05 Измерение импульсных тепловых нагрузок в газодинамических процессах анизотропными термоэлементами

© Б.И. Резников, В.А. Сахаров, А.С. Штейнберг

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Институт химической физики РАН, Черноголовка, Московская обл. E-mail: boris.reznikov@mail.ioffe.ru

Поступило в Редакцию 7 июня 2007 г.

Показано, что величина поперечной термоэдс в анизотропном термоэлементе при импульсной тепловой нагрузке и отсутствии внешней электрической цепи пропорциональна разности температур на его поверхностях. Данный результат получен при одномерном распределении температуры в термоэлементе и независимости компонентов тензоров термоэдс и электропроводности от температуры. Приведена оценка времени прогрева термоэлемента, в течение которого температура нерабочей поверхности остается постоянной.

PACS: 47.27.T-, 52.30.Cv

Мотивацией к данному исследованию послужил анализ результатов тепловых измерений градиентными датчиками теплового потока (ГДТП) в ударной трубе [1]. ГДТП представляет собой батарею термоэлементов, вырезанных из анизотропного кристалла висмута под определенным углом к одной из главных кристаллографических осей. Принцип действия датчика основан на поперечном эффекте Зеебека генерации термоэдс в направлении, перпендикулярном вектору теплового потока [2].

Большинство работ рассматривает работу анизотропных термоэлементов в качестве термоэлектрического генератора, что предполагает, как правило, стационарный тепловой режим и наличие внешней электрической цепи [2,3]. Использование ГДТП в исследованиях на импульсных установках имеет свою специфику, поскольку тепловая нагрузка может изменяться во времени значительно быстрее, чем устанавливается поле температуры внутри термоэлемента. Анизотропия тензора термоэдс приводит к возникновению вихревых токов, которые

28

в отсутствие внешней электрической цепи определяют величину термоэдс.

Рассмотрим прямоугольную пластину из анизотропного материала высотой h и длиной L. Оси x, y направлены вдоль поверхности тела и по нормали. Тепловой поток к поверхности датчика направлен вдоль оси y. Плотность электрического тока \mathbf{j} в анизотропном материале определяется соотношением

$$\mathbf{j} = \widehat{\sigma} \left(\mathbf{E} - \widehat{\alpha} \nabla T \right), \tag{1}$$

где Е — вектор электрического поля, $\hat{\sigma}$ и $\hat{\alpha}$ — тензоры электропроводности и термоэдс, T — температура.

Следуя подходу, развитому в работе [3], запишем проекции полного тока j_1 , j_2 на оси координат x, y, связанные с образцом. Считая, что поверхность датчика прогрета равномерно, полагаем $\partial T/\partial x = 0$. В этом случае, исключая E_2 , получаем

$$j_1 = \frac{E_1}{\rho_{11}} - \frac{\alpha_{12}}{\rho_{11}} \frac{dT}{dy} + \frac{\sigma_{12}}{\sigma_{22}} j_2, \qquad \rho_{11} = \frac{\sigma_{22}}{\sigma_{11}\sigma_{22} - \sigma_{12}\sigma_{21}}, \qquad (2)$$

где E_1 — компонента вектора электрического поля, направленная вдоль поверхности датчика и перпендикулярная тепловому потоку; α_{ik} ,

 σ_{jk} — компоненты тензоров α и σ соответственно; ρ_{11} — компонента тензора удельного сопротивления. Поскольку термоэлектрическое поле устанавливается намного быстрее, чем поле температуры, div $\mathbf{j} = 0$ и проекции плотности тока $j_1 = j_1(y), j_2 = j_2(x)$. В отсутствие внешней электрической цепи интегральный ток в термоэлементе равен нулю. Интегрируя (2) по высоте и длине датчика, получаем величину поперечной термоэдс

$$\varepsilon = \frac{L \int_{0}^{h} \frac{\alpha_{12}}{\rho_{11}} \frac{dT}{dy} dy}{\int_{0}^{h} \frac{dy}{\rho_{11}}}.$$
 (3)

Этот результат совпадает с выражением, полученным для стационарного теплового режима [3], и учитывает зависимости от температуры компонентов тензоров α_{12} и ρ_{11} . Такое совпадение является следствием того, что термоэлектрическое поле устанавливается намного быстрее температурного.

Для малых перепадов температуры соотношение (3) упрощается. В частности, в интервале температур от 300 до 400 К для висмута компоненты тензоров ρ_{11} и α_{12} практически постоянны [4]. Термоэдс пропорциональна разности температур на противоположных гранях термоэлемента в момент времени $t \Delta T = T(t, 0) - T(t, h)$ и, как и в стационарном случае, отношению L/h

$$\varepsilon = \frac{L}{h} \,\alpha_{12} \Delta T. \tag{4}$$

Необычная на первый взгляд обратно пропорциональная зависимость поперечной термоэдс от h объясняется тем, что электрическое поле, в отличие от поля температуры, распространяется "мгновенно", и толщина образца в этом случае характеризует его внутреннее электрическое сопротивление. Поэтому при неравномерном распределении температуры в образце уменьшение толщины датчика приводит к увеличению коэффициента преобразования, в отличие от линейного распределения температуры, когда $\Delta T/h = \text{const.}$

Заметим также, что (4) справедливо при произвольном распределении температуры в самом образце. Отсюда следует практически важный вывод: коэффициент пропорциональности между термоэдс и разностью температур в (4) может быть определен на основании измерений этих величин в стационарном тепловом режиме.

На начальной стадии процесса температура нерабочей поверхности термоэлемента T(t, h) остается постоянной и равной начальной температуре T_{∞} . Равенство $T(h) = T_{\infty}$ выполняется до тех пор, пока температура нерабочей поверхности T(h) остается неизменной. Для оценки времени прогрева образца используем решение уравнения теплопроводности для полуограниченного пространства с начальными и граничными условиями: $\vartheta(0, y) = 0$, $\vartheta(t, 0) = \vartheta_0(t)$, $\vartheta(t, \infty) = 0$. Здесь $\vartheta(t, y) = T(t, y) - T_{\infty}$ — избыточная температура, $\vartheta_0(t)$ — известная функция температуры поверхности. При условии малости градиентов температуры в направлениях, перпендикулярных вектору теплового потока, уравнение теплопроводности для анизотропной среды принимает вид, совпадающий с уравнением для изотропной среды с эффективным коэффициентом теплопроводности. Решение этого уравнения имеет вид [5]

$$\vartheta(t,y) = \frac{y}{2} \frac{1}{\sqrt{a\pi}} \int_0^{\tau} \frac{\vartheta_0(\tau)}{(t-\tau)^{3/2}} \exp\left(-\frac{y^2}{4a(t-\tau)}\right) d\tau, \qquad (5)$$

где *а* — коэффициент температуропроводности.

Рис. 1. Распределение температуры в полуограниченном пространстве в различные моменты времен t, μ s: 1 - 50, 2 - 200, 3 - 500, 4 - 1000, 5 - 2000.

Для моделирования поля температуры в датчике при импульсных тепловых нагрузках рассмотрим следующий закон изменения температуры поверхности [6]:

$$\vartheta_0(t) = \vartheta_{st} \big[1 - \exp(-t/\tau_0) \big]. \tag{6}$$

Величины ϑ_{st} , τ_0 — стационарная избыточная температура и характерное время нагрева поверхности. Эти параметры выбираются в соответствии с наблюдаемыми в экспериментах изменениями температуры во времени (сигналами ГДТП). Из выражения (6) следует, что избыточная температура поверхности увеличивается со временем, достигая стационарного значения при $t \approx 5\tau_0$.

На рис. 1 показаны профили температуры внутри образца, рассчитанные по формуле (5) при $\vartheta_{st} = 5$ К, $\tau_0 = 200 \,\mu$ s, $a = 6 \cdot 10^{-6} \,\text{m}^2/\text{s}$ в различные моменты времени. Из рисунка видно, что с ростом температуры поверхности $\vartheta_0(t)$ область прогрева расширяется, достигая в некоторый момент контрольного сечения y = const.

Определим время прогрева t_H термоэлемента толщиной h из условия $\vartheta(t_H,h)/\vartheta(t_H,0)=\chi\ll 1$. На рис. 2 показаны зависимости t_H от

Рис. 2. Зависимости времени прогрева образца t_H от темпа нагрева поверхности τ_0 и толщины *h*, mm: 1 - 0.2, 2 - 0.3, 3 - 0.4.

величины τ_0 для различных значений *h*, рассчитанные при $\chi = 0.01$. Значение h = 0.2 mm соответствует размерам реального термоэлемента ГДТП, используемого в работе [1]. Из графика видно, что при быстром нагреве поверхности, когда $\tau_0 < 20 \,\mu$ s, значение t_H практически постоянно и примерно пропорционально квадрату толщины термоэлемента. Постоянство времени t_H и его независимость от величины τ_0 в этом случае связаны с тем, что время $t_H \gg \tau_0$, и прогрев образца почти все время протекает при постоянной температуре поверхности $\vartheta_0(t) \approx \vartheta_{st}$.

Получим выражение *t_H* для этого случая. Температура внутри образца изменяется по закону [5]

$$\vartheta(t,y) = \vartheta_{st} \left\{ 1 - \Phi[y/(2\sqrt{at})] \right\}, \qquad \Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-z^2) dz.$$
(7)

Из соотношения (7) при $t = t_H$ следует $\Phi[h/(2\sqrt{at_H})] = 1 - \chi$, и время прогрева термоэлемента толщиной h при $\chi = 0.01$ равно

$$t_H \approx 0.08h^2/a. \tag{8}$$

При медленном прогреве $\tau_0 > 50 \, \mu$ s значение t_H зависит как от толщины термоэлемента h, так и от величины τ_0 (см. рис. 2).

В заключение отметим, что при малой толщине образца, когда распределение температуры в образце является линейным, соотношение (3) преобразуется к виду

$$\varepsilon = L\alpha_{12} \frac{\Delta T}{h} = L \frac{\alpha_{12}}{\lambda} q, \qquad (9)$$

где q — тепловой поток к поверхности термоэлемента. В этом случае термоэлемент может быть использован для прямого измерения теплового потока. Необходимую толщину образца можно оценить, используя соотношение (8), где в качестве t_H берется характерное время исследуемого процесса.

Авторы выражают благодарность Н.П. Менде за активную помощь в подготовке материала.

Работа выполнена при поддержке EOARD (проект МНТЦ № 3475р), Программы президиума РАН № П-09, РФФИ проект № 06-08-00777.

Список литературы

- Sapozhnikov S.Z., Mitiakov V.Yu., Mitiakov A.V. et al. // Tech. Phys. Lett. 2004.
 V. 30. N 1. P. 76–77.
- [2] Снарский А.А., Пальти Ф.М., Ащеулов А.А. // ФТП. 1997. Т. 31. № 11. С. 1281–1298.
- [3] Самойлович А.Г., Слипченко В.П. // ФТП. 1975. Т. 9. № 3. С. 594–596.
- [4] Гицу Д.В., Голбан И.М. и др. Явления переноса в висмуте и его сплавах. Кишинев: Штиинца, 1983. 266 с.
- [5] Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 487 с.
- [6] Иорданишвили Е.К., Бабин В.П. Нестационарные процессы в термоэлектрических и термомагнитных системах преобразования энергии. М.: Наука, 1983. 216 с.
- 3 Письма в ЖТФ, 2008, том 34, вып. 5