08

Туннелирование акустических волн зазором пары гексагональных пьезоэлектрических кристаллов с относительным продольным перемещением

© С.Н. Марышев, Н.С. Шевяхов

Ульяновский филиал института радиотехники и электроники PAH E-mail: ns_shev@mail.ru

Поступило в Редакцию 14 сентября 2006 г.

Рассмотрено влияние относительного продольного перемещения пьезоэлектрических кристаллов, разделенных зазором, на рефракцию акустических волн.

PACS: 43.20.El, 68.35.Iv

Прохождение акустических волн через зазор пьезоэлектрических кристаллов, не имеющих механического контакта, впервые отметил С. Калиски [1]. Из-за сходства с подбарьерным туннельным переходом в квантовой механике [2] это явление получило название туннелирования акустических волн [3] и рассматривалось как теоретически [1,3,4], так и экспериментально [5]. Почти полное прохождение акустических волн под малыми углами скольжения, установленное в [3–5] для гексагональных пьезоэлектрических кристаллов, представлялось многообещающим для развития эффективных способов бесконтактного возбуждения акустических волн в твердых телах. Последующие усилия исследователей были направлены поэтому на повышение угла скольжения [6–8].

В настоящем сообщении обсуждается другой аспект проблемы акустического туннелирования через зазор пьезоэлектрических кристаллов, связанный с возможностью их относительного продольного перемещения (ОПП). Насколько нам известно, влияние этого фактора на туннелирование акустических волн не рассматривалось. Между тем на практике механическое перемещение тел — одна из причин,

18

вынуждающая прибегнуть к бесконтактному возбуждению акустических колебаний.

Рассмотрим случай одинаковых гексагональных пьезоэлектрических кристаллов класса 6, разделенных вакуумным зазором толщины h, который подробно анализировался в [3]. Геометрия задачи применительно к перемещению с заданной скоростью V кристалла, в который туннелируется акустическая волна, схематически показана на рис. 1, a. Решение строим в лабораторной системе отсчета x0yz, привязанной к неподвижному кристаллу (y < -h/2). Однако, где необходимо, параметры туннелированной волны будем соотносить с попутной системой отсчета, привязанной к движущемуся кристаллу (y > h/2). Напомним, что оси лабораторной системы отсчета совпадают с кристаллографическими осями, а распространение волн со смещениями вдоль осей симметрии высшего порядка (параллельны оси z) происходит в базовых плоскостях (001) кристаллов.

Из галилеевской связи координат систем отсчета кристаллов вытекает, что ОПП в лабораторной системе отсчета выразится для волн в движущемся кристалле частотным сдвигом $\omega \to \omega - \mathbf{kV}$, где \mathbf{k} — волновой вектор. Соответственно если в неподвижном кристалле волновое число $k_1 = \omega/s$ (s — скорость акустических волн в материале пьезоэлектрика), то в движущемся кристалле оно изменится на $k_2 = \pm(\omega - \mathbf{k}_2\mathbf{V})/s$. Здесь, заранее оговаривая условия $k_{1,2} > 0$, $\omega > 0$, приходится считаться с возможной при высоких ($\beta > 1$, $\beta = V/s$) скоростях ОПП сменой знака разности $\omega - \mathbf{k}_2\mathbf{V} = \Omega$ и учитывать в выражении для k_2 оба корня.

Величина Ω представляет частоту туннелированной волны в попутной системе отсчета. Для первого корня туннелированная волна сохраняет в переходах между попутной и лабораторной системами отсчета свой статус волны прямого распространения. В данном случае ОПП качественно не отразится на характере рефракции, которую условимся называть обычной. При выборе второго корня имеем, очевидно, волну с $\omega > 0$, $k_2 = \omega/v > 0$ — в лабораторной системе отсчета (v — фазовая скорость туннелированной волны с учетом ОПП) и $\Omega < 0$, $k_2 = \Omega/s < 0$ — в попутной системе отсчета. Переход между системами отсчета сопровождается, таким образом, обращением волнового фронта (OBФ) туннелированной волны, что должно качественно изменить ее рефракцию, именуемую для краткости и отличия обращенной рефракцией.

Рис. 1. Геометрия задачи (*a*) и картина обращенной рефракции (*b*) акустической волны, туннелируемой в движущийся кристалл: *I*, *R*, *T* — волновые вектора падающей, отраженной и туннелируемой волны.

ОВФ туннелированной волны имеет чисто кинематическое происхождение. Оно вызвано сносовым действием среды, движущейся с трансзвуковой скоростью по ходу падения волны со стороны неподвижного кристалла с тем, чтобы с избытком компенсировать обратное распространение туннелированной волны относительно кристалла и обеспечить в итоге ее пространственный синхронизм электрическими полями через зазор с акустическими волнами прямого распространения в неподвижном кристалле.

По знаку частоты Ω волновые вектора \mathbf{k}_2 будем снабжать сверху индексами + и –, а сами ветви \mathbf{k}_2^+ называть ветвью обычной и обращенной рефракции. Поскольку $\mathbf{k}_1 = \mathbf{n}\omega/s$, $\mathbf{n} = (\sin \alpha, \cos \alpha)$ — вектор волновой нормали, α — угол падения, то для волн в неподвижном кристалле рефракционная кривая представляет собой окружность. На рис. 1, *b* она изображена штриховой линией. В лабораторной системе отсчета имеем также $\mathbf{k}_2^+ = \mathbf{n}_t \omega / v_{\pm}$, $\mathbf{n}_t = (\sin \alpha_t, \cos \alpha_t)$ — вектор волновой нормали туннелированной волны, α_t — угол преломления. Поэтому ввиду равенства $\mathbf{k}_1 \mathbf{V} = \mathbf{k}_2^{\pm} \mathbf{V}$, вытекающего из закона рефракции, получим

$$\mathbf{k}_{2} = \begin{cases} \mathbf{k}_{2}^{+} = \frac{\omega}{s} \frac{\mathbf{n}_{t}}{1 + \beta \sin \alpha_{t}}, & \beta \sin \alpha_{t} > -1, \\ \mathbf{k}_{2}^{-} = \frac{\omega}{s} \frac{\mathbf{n}_{t}}{\beta \sin \alpha_{t} - 1}, & \beta \sin \alpha_{t} > 1. \end{cases}$$
(1)

На рис. 1, *b* построенные согласно (1) участок кривой обычной рефракции изображен линией *I*, а обращенной рефракции — линией 2. Они не пересекаются ни при каких скоростях ОПП. Это исключает абсурдную возможность туннелирования волн с одновременно положительными и отрицательными частотами Ω и независимо от характеристик падающей волны и типа рефракции устанавливает единственность туннелированной волны в движущемся кристалле.

При $\beta < 1$, когда кривая 2 отсутствует, а кривая 1 замыкается своими концами в петлю, реализуется только обычная рефракция туннелированной волны. Это же имеет место при $\beta < 2$ по той причине, что возникающая ветвь обращенной рефракции 2 находится правее штрихового круга. Наконец, при $\beta > 2$ и k_x заметно бо́льших Δk_x , как это показано на рис. 1, *b*, имеет место обращенная рефракция. Она сменяет возможную при $k_x < \Delta k_x$ обычную рефракцию. В области

проекций k_x волнового вектора *I* падающей волны на границу между кривыми *I* и *2* туннелирования не происходит из-за полного отражения: проекция $k_y^{(2)}$ волнового вектора волны, рефрагированной в движущийся кристалл, становится мнимой и волновые возмущения в движущемся кристалле приобретают вид приграничных колебаний. При этом на картине рефракции сохранятся только два волновых вектора *I* и *R*, соответствующие падающей и отраженной волне.

Случай сверхвысоких скоростей ОПП $\beta > 2$, разумеется, мало реалистичен и прежде всего рассматривается для полноты картины. Вместе с тем сравнение туннелирования волн в условиях обычной и обращенной рефракции интересно в теоретическом отношении.

Действительно, при геометрическом построении волновых векторов по кривым рефракции возникает альтернатива в выборе знака поперечных компонент k_y . Общепризнанным способом ее разрешения является использование принципа излучения, который, вообще говоря, применим только к консервативным или диссипативным системам. Рассматриваемая система неавтономна (неявным образом присутствует внешний источник энергии, обеспечивающий ОПП), и критериальные оценки знака $k_y^{(2)}$ туннелируемой волны на основе принципа излучения требуют особого внимания.

Обычная рефракция включает случай $\beta = 0$, когда применение принципа излучения не вызывает сомнений и приводит к однозначному выбору туннелированной волны с $k_y^{(2)} > 0$. Основываясь на непрерывности перехода в решении для ветви \mathbf{k}_2^+ по параметру β к этому случаю, данное условие отбора для составляющей $k_y^{(2)}$ можно распространить на всю область обычной рефракции. Обращенная рефракция не получается предельным переходом от случая $\beta = 0$. Следовательно, оценка знака составляющей $k_y^{(2)}$ сообразно непрерывному продолжению параметра β исключается и остается, как это сделано на рис. 1, *b* для волнового вектора туннелированной волны *T* (показан жирной стрелкой), принять единственное: $k_y^{(2)} < 0$. В подкрепление данного вывода заметим, что вытекающее из соотношения для k_2 равенство $\omega = \mathbf{k}_2 \mathbf{V} \pm (\mathbf{k}_2^2)^{1/2} s$ определяет групповую скорость $\mathbf{V}_g^{(2)} = \partial \omega / \partial \mathbf{k}_2$ туннелированной волны формулой $\mathbf{V}_g^{(2)} = \mathbf{V} \pm s \mathbf{k}_2^{\pm} / k_2^{\pm}$, которая предсказывает встречность как переноса энергии поперек зазора в условиях обычной и обращенной рефракции, так и самого распространения туннелированных волн.

Несмотря на то, что изменение решения [3] вследствие ОПП затрагивает только поперечную составляющую волнового вектора туннелированной волны $k_y^{(2)}$, непосредственно воспользоваться итоговыми результатами, приведенными в [3], не представляется возможным. Отсутствие в них различий параметров кристаллов и характеристик распространения волн по разные стороны зазора вынуждает повторить решение граничной задачи.

С учетом индуцированной ОПП разницы величин $k_y^{(1,2)}$ волновые поля и поля приграничных электрических колебаний с номерами j = 1 при y < -h/2, j = 2 при y > h/2 представим для обычной рефракции следующим образом:

$$u_{1} = U \exp \left[i(k_{x}x - \omega t) \right] \left[\exp(ik_{y}^{(1)}y) + \exp(-ik_{y}^{(1)}y)R \right],$$

$$\varphi_{1} = \frac{4\pi e_{15}}{\varepsilon} u_{1} + F_{1} \exp \left[i(k_{x}x - \omega t) \right] \exp(k_{x}y),$$

$$u_{2} = UT \exp \left[i(k_{x}x - \omega t) \right] \exp(ik_{y}^{(2)}y),$$

$$\varphi_{2} = \frac{4\pi e_{15}}{\varepsilon} u_{2} + F_{2} \exp \left[i(k_{x}x - \omega t) \right] \exp(-k_{x}y).$$
(2)

Электрическое поле в зазоре (|y| < h/2) характеризуем потенциалом

$$\varepsilon = \exp[i(k_x x - \omega t)] [C \exp(k_x y) + D \exp(-k_x y)].$$
(3)

В выражениях (2), (3) имеем: e_{15} — пьезомодуль продольного пьезоэффекта, ε — диэлектрическая проницаемость, $k_y^{(1,2)} = (k_{1,2}^2 - k_x^2)^{1/2}$, $k_x = k_1 \sin \alpha$. Угол падения α , амплитуда смещений U частиц в падающей волне и частота ω , как принято в задачах рефракции волн, полагаются заданными. Соответственно известными оказываются волновые числа волн, причем в выражении для волнового числа k_2 скалярное произведение $\mathbf{kV} = k_x V$ также определится углом падения.

Для определения коэффициентов отражения R и прохождения T акустической волны через зазор выражения (2), (3) необходимо подставить в граничные (при $y = \pm h/2$) условия задачи. Они не меняются под влиянием ОПП и поэтому в дальнейшем можно следовать ходу решения, изложенному в [3]. Опуская промежуточные преобразования,

приведем взамен формул (4.10), (4.11) из [3] окончательный результат

$$R = \frac{\frac{k_{y}^{(1)}k_{y}^{(2)}}{k_{x}^{2}} + \left[\Delta_{a}\Delta_{s} + i\frac{(k_{y}^{(2)} - k_{y}^{(1)})}{2k_{x}}(\Delta_{a} + \Delta_{s})\right]}{\frac{k_{y}^{(1)}k_{y}^{(2)}}{k_{x}^{2}} - \left[\Delta_{a}\Delta_{s} + i\frac{(k_{y}^{(2)} + k_{y}^{(1)})}{2k_{x}}(\Delta_{a} + \Delta_{s})\right]},$$
(4)

$$T = -\frac{\frac{i\epsilon Q^2}{(1+\epsilon^2)\mathrm{sh}(2\xi)+2\epsilon\mathrm{ch}(2\xi)} \left(\frac{k_y^{(2)}+k_y^{(1)}}{k_x}\right)}{\frac{k_y^{(1)}k_y^{(2)}}{k_x^2} - \left[\Delta_a \Delta_s + i\frac{(k_y^{(2)}+k_y^{(1)})}{2k_x}(\Delta_a + \Delta_s)\right]}.$$
(5)

В выражениях (4), (5) обозначено:

$$\Delta_{a} = \frac{Q^{2} - \varepsilon \operatorname{th}(\xi)Q_{\perp}^{2}}{1 + \varepsilon \operatorname{th}(\xi)}, \qquad \Delta_{s} = \frac{Q^{2}\operatorname{th}(\xi) - \varepsilon Q_{\perp}^{2}}{\varepsilon + \operatorname{th}(\xi)},$$
$$Q^{2} = \frac{4\pi e_{15}^{2}}{\varepsilon\lambda^{*}}, \qquad Q_{\perp}^{2} = \frac{4\pi e_{14}^{2}}{\varepsilon\lambda^{*}}, \qquad (6)$$

где Q^2 и Q_{\perp}^2 — квадраты коэффициентов электромеханической связи продольного и поперечного пьезоэффекта соответственно, e_{14} — пьезомодуль поперечного пьезоэффекта, $\lambda^* = \lambda + 4\pi e_{15}^2/\varepsilon$, λ — модуль сдвига, а $\xi = k_x h/2$ — волновая полутолщина зазора. В частном случае отсутствия ОПП имеем $k_y^{(1)} = k_y^{(2)} \equiv k_y$ и, замечая, что теперь $k_y/k_x = \text{tg} \theta$ ($\theta = \pi/2 - \alpha$ — угол скольжения), сразу приходим на основании (4), (5) к представлению коэффициента отражения формулой (4.10) из [3].

Формулы (4)–(6) соответствуют обычной рефракции, если $k_y^{(2)} = k_2 \cos \alpha_t > 0$, α_t — угол преломления. Область углов падения обычной рефракции устанавливается условием $\alpha < \alpha^*$, где $\alpha^* = \arcsin(1/(1+\beta))$. Для перехода к обращенной рефракции при $\beta > 2$, $\alpha > \alpha^{**} = \arcsin(1/(1-\beta))$ в формулах (4), (5) следует предварительно изменить знак у величины $k_y^{(2)}$. Рефракционная связь углов α и α_t во всех случаях дается формулой

$$\cos \alpha_t = \frac{\sqrt{(1 - \beta \sin \alpha)^2 - \sin^2 \alpha}}{1 - \beta \sin \alpha}.$$
 (7)

На рис. 2 и 3 представлены угловые спектры коэффициентов отражения |R| и прохождения |T| акустической волны, рассчитанные

Рис. 2. Угловые спектры коэффициента отражения для пары пьезоэлектрических кристаллов LiIO₃ с предельно тонким ($\xi = 10^{-6}$) зазором при скоростях ОПП: $I - \beta = -0.05$, $2 - \beta = 0.05$, $3 - \beta = -2.5$, $4 - \beta = 2.5$. На врезке угловые спектры отражения обращенной рефракции при $\beta = 2.05$ и толщинах зазора: $I - \xi = 10^{-3}$, $2 - \xi = 10^{-2}$, $3 - \xi = 6 \cdot 10^{-2}$ и $\xi = 10^{-6}$ (штриховая линия).

по формулам (4), (5) для кристаллов LiIO₃ с параметрами, взятыми из справочника [9]. Видно, что в условиях обычной рефракции общей тенденцией является ухудшение туннелирования волны в движущийся

Рис. 3. Угловые спектры коэффициента прохождения для пары пьезоэлектрических кристаллов LiIO₃ при толщине зазора $\xi = 10^{-3}$ и скоростях ОПП: $I - \beta = -0.5, 2 - \beta = 0.1.3 - \beta = 0.5$ и $\beta = 2.01$ (штриховая линия).

кристалл. Более заметно это выражено в угловых спектрах коэффициента отражения. Так, уже при небольших скоростях встречное ОПП ($\beta = -0.05$, кривая 1, рис. 2) "затягивает" клин "прозрачности" зазора (очерчен на рис. 2 в области больших углов падения штриховой линией) более чем наполовину ($|R|_{\min} > 0.6$). Однако почти полное его "затягивание" кривой 3 на рис. 2 происходит только при сверхвысоких скоростях встречного (с $\beta < 0$, $|\beta| > 2$) ОПП. Впрочем, существенного снижения коэффициента прохождения волны через зазор, как показывает сравнение кривых 1-3 на рис. 3, не возникает и возможность практического использования эффекта туннелирования сохраняется.

При попутном ОПП ($\beta > 0$) клин "прозрачности" в условиях обычной рефракции не только "затягивается" с ростом β , но и оттесняется в сторону меньших углов падения областью полного отражения (см. кривую 2, рис. 2). При этом на угловых спектрах прохождения (рис. 3, кривые 2, 3) в точках предельных углов полного отражения α^* образуются хорошо выраженные пики. Левая сторона этих пиков отвечает, очевидно, условиям эффективного туннелирования в движущийся кристалл акустической волны, но следует иметь в виду, что из-за близости углу α^* туннелированные волны будут иметь весьма малые поперечные составляющие волнового вектора $k_y^{(2)} \ge 0$. Таким образом, речь идет о возможности эффективного туннелирования в движущийся кристалл волн, но только скользящего или почти скользящего распространения при умеренных (кривые 3, рис. 3) и даже малых (штриховая кривая, рис. 3) углах падения.

В последнем случае требуются сверхвысокие скорости ОПП $\beta > 2$, когда возможна обращенная рефракция. В отношении самого явления туннелирования область обращенной рефракции $\alpha > \alpha^{**}$ ($\alpha^{**} \approx 82^{\circ}$ для штриховой кривой рис. 3) не представляет интереса в связи с вытекающим из формулы (5) "запиранием" зазора при $k_y^{(1)} + k_y^{(2)} = 0$ и существенным снижением коэффициента прохождения |T| в окрестности угла "запирания". Привлекает, однако, внимание возможность усиления отраженной волны |R| > 1 (см. кривую 4 на рис. 2 и кривые 1-3 на врезке рис. 2). Оно возникает благодаря тому, что волна в движущемся кристалле при обращенной рефракции распространяется, как показано на рис. 1, a, штриховой стрелкой и жирной стрелкой на рис. 1, b к зазору и в этом же направлении переносит энергию.

Похожая геометрия имеет место при акустоэлектронном усилении акустической волны, отраженной от границы слоистой структуры "пьезоэлектрик-зазор-полупроводник с тянущим полем" [10] (см. также [3]). Роль объемной акустической волны с обращенным фронтом выполняют для подвода энергии к зазору со стороны полупроводника подтекающие (в условиях сверхзвукового дрейфа носителей заряда вдоль границы) приграничные плазменные колебания, индуцированные падающей волной электрическими полями через зазор. В рассматриваемом случае усиление отраженной волны обязано сверхзвуковому конвективному сносу также индуцированных через зазор пьезоэлектрических зарядов вследствие движения кристалла. Естественно, что

с ростом толщины зазора, как и в случае акустоэлектронного усиления, происходит ослабление электрической связи кристаллов и, как показывают кривые 1-3 на врезке рис. 2, усиление снижается.

Список литературы

- [1] Kaliski S. // Proc. Vibr. Probl. 1966. V. 7. N 2. P. 95-104.
- [2] Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989. 768 с.
- [3] Балакирев М.К., Гилинский И.А. Волны в пьезокристаллах. Новосибирск: Наука, 1982. 240 с.
- [4] Балакирев М.К., Горчаков А.В. // ФТТ. 1977. Т. 19. В. 2. С. 571-572.
- [5] Балакирев М.К., Богданов С.В., Горчаков А.В. // ФТТ. 1978. Т. 20. В. 2. С. 588–590.
- [6] Филиппов В.В. // ЖТФ. Т. 55. В. 5. С. 975–979.
- [7] Гуляев Ю.В., Плесский В.П. // ФТТ. 1978. Т. 20. В. 1. С. 133–136.
- [8] Гуляев Ю.В., Никитов С.А., Плесский В.П. // ФТТ. 1978. Т. 20. В. 5. С. 1580– 1581.
- [9] Акустические кристаллы / Под ред. М.П. Шаскольской. М.: Наука, 1982. 632 с.
- [10] Лямшев Л.М., Шевяхов Н.С. // Акуст. журн. 1973. Т. 19. В. 6. С. 918-920.