⁰³ Сила, действующая на наночастицу в жидкости

© В.Я. Рудяк, А.А. Белкин, Е.А. Томилина

Новосибирский государственный архитектурно-строительный университет E-mail: rudyak@sibstrin.ru

Поступило в Редакцию 26 февраля 2007 г.

Методом молекулярной динамики изучена сила, действующая на наночастицу в жидкостях. Показано, что эта сила нестационарная и имеет релаксационный характер. В начальный момент она в два-три раза больше силы Стокса, а вне зоны релаксации меньше последней. Стационарное значение силы, действующей на наночастицу, определяется ее массой и размером. Построены корреляции для определения коэффициента сопротивления. Установлено, что сила сопротивления является анизотропной.

PACS: 05.60.Cd, 47.11.Mn, 47.61.-k

Наночастицы имеют характерные размеры от одного до десятков нанометров. В качестве таких частиц можно рассматривать собственно наночастицы, фуллерены, крупные органические молекулы, кластеры, аэрозольные частицы субмикронного диапазона и т. п. Законы диффузии наночастиц существенно отличаются от соответствующих законов и для молекул, и для броуновских частиц (см. монографии [1,2] и обзор [3]). Это, в частности, должно означать, что сила, действующая со стороны жидкости, также не будет описываться классическими соотношениями. Изучению этой силы и посвящена данная работа.

Проведение экспериментов по изучению силы сопротивления, действующей на наночастицу в молекулярной среде, по понятным причинам является очень не простым делом. Известно несколько работ такого рода. Сила сопротивления F в них фактически не измеряется, а восстанавливается по коэффициенту диффузии D с помощью соотношения Эйнштейна: F = kTU/D, где U — скорость частицы, T температура среды, а k — постоянная Больцмана. В работе [4] так определялась сила, действующая на крупные молекулы, а в [5,6] — на фуллерены, являющиеся типичными наночастицами малых размеров. Во всех случаях было установлено, что эта сила существенно отличается от

69

традиционно используемой силы Стокса: $F = 6\pi \eta R U$, где R — радиус частицы, η — вязкость несущей среды.

Таким образом, практически единственной на сегодня методикой, которая позволяет непосредственно изучить силу, действующую на наночастицу, является прямое численное моделирование. В данной работе для этой цели использовался метод молекулярной динамики. Ячейка моделирования кубической формы с периодическими граничными условиями содержала одну наночастицу и $N \sim 3500$ молекул. Молекулы и частица моделировались твердыми сферами разного диаметра и массы. В пользу такой достаточно простой модели говорит тот факт, что в экспериментах сила сопротивления практически не зависела от формы частицы, отклонения от закона Стокса обусловлены лишь ее размером [6]. Отношение массы частицы М и молекулы т варьировалось от 25 до 200, отношение радиусов наночастицы и молекулы составляло R/r = 2, 3, 4. Плотность системы характеризовалась параметром $\alpha = (V - V_p)/V_0$, где V — объем ячейки, V_p — объем наночастицы, $V_0 = 8Nr^3/\sqrt{2}$ — объем плотной упаковки N молекул радиуса *r*.

Эволюция системы исследовалась после того, как в ней устанавливалось равновесное состояние. По достижении равновесного состояния измерялась скорость наночастицы U₀. Далее, при каждом столкновении одной из молекул с частицей измерялся переданный частице импульс и угол θ между направлением скорости U₀ и линией, соединяющей центр частицы и точку касания частицы и молекулы. Измеряя импульс, переданный за малый интервал времени, мы рассчитывали силу f(θ , t), действующую на единичный элемент поверхности наночастицы. Релаксация начальной скорости задается проекцией этой силы на направление U₀: $f_U(\theta, t) = [\mathbf{f}(\theta, t) \cdot \mathbf{U}_0]/U_0$. Интегрированием по поверхности наночастицы определяется полная сила сопротивления

$$F(t) = \int f_U(\theta, t) dS.$$

Представив ее в виде $F(t) = \tilde{\mu}(t)\mathbf{U}(t) \cdot \mathbf{U}_0/U_0$, где $\mathbf{U}(t)$ — значение скорости частицы в момент t, можно получить коэффициент сопротивления $\tilde{\mu}(t)$.

Результаты расчетов показали прежде всего, что коэффициент сопротивления $\mu(t) = \tilde{\mu}(t)/6\pi\eta R$ (нормированный на коэффициент сопротивления силы Стокса) нестационарен. В качестве примера на рис. 1 приведены данные расчетов коэффициента μ для наночастицы

Рис. 1. Зависимость от времени коэффициента сопротивления.

с радиусом R = 4r и массами M/m = 200 (кривая 1), 100 (кривая 2), 50 (кривая 3) в жидкости плотностью $\alpha = 2$. Метки здесь — результаты расчетов, время измеряется в средних временах свободного пробега молекул. Релаксационная зона достаточно протяженная, около 30 времен свободного пробега молекул несущего газа. В ее начале сила сопротивления, действующая на наночастицу, в 2–3 раза больше силы Стокса. Начальное значение нормированного коэффициента сопротивления μ_0 слабо зависит от массы частицы, при одинаковом радиусе его изменения при варьировании массы не превышает 7%. С ростом радиуса наночастиц отклонение начальной силы сопротивления от закона Стокса увеличивается. Зависимость μ_0 от радиуса хорошо описывается линейной функцией

$$\mu_0 = c_1 R / r + c_2, \tag{1}$$

при плотности $\alpha = 2.0$ коэффициент $c_2 = 0.68$, значения c_1 немного изменяются при варьировании массы наночастицы. Так, $c_1 = 0.475$ при M/m = 25 и $c_1 = 0.508$ при M/m = 100.

С течением времени коэффициент сопротивления уменьшается и выходит на некоторое стационарное значение μ_{∞} , которое меньше

Таблица 1. Значения нормированного коэффициента сопротивления на втором участке релаксации скорости наночастицы μ_{∞} , $\alpha = 2.0$.

	R/r = 2	R/r = 3	R/r = 4
M/m = 200	0.96	0.96	0.96
M/m = 100	0.89	0.83	0.74
M/m = 50	0.79	0.65	0.54
M/m = 25	0.57	0.40	0.28

соответствующего значения силы Стокса. Значение μ_{∞} возрастает с увеличением массы наночастицы и для массивных частиц приближается к коэффициенту Стокса. При M/m = 200 отличие составляет около 4% (см. таблицу 1).

Релаксацию силы сопротивления удается описать достаточно простой корреляцией, она выглядит следующим образом:

$$\tilde{\mu}(t) = \frac{M[a_1 \exp(-t/\tau_1)/\tau_1 + a_2 \exp(-t/\tau_2)\tau_2]}{a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2)},$$
(2)

где τ_1 , τ_2 — времена релаксации, a_1 , a_2 — постоянные, определяющие вклад первого и второго участков релаксации скорости частицы, $a_1 + a_2 = 1$. Отметим, что релаксация автокорреляционной функции скорости наночастицы χ описывается функцией [7]: $\chi = a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2)$. Корреляции (2) на рис. 1 соответствуют сплошные кривые.

Параметры корреляции (2) определяются соотношениями

$$\tau_2/\tau = b_1 M/m + b_2, \quad \tau_1/\tau = d_2 - d_1 R/r, \quad a_2/a_1 = k_1 M/m - k_2, \quad (3)$$

где τ — время свободного пробега молекул, значения *b*, *k*, *d* для различных отношений радиусов наночастицы и молекулы приведены в табл. 2, 3. Формулы (2), (3) позволяют предсказать и значения стационарного коэффициента сопротивления μ_{∞} , так как $\mu_{\infty} = \tilde{\mu}(t \gg \tau_1)/6\pi\eta R = M/6\tau_2\pi\eta R$. Таким образом, стационарное значение определяется фактически временем τ_2 . Отметим, что для массивных наночастиц значения μ_{∞} практически не зависят от их радиуса.

Нестационарный характер силы, действующей со стороны среды на наночастицу, представляется достаточно естественным. Это связано

Таблица 2. Коэффициенты b_1, b_2, k_1, k_2 аппроксимаций (3)

Таблица 3. Коэффициенты d_1, d_2 аппроксимации τ_1 (3)

	M/m = 25	M/m = 50	M/m = 100
d_1	1.75	2.2	2.2
d_2	10.0	13.0	14.2

Рис. 2. Зависимость от времени проекции силы, действующей на элементы поверхности наночастицы. R/r = 4, M/m = 50, $\alpha = 2.0$.

с тем, что вблизи наночастицы велика роль микрофлуктуаций, генерируемых ею при движении [3]. Такие флуктуации скоррелированы со скоростью движения наночастицы. Это, в свою очередь, должно приводить к анизотропии силы, действующей на различные элементы поверхности частицы. Расчеты подтверждают это. На рис. 2 приведено распределение силы, нормированной на гидростатическое давление жидкости *p*: $f \equiv f(\theta, t) = f_U(\theta, t)/p$. Видно, что на больших временах, когда релаксация начальной скорости частицы практически завершена, сила взаимодействия почти полностью определяется гидростатическим давлением, ее проекция больше нуля при $\theta < 90^\circ$ и меньше нуля при $\theta > 90^{\circ}$. Однако сила сопротивления в несколько раз превосходит силу гидростатического давления при малых углах θ в начале процесса релаксации. Кроме того, сила сопротивления оказывается сильно анизотропной, при увеличении угла θ она резко уменьшается. Напомним в этой связи, что сила сопротивления Стокса, действующая на единичный элемент поверхности, не зависит от угла θ [8].

Работа выполнена при частичной поддержке Программы Минобрнауки РФ "Развитие научного потенциала высшей школы" (проект № 2.1.1.471) и Российского фонда фундаментальных исследований (грант № 04-01-00106).

Список литературы

- [1] Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 1. Кинетическая теория. Новосибирск: Наука, 2004. 320 с.
- [2] Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: Наука, 2005. 468 с.
- [3] Рудяк В.Я., Белкин А.А., Краснолуцкий С.Л. // Теплофизика и аэромеханика. 2005. Т. 10. № 6. С. 64–96.
- [4] Evans D.F., Tominaga T., Davis H.T. // J. Chem. Phys. 1981. V. 74. N 2. P. 1299– 1305.
- [5] Haselmeyer R., Holz M., Kappes M.M., Michel R.H. // Ber. Bunsenger Phys. Chem. 1994. V. 98. N 6. P. 878–881.
- [6] Kato T., Kikuchi K., Achiba Y. // Phys. Chem. 1993. V. 97. N 40. P. 10251-10253.
- [7] Рудяк В.Я., Харламов Г.В., Белкин А.А. // Письма в ЖТФ. 2000. Т. 26. № 13. С. 29–36.
- [8] Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 759 с. (Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge at the University Press. 1970).