# 06,11

# Диэлектрические характеристики релаксорного состояния перовскитной керамики 0.9(Na<sub>1-x</sub>K<sub>x</sub>Bi)<sub>1/2</sub>TiO<sub>3</sub>-0.1Bi(ZnTi)<sub>1/2</sub>O<sub>3</sub> вблизи морфотропной фазовой границы

© Н.М. Олехнович, А.В. Пушкарев, Ю.В. Радюш

НПЦ НАН Белоруссии по материаловедению, Минск, Белоруссия E-mail: olekhnov@ifttp.bas-net.by

#### (Поступила в Редакцию 20 марта 2013 г.)

На основе рентгенодифракционных исследований найдено, что в системе твердых растворов 0.9(Na<sub>1-x</sub>K<sub>x</sub>Bi)<sub>1/2</sub>TiO<sub>3</sub>-0.1Bi(ZnTi)<sub>1/2</sub>O<sub>3</sub> имеет место морфотропная фазовая граница, лежащая в районе  $x \approx 0.25$ , которая разделяет области составов с ромбоэдрической (*R*3*c*) и тетрагональной (*P*4*mm*) структурами. Показано, что вблизи данной границы керамика исследованной системы проявляет свойства релаксорного сегнетоэлектрика. Приводятся результаты исследования диэлектрических свойств релаксорной керамики состава x = 0.3 по данным импеданс-спектров, измеренным в диапазоне частот  $25-10^6$  Hz при температурах 100-900 K. Установлено, что в области температур релаксорного состояния, лежащей ниже температуры максимума действительной части диэлектрической проницаемости ( $T'_m = 550$  K), диэлектрическая поляризация определяется суммой вкладов дипольных кластеров и матрицы. Температурная зависимость величины вклада кластеров, определяемая кинетикой их образования и замерзания, характеризуется кривой с максимумом, лежащим в районе 400 K. Процесс замерзания дипольных кластеров растянут по температуре больше чем на 200 K.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Т11-052).

### 1. Введение

Висмутсодержащие системы со структурой перовскита привлекают к себе внимание в связи с поиском сегнетоэлектрических и пьезоэлектрических материалов, не содержащих экологически вредного свинца и удовлетворяющих современным техническим требованиям. В этом направлении развиваются исследования твердых растворов (TP) на основе (NaBi) $_{1/2}$ TiO<sub>3</sub> (NBT), (KBi) $_{1/2}$ TiO<sub>3</sub> (КВТ) [1] и других висмут-содержащих соединений, обладающих сегнетоэлектрическими свойствами. NBT при комнатной температуре имеет ромбоэдрически искаженную перовскитную структуру (пространственная группа R3c) и характеризуется последовательностью температурных фазовых переходов с изменением характера дипольного упорядочения [2]. Известны системы ТР на основе NBT, у которых наблюдается морфотропная фазовая граница, вблизи которой диэлектрическая проницаемость и пьезоэлектрические коэффициенты достигают высоких значений (см. обзор [3] и ссылки в нем). ТР систем NBT-BaTiO<sub>3</sub> [4], NBT-PbZrO<sub>3</sub> [5], NBT-La(MgTi)<sub>1/2</sub>O<sub>3</sub> [6], NBT-Bi(ZnTi)<sub>1/2</sub>O<sub>3</sub> [7] проявляют свойства релаксорного сегнетоэлектрика. КВТ при комнатной температуре имеет тетрагонально искаженную перовскитную структуру (пространственная группа P4mm). ТР NBT-КВТ характеризуются последовательностью концентрационных фазовых переходов, связанных с изменением типа упорядоченных искажений кристаллической решетки [8].

В данной работе приводятся результаты исследования характеристик диэлектрического отклика перовскитной керамики  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3-0.1Bi(ZnTi)_{1/2}O_3$  составов, лежащих вблизи морфотропной фазовой границы. Перовскитная фаза соединения Bi(ZnTi)\_{1/2}O\_3 (BZT), получаемая при высоких давлениях и температурах, имеет тетрагонально-искаженную структуру [9]. В системе (1-x)NBT-xBZT при нормальном давлении образуются TP в ограниченной области составов (x < 0.2) [10]. По своим структурным и диэлектрическим характеристикам данные TP существенно отличаются от крайнего соединения NBT.

# 2. Методика эксперимента

TP Исходными реагентами синтеза лля  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$ служили высокой чистоты оксиды Bi2O3, TiO2, ZnO и карбонаты Na<sub>2</sub>CO<sub>3</sub> и K<sub>2</sub>CO<sub>3</sub>. Синтез проводился в три этапа по обычной керамической технологии. На первом этапе из смеси исходных реагентов заданного состава после помола в шаровой мельнице прессовались таблетки, которые подвергались термической обработке в закрытом корундовом тигле при температуре 1140 К в течение 0.4-1 h. Второй и третий этапы синтеза проходили при температуре 1270-1320 К (2 h). После каждого этапа синтеза получаемый продукт подвергался помолу в шаровой мельнице. Из готового порошка прессовались таблетки для последующего этапа. Керамика для диэлектрических измерений спекалась при 1370-1390 К.

Рентгеноструктурные исследования образцов проводились на дифрактометре ДРОН-3 в монохроматизированном  $CuK_{\alpha}$ -излучении.

Характеристики диэлектрического отклика керамики ТР измерялись для образцов-конденсаторов с серебряными электродами с использованием измерителя иммитанса Е7-20. Измерялись диэлектрическая проницаемость ( $\varepsilon'$ ) и тангенс угла диэлектрических потерь (tg  $\delta$ ) на фиксированных частотах от 10<sup>2</sup> до 10<sup>6</sup> Hz в зависимости от температуры, изменяющейся со скоростью 1.5-2 К/min в пределах от 100 до 900 К. Измерения проводились как в режиме нагревания, так и охлаждения. Частотные зависимости диэлектрических характеристик ТР определялись по параметрам комплексного импеданса Z\*, измеряемом при ступенчатом изменении частоты от 25 до 10<sup>6</sup> Hz. При каждой заданной температуре в интервале от 100 до 900 К в автоматическом режиме измерялись модуль Z и угол фазового сдвига  $\varphi$ комплексного импеданса для исследуемого конденсатора. По измеренным значениям Z и  $\varphi$  определялись действительная и мнимая составляющие комплексной диэлектрической проницаемости ( $\varepsilon^*$ ) и комплексной удельной электропроводности ( $\sigma^*$ )

$$\varepsilon^* = \varepsilon'(\omega) - j\varepsilon''(\omega) = \frac{l}{j\varepsilon_0 \omega s} Z^{*^{-1}}, \qquad (1)$$

$$\sigma^* = \sigma'(\omega) + j\sigma''(\omega) = \frac{l}{s} Z^{*^{-1}}, \qquad (2)$$

где  $\omega = 2\pi f$ ,  $\varepsilon_0$  — электрическая постоянная, *s* и *l* — площадь и толщина плоского конденсатора соответственно,  $j = \sqrt{-1}$ .

Из диаграммы  $\sigma' - \sigma''$  в области низких частот находилась величина удельной электропроводности керамики на постоянном токе  $\sigma_{dc}$  при разных температурах.

Анализировались частотные зависимости мнимой составляющей диэлектрической проницаемости, связанной только с диэлектрической поляризацией  $(\varepsilon''_{ac} = \varepsilon'' - \sigma_{dc}/\varepsilon_0\omega)$ , и диаграммы Коул–Коула  $\varepsilon''_{ac} - \varepsilon'$  на комплексной плоскости при разных температурах.

# 3. Результаты и их анализ

На основе анализа рентгеновских дифракционных спектров установлено, что диаграмма фазового состояния исследуемых ТР характеризуется наличием морфотропной фазовой границы (МФГ), лежащей в районе  $x_M \approx 0.25$ . При малом содержании калия в системе  $(x < x_M)$  кристаллическая решетка ТР является ромбоэдрически искаженной (пространственная группа R3c), подобно соединению (NaBi)<sub>1/2</sub>TiO<sub>3</sub>. У фазы, лежащей в области *x* > *x<sub>M</sub>* кристаллическая решетка является тетрагонально искаженной (пространственная группа P4mm), подобно соединению (KBi)<sub>1/2</sub>TiO<sub>3</sub>. Параметры элементарной ячейки обеих фаз линейно возрастают с увеличением х. Найдено, что для ромбоэдрической фазы имеет место антифазный поворот октаэдров вокруг гексагональной оси. Величина угла их поворота уменьшается с увеличением х и при приближении к МФГ становится сравнительно малой.

TP Сравним фазовые диаграммы  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$ TP И  $(Na_{1-x}K_xBi)_{1/2}TiO_3$ . Известно, что на фазовой диаграмме ТР  $(Na_{1-x}K_xBi)_{1/2}TiO_3$  при комнатной температуре выделяются три области составов, различающихся симметрией кристаллической решетки [8]. В области  $x \le 0.45$  ТР данной системы имеет ромбоэдрическую структуру, характеризующуюся антифазным поворотом октаэдров. В области  $x \ge 0.7$  существует *Р4тт*-фаза с тетрагонально искаженной кристаллической решеткой. В промежуточной области 0.45 < x < 0.7 TP имеет R3m-ромбоэдрическую структуру, у которой отсутствует поворот октаэдров. Из сравнения фазовых диаграмм  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$ систем и  $(Na_{1-x}K_xBi(_{1/2}TiO_3)$  следует, что при допировании системы  $(Na_{1-x}K_xBi)_{1/2}TiO_3$  цинком область *R3m*-фазы практически вырождается, а область существования *R3с*-фазы при этом существенно сужается.

3.1. Температурная зависимость диэлектрических характеристик керамики, проявляющей релаксорное состояние. керамика Исследования показали, что TP  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$ в области составов, лежащих в области МФГ, проявляет свойства релаксорного сегнетоэлектрика, а за пределами этой области — свойства сегнетоэлектрика с размытым фазовым переходом. Ниже приводятся результаты исследования керамики ТР, проявляющих релаксорное состояние.

На основе проведенных исследований установлен характер температурной зависимости действительной ( $\varepsilon'$ ) и мнимой ( $\varepsilon''$ ) составляющих диэлектрической проницаемости и тангенса угла диэлектрических потерь (tg  $\delta$ ) керамики ТР вблизи МФГ. Для иллюстрации проанализируем полученные результаты для состава x = 0.3 (рис. 1). Видно, что температурная зависимость  $\varepsilon'(T)$  характеризуется наличием максимума, положение которого ( $T'_m$ ) слабо зависит от частоты измерительного поля. Температура максимума лежит в области 550 К. Керамика в области  $T'_m$  характеризуется малым значением tg  $\delta$ .

Характер температурной зависимости  $\varepsilon'(T)$  в области  $T'_m < T < T'_m + 220$  соответствует размытому сегнетоэлектрическому фазовому переходу и описывается соотношением [11]

$$1/\varepsilon' - 1/\varepsilon'_m = \left(T - T'_m\right)^{\gamma} / C \tag{3}$$

при значении параметра  $\gamma$ , лежащим в области 1.9. Параметр  $\gamma$ , характеризующий степень размытия фазового перехода, может изменяться в общем случае в пределах  $1 \leq \gamma \leq 2$ . Наблюдаемое высокое значение  $\gamma$  свидетельствует, что исследуемая керамика характеризуется высокой степенью размытия фазового перехода. В области температур примерно выше 770 К температурная зависимость  $\varepsilon'(T)$  на высоких частотах, на которых эффект проводимости незначительный, соответствует закону Кюри–Вейса. Температура Кюри, определенная из экстраполяции зависимости  $1/\varepsilon'$  от T, составляет 580 К.



**Рис. 1.** Температурная зависимость действительной ( $\varepsilon'$ ) и мнимой ( $\varepsilon''$ ) составляющих диэлектрической проницаемости и тангенса угла диэлектрических потерь (tg  $\delta$ ) для твердого раствора с x = 0.3.

В области 200-500 К на кривых  $\varepsilon'(T)$  выявляется горб с повышенной дисперсией. На кривых температурных зависимостей  $\varepsilon''(T)$  и tg  $\delta(T)$  в указанной температурной области наблюдается максимум, который с увеличением частоты измерительного поля смещается в сторону более высоких температур. При этом величины  $\varepsilon''$  и tg  $\delta$  в максимуме возрастают. Подобный характер температурной зависимости характеристик диэлектрического отклика известен для других висмутсодержащих перовскитов [6,12]. Наблюдаемый характер поведения  $\varepsilon'$ ,  $\varepsilon''$  и tg  $\delta$  в указанной области температур свидетельствует о переходе системы в состояние релаксорного сегнетоэлектрика. Наблюдаемая частотная зависимость температуры максимума мнимой составляющей диэлектрической проницаемости (T'') описывается соотношением Фогеля-Фулчера [13]

$$f = f_0 \exp(-E_a/k(T_m'' - T_f)),$$
(4)

где f — частота, при которой максимум  $\varepsilon''$  наблюдается при  $T''_m$ ,  $E_a$  и  $T_f$  — энергия активации и температура замерзания полярных кластеров соответственно,  $f_0$  характеристическая частота.

Как показал анализ, наблюдаемая зависимость  $T''_m(f)$  описывается соотношением (4) при следую-

щих значениях параметров:  $T_f = 270$  K,  $E_a = 0.07$  eV,  $f_0 = 7.4 \cdot 10^5$  s<sup>-1</sup>.

3.2. Характеристики релаксации лиэлектрической поляризации в области температур релаксорного состояния. Для оценки характеристик релаксации диэлектрической поляризации керамики в области релаксорного состояния анализировались частотные зависимости мнимой составляющей диэлектрической проницаемости, связанной только с диэлектрической поляризацией  $(\varepsilon_{ac}'' = \varepsilon'' - \sigma_{dc}/\varepsilon_0 \omega)$  и диаграммы  $\varepsilon_{ac}'' - \varepsilon'$  на комплексной плоскости. Установлено, что удельная электропроводность керамики на постоянном токе экспоненциально возрастает с температурой ( $\sigma_{dc} = \sigma_{dc0} \exp(-\Delta E_{dc}/kT)$ ). Значение энергии активации носителей заряда ( $\Delta E_{dc}$ ) в области температур  $T < T'_m$  составляет 0.3 eV. Как показал анализ, величина  $\sigma_{dc}$  в области температур релаксорного состояния керамики сравнительно мала. Например, при комнатной температуре она не превышает порядка  $10^{-11}$ S/m. Вклад  $\sigma_{dc}$  в  $\varepsilon''$  при T < 450 K оказался сравнительно малым и не учитывался.

На рис. 2 и 3 представлены частотные зависимости  $\varepsilon''_{ac}$ и диаграммы  $\varepsilon_{ac}'' - \varepsilon'$  при разных температурах в области *T* < *T*<sup>'</sup><sub>m</sub>. Из анализа приведенных данных следует, что диэлектрический отклик исследуемой керамики определяется суммой двух составляющих. Одна составляющая связана с диэлектрической поляризацией дипольных кластеров, а другая является вкладом самой матрицы (сегнетоэлектрических доменов). Дипольные кластеры дают вклад в большей мере в области высоких частот, на что указывает факт увеличения высоты максимума на кривой  $\varepsilon''(T)$  с увеличением частоты (рис. 1). В области низких частот диэлектрическая поляризация в большей мере определяется вкладом матрицы. Соотношение вкладов зависит от температуры. По мере увеличения температуры примерно до 400-420 К вклад дипольных кластеров возрастает, а при дальнейшем увеличении Т он уменьшается.

Для описания диэлектрического отклика исследуемой керамики использовалась эквивалентная схема, представленная на вставке рис. 2, где СРЕ — элемент постоянной фазы, адмиттанс которого записывается в виде  $Y = A^{-1}(j\omega)^{\alpha}$ . Индексы "*c*" и "*d*" относятся к системе дипольных кластеров и матрицы соответственно.

Из анализа данной эквивалентной схемы следует выражение, которое позволяет описать в соответствии с известным соотношением Коул–Коула [14] частотную зависимость комплексной диэлектрической проницаемости системы, состоящей из двух подсистем (в данном случае дипольных кластеров и матрицы) с широким спектром времен релаксации диэлектрической поляризации

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\Delta \varepsilon_c}{1 + (j\omega\tau_c)^{1-\alpha_c}} + \frac{\Delta \varepsilon_d}{1 + (j\omega\tau_d)^{1-\alpha_d}}, \qquad (5)$$

где  $\tau$  — среднее время релаксации,  $\alpha$  — параметр, определяющий ширину спектра времен релаксации соответствующей подсистемы.

Из анализа кривых частотной зависимости  $\varepsilon_{ac}^{\prime\prime}$  (рис. 2) и диаграмм  $\varepsilon''_{ac} - \varepsilon'$  (рис. 3) следует, что среднее время релаксации диэлектрической поляризации матрицы



Рис. 2. Частотная зависимость мнимой составляющей диэлектрической проницаемости ( $\varepsilon_{ac}''$ ) для твердого раствора с x = 0.3 при разных температурах.



**Рис. 3.** Диаграмма  $\varepsilon_{ac}'' - \varepsilon'$  на комплексной плоскости для твердого раствора с x = 0.3 при разных температурах.



**Рис. 4.** Диаграмма  $\varepsilon_c'' - (\varepsilon_{\infty} + \varepsilon_c')$  на комплексной плоскости для системы дипольных кластеров твердого раствора с x = 0.3при разных температурах.

велико ( $\omega \tau_d \gg 1$ ). Тогда действительную и мнимую составляющие диэлектрической проницаемости кластеров  $(\varepsilon_c' \, \mathrm{u} \, \varepsilon_c'')$  на основе (5) можно выразить

$$\varepsilon_{\infty} + \varepsilon_{c}' = \varepsilon' - \frac{B \operatorname{tg} \frac{\pi}{2} \alpha_{d}}{\omega^{1-\alpha_{d}}}$$

$$= \varepsilon_{\infty} + \frac{\Delta \varepsilon_{c} \left(1 + \sin \frac{\pi}{2} \alpha_{c} (\omega \tau_{c})^{1-\alpha_{c}}\right)}{1 + 2 \sin \frac{\pi}{2} \alpha_{c} (\omega \tau_{c})^{1-\alpha_{c}} + (\omega \tau_{c})^{2(1-\alpha_{c})}},$$

$$\varepsilon_{c}'' = \varepsilon_{ac}'' - \frac{B}{\omega^{1-\alpha_{d}}}$$

$$= \frac{\Delta \varepsilon_{c} \frac{\pi}{2} \alpha_{c} (\omega \tau_{c})^{1-\alpha_{c}}}{1 + 2 \sin \frac{\pi}{2} \alpha_{c} (\omega \tau_{c})^{1-\alpha_{c}} + (\omega \tau_{c})^{2(1-\alpha_{c})}}, \quad (6)$$

где  $B = \Delta \varepsilon_d \cos \frac{\pi}{2} \alpha_d / \tau_d^{1-\alpha_d}$ . На основе (6) вариационным методом определялись параметры B и  $\alpha_d$ , при которых диаграммы  $\varepsilon_c''(\varepsilon_\infty + \varepsilon_c')$ на комплексной плоскости описываются дугой окружности (диаграмма Коул-Коула [14]).

На рис. 4 для иллюстрации представлены диаграммы  $\varepsilon_c'' - (\varepsilon_{\infty} + \varepsilon_c')$  для системы дипольных кластеров, полученные при разных температурах. Видно, что центры окружностей, описывающих данные диаграммы, лежат много ниже оси абсцисс. Данный факт означает, что параметр  $\alpha_c$  намного больше нуля. По отрезкам, отсекаемым дугой окружности на оси абсцисс, определялись  $\Delta \varepsilon_c$  и  $\varepsilon_{\infty}$ . Параметр  $\alpha_c$  находился из соотношения  $\cos \frac{\pi}{2} \alpha_c = \Delta \varepsilon_c / 2R$ , где R — радиус окружности.

На рис. 5 представлены графики температурной зависимости параметров  $\Delta \varepsilon_c$ ,  $\alpha_c$  и  $\alpha_d$ . Зависимость  $\Delta \varepsilon_c$ , как видно из данного рисунка, характеризуется кривой с максимумом, который наблюдается в области 400 К. Из экстраполяции кривой  $\Delta \varepsilon_c(T)$  в сторону более высоких температур до нулевого значения можно заключить, что стартовая температура зарождения дипольных кластеров лежит в области  $T'_m$  (550 K). Возрастание  $\Delta \varepsilon_c$ при понижении температуры от  $T'_m$  до 400 K, очевидно, связано с увеличением числа кластеров и их размеров. Уменьшение данной величины в области T < 400 K



**Рис. 5.** Температурная зависимость параметров  $\alpha_d$ ,  $\alpha_c$  и  $\Delta \varepsilon_c$ .

обусловлено процессом замерзания кластеров, который протекает в сравнительно широком температурном интервале. Как указывалось выше, температура замерзания кластеров  $(T_f)$ , определенная из соотношения Фогеля– Фулчера (4) по температурному смещению частоты максимума  $\varepsilon''(T)$ , равна 270 К. Значение  $\Delta \varepsilon_c$  при  $T = T_f$ , как видно из рис. 5, на порядок меньше, чем в максимуме. Данный факт означает, что при понижении температуры до T<sub>f</sub> подавляющая часть дипольных кластеров оказывается в замороженном состоянии. Среднее время релаксации т<sub>с</sub>, как показала оценка, при уменьшении температуры от  $T'_m$  до 400 К возрастает почти на порядок и при 400 К составляет около 5 · 10<sup>-7</sup> s. В области температур  $T < 400 \, {\rm K}$  величина  $\tau_c$  практически не изменяется. Исходя из факта возрастания параметра  $\alpha_c$ при понижении температуры до 400 К, можно полагать, что спектр времен релаксации дипольных кластеров при этом расширяется. Расширение спектра времен релаксации и увеличение среднего времени релаксации  $\tau_c$ при понижении температуры в указанной области могут быть обусловлены увеличением размера дипольных кластеров и возрастанием степени их взаимодействия. В области температур ниже 400 К идет процесс замерзания в первую очередь более крупных кластеров, а рост среднего времени релаксации замедляется. С учетом характера концентрационного фазового перехода, имеющего место в районе  $x \approx 0.25$ , можно предположить, что

кластеры представляют собой полярные нанообласти с ромбоэдрической структурой.

Значение параметра  $\alpha_d$ , характеризующего ширину спектра времен релаксации матрицы, как видно из рис. 5, по мере понижения температуры возрастает. Степень возрастания зависит от температуры. В области более высоких температур (выше примерно 360 К) степень возрастания велика, а в области более низких температур она является сравнительно малой. Для оценки характера изменения с температурой среднего времени релаксации диэлектрической поляризации матрицы был проведен анализ температурной зависимости величины B(T) (6). Установлено, что температурная зависимость величины  $(\cos \frac{\pi}{2} \alpha_d / B)^{1/(1-\alpha_d)}$ , пропорциональной среднему времени релаксации диэлектрической поляризации матрицы т<sub>d</sub>, носит экспоненциальный характер в соответствии с соотношением Арениуса  $(\tau = \tau_0 \exp(\Delta E/kT)).$ 

### 4. Заключение

Проведенные исследования показали, что вил TP диаграммы фазового состояния системы  $(Na_{1-x}K_{x}Bi)_{1/2}TiO_{3}$ при допировании цинком на уровне  $0.1Bi(ZnTi)_{1/2}O_3$ качественно изменяется.  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$ В системе полностью вырождается область составов R3m фазы недопированой системе эта область является (в протяженной (0.45 < x < 0.7)). Область существования тетрагональной Р4тт фазы при этом расширяется до пределов  $0.25 \le x \le 1$ , а область ромбоэдрической *R*3*c* фазы сужается ( $0 \le x \le 0.25$ ). В исследуемой системе твердых растворов обнаружена морфотропная фазовая граница, лежащая в районе  $x_M \approx 0.25$ , вблизи которой проявляются свойства релаксорного сегнетоэлектрика.

На основе исследования температурной зависидиэлектрической мости составляющих проницаемости и импеданс-спектров выявлены закономернопроявления характеристик диэлектрического сти отклика керамики релаксорного сегнетоэлектрика  $0.9(Na_{1-x}K_xBi)_{1/2}TiO_3 - 0.1Bi(ZnTi)_{1/2}O_3$  ниже и выше температуры максимума диэлектрической проницаемости  $(T'_m \approx 550 \,\mathrm{K})$ . Установлено, что в области температур выше T' диэлектрические свойства TP соответствуют сегнетоэлектрику с размытым фазовым переходом. В области температур  $T < T'_m$  система переходит в релаксорное состояние. Оно определяется наличием максимума на кривой  $\varepsilon''(T)$ , который с увеличением частоты возрастает и смещается в сторону более высоких температур, а также наблюдаемыми особенностями на частотной зависимости  $\varepsilon''(f)$  и диаграммах Коул-Коула. В области релаксорного состояния система характеризуется двумя составляющими поляризации: одна связана с дипольными кластерами, другая — с матрицей. Температурная зависимость величины вклада поляризации дипольных кластеров характеризуется кривой с максимумом, лежащим в области 400 К. Уменьшение этого вклада с понижением температуры ниже температуры максимума обусловлено процессом замерзания кластеров, который растянут по температуре больше, чем на 200 К. Среднее время релаксации дипольных кластеров увеличивается с понижением температуры до 400 К и практически остается постоянным при дальнейшем понижении температур.

# Список литературы

- [1] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ **2**, 2982 (1960).
- [2] G.O. Jones, P.A. Thomas. Acta Cryst. B 58, 168 (2002).
- [3] V.A. Isupov. Ferroelectrics **315**, 123 (2005).
- [4] J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J.P. Mercurio, K. Konieczny. J. Eur. Ceram. Soc. 23, 1559 (2003).
- [5] P. Marchet, E. Boucher, V. Dorcet, J.P. Mercurio. J. Eur. Ceram. Soc. 26, 3037 (2006).
- [6] A.N. Salak, V.M. Ferreira. J. Phys.: Cond. Matter 18, 5703 (2006).
- [7] Н.М. Олехнович, Ю.В. Радюш, А.В. Пушкарев. ФТТ 54, 2233 (2012).
- [8] G.O. Jones, J. Kreisel, V. Jennings, M.A. Geday, P.A. Thomas, A.M. Glazer. Ferroelectrics 270, 191 (2002).
- [9] M.R. Suchomel, A.W. Fogg, M. Allix, H. Niu, J.B. Claridge, M.J. Rosseinsky. Chem. Mater. 18, 4987 (2006).
- [10] Ю.В. Радюш, Н.М. Олехнович, А.В. Пушкарев. Неорган. материалы 1, 48 (2012).
- [11] K. Uchino, Sh. Nomura. Ferroelectrics 44, 55 (1982).
- [12] J.-R. Gomah-Pettry, S. Saïd, P. Marchet, J.-P. Mercurio. J. Eur. Ceram. Soc. 24, 1165 (2004).
- [13] D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig. J. Appl. Phys. 68, 2916 (1990).
- [14] E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications. John Willey&Sons, New York (2005). 616 p.