыша вюрцитной ориентации в результате нуклеации на тройной линии сосуществования пар-жидкость-кристалл предложена в работе [10]. Ранее при построении моделей роста ННК считалось, что нуклеация происходит в любом месте на границе жидкость-кристалл под каплей [11]. В работе [9] отмечалась возможность образования не только чисто вюрцитной структуры, но и политипа 4H (ABAC). В работе [8] дано описание политипа 6Н (ABCBAC). Очевидно, что спонтанная перестройка кристаллических фаз влияет на свойства материала, поэтому контроль кристаллографического совершенства III-V ННК является актуальной задачей. Настоящее сообщение посвящено исследованию особенностей кристаллографической структуры GaAs ННК, выращиваемых методом молекулярно-пучковой эпитаксии (МПЭ) на поверхности GaAs, активированной каплями Au, а также теоретической интерпретации полученных данных.

Образцы выращивались методом МПЭ на установке ЭП1203 с эффузионными источниками Ga и As. Рост GaAs HHK проводился по оригинальной трехстадийной методике, предложенной ранее [12–14]. Ключевым моментом методики является применение метода МПЭ в сочетании с разработанными нами способами формирования мелкодисперсных Au пленок. В качестве подложек использовались пластины GaAs AГЧК-3 с ориентацией поверхности (111)В. Предварительный контроль состояния поверхности и формирования ННК осуществлялся in situ методом дифракции быстрых электронов на отражение (ДБЭО). Исследование кристаллографической структуры ННК проводилось методами просвечивающей электронной микроскопии (ПЭМ) на электронном микроскопе CM 200FEG. Подготовка образцов проводилась

Рис. 1. Картины ДБЭО, полученные от образца с GaAs HHK на поверхности GaAs(111)В: a — в проекции $\langle 110 \rangle$ на начальном этапе роста HHK с преимущественно кубической (сфалерит) фазой; b — в проекции $\langle 110 \rangle$ для HHK с преимущественным содержанием гексагональных вюрцит- и 4H-политип-фаз.

по традиционной методике, включающей механическую обработку и травление ионами Ar^+ с энергией 4 keV на заключительной стадии. Отметим, что для сохранения ННК на поверхности склеивание образцов проводилось без сжатия. Анализ изображений проводился при помощи специализированной программы обработки DIAnaTEM [15].

Примеры картин ДБЭО от образца с GaAs HHK на подложке GaAs (111)В в азимутах (110) приведены на рис. 1. Отметим, что картины ДБЭО в азимуте (112) представляют интерес как реперные: характер дифракции в данной плоскости идентичен для всех рассматриваемых структур (кубической, вюрцитной и всех политипных). В то же время в азимуте (110) могут наблюдаться несколько типов дифракционных картин. Приведенная на рис. 1, *а* картина дифракции, характерная для кубического гранецентрированного кристалла, обычно наблюдается на начальном этапе формирования HHK [6,10]. В процессе роста эта картина трансформируется в комбинацию (наложения) дифракции от двух фаз со структурой сфалерита, ориентированных вдоль оси (111)В, и одной фазы со структурой вюрцита с ориентацией оси *с* параллельно плоскости подложки. В работах [9,16] проведена расшифровка дифракционной картины данного типа. Дальнейший рост HHK может приводить к появлению дополнительных рефлексов, соот-

Рис. 2. Высокоразрешающее электронно-микроскопическое изображение от участков GaAs HHK с кубической (сфалерит) (*a*), гексагональной 2*H* (*b*) и 4*H* (*c*) структурой. На врезках приведены фурье-образы соответствующих изображений.

ветствующих индексам (hkil + 1/2) (рис. 1, *b*), которые характерны исключительно для дифракции на политипных структурах 4*H* и некоторых других.

ПЭМ-исследования структуры ННК показывают возможность формирования не менее трех кристаллографических фаз: сфалерита (рис. 2, *a*), вюрцита (рис. 2, *b*) и структуры с множественными ламелями — дефектами упаковки (рис. 2, *c*). Анализ вюрцитной и

сфалеритной фаз проведен нами ранее [9,16]. Структура, приведенная на рис. 2, близка к политипу 4H, поскольку может быть представлена как комбинация слоев с вюрцитной и сфалеритной структурой. Фурье-образ от изображения рис. 2, c содержит рефлексы, идентифицируемые как (hkil + 1/2), что подтверждает наличие политипа 4H. Отметим, что в ряде случаев наблюдаемые дефекты упаковки в ННК располагаются хаотично и/или в трудно устанавливаемом порядке.

Образование гексагональных структур в GaAs и других III-V ННК достаточно малого радиуса может быть объяснено конкуренцией поверхностного и объемного вкладов в энергию образования [1,2,17]. На основе анализа морфологии и атомной структуры боковой поверхности ННК, перпендикулярной поверхности (111), можно сделать следующие выводы. В кубической фазе ННК ограничен гранями (110) и (112), при этом боковая поверхность имеет в среднем 4/3 оборванных связей, приходящихся на 1 монослой. Грань (1120) вюрцита или политипа 4Н, параллельная оси роста, имеет только одну ненасыщенную связь на 1 монослой. Следовательно, поверхностная энергия гексагонального ННК меньше, чем кубического. Для достаточно тонких ННК выигрыш в поверхностной энергии может превосходить разность объемных энергий образования. Легко убедиться, что радиус ННК, при котором поверхностная энергия полностью компенсирует энергетически невыгодное возрастание химического потенциала в гексагональной (политипной) фазе, определяется формулой

$$R_{c} = \frac{2(\gamma_{ZB} - \gamma_{PT})}{\mu_{PT} - \mu_{ZB}} = \frac{2(1 - \tau)}{\alpha} R_{0}.$$
 (1)

Здесь γ_{ZB} есть поверхностная энергия боковых граней ННК в кубической фазе типа цинковой обманки, γ_{PT} — поверхностная энергия в политипной фазе, μ_{PT} — химический потенцал политипа и μ_{ZB} — химический потенциал в кубической фазе (все химические потенциалы отнесены к объему III–V пары). В (1) для удобства введены следующие обозначения: $\alpha = (\mu_{PT} - \mu_{ZB})/(\mu_{WZ} - \mu_{ZB})$ — отношение разностей объемных энергий образования данного политипа (PT) и чистого вюрцита (WZ) по отношению к кубической решетке (ZB), $\tau = \gamma_{PT}/\gamma_{ZB}$ — отношение энергий боковых поверхностей на границе кристалл-вакуум для политипа и вюрцита, $R_0 = \gamma_{ZB}/(\mu_{WZ} - \mu_{ZB})$ —

характерный радиус, определяемый энергетическими константами материала. При $R < R_c$ ННК должны преимущественно формироваться в политипной, а при $R > R_c$ — в кубической фазе. Подчеркнем, что изложенная термодинамическая модель относится к полностью сформированным ННК однородной структуры, не описывает переброску фаз и не учитывает кинетические ростовые эффекты [10].

В первом приближении величина α совпадает с коэффициентом гексагональности, равным отношению количества монослоев гексагональной ориентации к общему количеству монослоев на период решетки. Коэффициент поверхностной энергии τ в отсутствие реконструкции поверхности можно оценить как отношение числа оборванных связей на боковой поверхности данного политипа к 4/3 (число оборванных связей для кубической решетки). Детальный анализ работы [17] показывает, что в политипной области минимальная энергия образования и максимальный критический радиус $R_c = R_0$ соответствуют политипу 4H ($\alpha = 1/2, \tau = 3/4$). Для чистого вюрцита критический радиус в два раза меньше: $R_c = R_0/2$. Оценка по формуле (1) для случая GaAs HHK поверхности GaAs $(\bar{1}\bar{1}\bar{1})$ В ($\gamma_{ZB} = 1.5 \text{ J/m}^2$ [18,19], объем элементарной ячейки GaAs = 0.045 nm³ [17], $(\mu_{WZ} - \mu_{ZB}) = 8.3 - 12$ meV/at. [1,3,4]) дает значение $R_0 = 17 - 25$ nm, что сравнимо с радиусами исследуемых ННК. Вместе с тем отметим, что формирование гексагональных ННК с поперечными размерами $R \sim 100$ nm не может быть объяснено в рамках изложенной модели.

Таким образом, экспериментально продемонстрирована возможность формирования сфалеритной, вюрцитной и 4*H* кристаллографических фаз при выращивании GaAs HHK методом МПЭ с использованием Au в качестве катализатора. Предложена качественная модель эффекта, объясняющая политипизм уменьшением поверхностной энергии боковых граней HHK, что естественно приводит к существованию критического радиуса перехода между различными фазами.

Работа выполнена при поддержке Федерального агентства по науке и инновациям (государственный контракт № 02.513.11.3042), различных научных программ РАН, РФФИ и программы SANDiE.

Один из авторов (Н.В. Сибирёв) благодарен фонду "Династия" за финансовую поддержку.

Список литературы

- Akiyama T., Sano K., Nakamura K. et al. // Jpn. J. Appl. Phys. 2006. V. 45. P. L275.
- [2] Akiyama T., Nakamura K. et al. // Phys. Rev. B. 2006. V. 73. P. 235 308.
- [3] Yeh C.-Y., Lu Z.W., Froyen S. et al. // Phys. Rev. B. 1992. V. 46. P. 10086.
- [4] McMahon M.I., Nelmes R.J. // Phys. Rev. Lett. 2005. V. 95. P. 215 505.
- [5] Persson A.I., Larsson M.W., Stenstrom S. et al. // Nature Mater. 2004. V. 3. P. 678.
- [6] Harmand J.C., Patriarche G., Péré-Laperne N. et al. // Appl. Phys. Lett. 2005. V. 87. P. 203 101.
- [7] Mohan P., Motohisha J., Fukuki T. // Nanotechnology. 2005. V. 16. P. 2903.
- [8] Mariager S.O., Sorensen C.B., Aagesen M. et al. // Appl. Phys. Lett. 2007. V. 91.
 P. 083 106.
- [9] Сошников И.П., Цырлин Г.Э., Тонких А.А. и др. // ФТТ. 2007. Т. 49. С. 1373.
- [10] Glas F., Harmand J.C., Patriarche J. // Phys. Rev. Lett. 2007. V. 99. P. 146 101.
- [11] Дубровский В.Г., Сибирев Н.В., Цырлин Г.Э. // Письма ЖТФ. 2004. Т. 30.
 В. 16. С. 41.
- [12] Dubrovskii V.G., Soshnikov I.P., Sibirev N.V. et al. // Phys. Rev. B. 2005. V. 71. P. 205 325.
- [13] Dubrovskii V.G., Soshnikov I.P., Cirlin G.E. et al. // Phys. Stat. Sol. (b) 2004. V. 241. R 30.
- [14] Тонких А.А., Цырлин Г.Э., Самсоненко Ю.Б. и др. // ФТП. 2004. Т. 38. В. 10. С. 1256.
- [15] Сошников И.П., Горбенко О.М., Голубок А.О., Леденцов Н.Н. // ФТП. 2001.
 Т. 35. С. 361.
- [16] Сошников И.П., Цырлин Г.Э., Тонких А.А. и др. // ФТТ. 2005. Т. 47. С. 2121.
- [17] Dubrovskii V.G., Sibirev N.V. // Phys. Rev. B. 2008. V. 77. P. 035414.
- [18] Numerical Data and Functional Relationships in Science and Technology New Series Group III: Condensed Matter. / Ed. H.P. Bonzel. Landolt-Bornstein. Springer, 2006. V. 42. Subvol. A2. P. 325.
- [19] Cahn J.W., Hanneman R.E. // Surf. Sci. 1964. V. 1. P. 387.