06 Численное моделирование электрических свойств структуры Si-SiO,-VO,

© Н.А. Кулдин, А.А. Величко, А.Л. Пергамент, Г.Б. Стефанович, П.П. Борисков

Петрозаводский государственный университет E-mail: kuldin@psu.karelia.ru

Поступило в Редакцию 24 августа 2004 г. В окончательной редакции 21 февраля 2005 г.

Проведено численное моделирование протекания переменного тока в структуре Si-SiO₂-VO₂, в которой эффект электрического переключения с S-образной BAX обусловлен фазовым переходом металл-полупроводник в диоксиде ванадия. Показана возможность управления динамикой электрического переключения структуры на высоких частотах ($10^5 - 10^9$ Hz), что делает ее перспективным элементом для использования в высокочастотной микроэлектронике в качестве близкого аналога тиристоров и фототиристоров.

Фазовый переход металл-полупроводник (ФПМП) в диоксиде ванадия и обусловленный им эффект электрического переключения с S-образной вольт-амперной характеристикой (ВАХ) перспективны для создания самых разнообразных электронных устройств [1]. При комнатных температурах переключение хорошо описывается моделью критической температуры [1,2]. В этой модели при достижении критического тока I_{th} , проходящего через структуру, происходит джоулев разогрев токового канала до температуры прямого $\Phi\Pi M\Pi T_t \sim 340 \,\mathrm{K}$, вследствие чего проводимость канала резко возрастает, а величина установившегося тока I определяется напряжением внешнего источника и ограничительным сопротивлением. При снижении I до тока поддержания I_h канал остывает до температуры обратного ФПМП $T'_t \sim 320-338 \,\mathrm{K}$ $(T'_t < T_t$ из-за гистерезиса [1]) и структура переходит в высокоомное состояние. В [3] нами была описана схема включения структуры $Si-SiO_2-VO_2$ (рис. 1, *a*, *b*), динамикой электрического переключения которой можно управлять, меняя либо напряжение смещения на Siподложке (U_{s_i}) относительно земли, либо интенсивность освещения (J).

63

Управление переключением заключается в переводе структуры из "включенного" состояния, когда динамическая BAX имеет S-образный вид (с характерными всплесками тока на осциллограмме), в "выключенное", когда переключение на ВАХ отсутствует. Механизм управления переключением заключается в пространственном перераспределении переменного тока в структуре (за счет изменения внутренней емкости структуры) таким образом, что во "включенном" состоянии амплитуда тока через VO_2 -канал выше I_{th} , а в "выключенном" ниже I_{th} . В экспериментально изучаемой схеме ($R_1 = 100 \,\mathrm{k\Omega}, R_2 = 10 \,\Omega, R_3 = 560 \,\mathrm{k\Omega},$ $C_1 = 0.022 \,\mu\text{F}$) и конфигурации переключателя ($h = 40 \,\mu\text{m}, \, l = 13 \,\mu\text{m},$ $D=1\,{
m mm},\,{
m Si}$ -*р*-типа, $ho_{
m Si}=1\,{
m \Omega}\cdot\,{
m cm},\,d_{
m SiO_2}\sim 1000\,{
m A},\,d_{
m VO_2}\sim 3000\,{
m A})$ наиболее эффективное управление переключением проводилось при подаче на структуру питающего переменного напряжения с частотой f порядка $1-10\,\mathrm{kHz}$ и амплитудой $U = 15\,\mathrm{V}$, так как увеличение f свыше $10\,\mathrm{kHz}$ вело к сильному шунтированию тока VO2-канала внутренней емкостью структуры и невозможности достижения величины тока I_{th} через канал [4].

Возможно ли управление переключением в Si–SiO₂–VO₂ структуре на более высоких частотах и какова оценка максимального порядка этих частот? Для ответа на эти вопросы было проведено численное моделирование протекания переменного тока в структуре, что и являлось целью настоящей работы.

Оценим сначала время электрического переключения t_s . Как показано в [5], время развития ФПМП составляет менее 10^{-13} s. Поэтому основной вклад в t_s , при тепловом механизме переключения, будет давать время остывания канала до T'_t (τ — постоянная теплосброса). Представим канал исследуемой структуры в виде прямоугольного стержня с длиной l и металлическими контактами на концах, имеющими постоянную температуру окружающей среды T_0 . При учете ухода джоулева тепла только через контакты решение уравнения теплопроводности для конечного стержня [6] дает выражение для оценки τ как

$$\tau = \frac{l^2 \cdot c \cdot \rho}{\pi^2 \cdot \lambda},\tag{1}$$

где *c*, *ρ*, λ — теплоемкость, плотность и теплопроводность VO₂ в металлической фазе. Подставив *c* ~ 770 J · kg⁻¹ · K⁻¹, *ρ* = 4340 kg · m⁻³, $\lambda = 9.8 \, \text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ [7] и предполагая *l* = 100 nm, получим величину $\tau \approx 3.5 \cdot 10^{-10}$ s. Например, времена переключения ~ 10^{-9} s

с $l \sim 100$ nm в сэндвич конфигурации переключателя были экспериментально зафиксированы в работе [8]. Таким образом, мы убедились в возможности наблюдения переключения на частотах до 10^9 Hz.

Для ответа на вопрос о возможности управления электрическим переключением в Si-SiO₂-VO₂ структуре в этом диапазоне частот рассмотрим ее упрощенную эквивалентную схему включения (рис. 1, с). Здесь мы пренебрегаем малым токовым сопротивлением R_2 , а также фильтром C1R3 и источником 2, которые составляют цепь подачи постоянного управляющего напряжения Usi на Si-подложку и мало влияют на прохождение переменного тока от Si-подложки на землю. Через R_{VO_2} обозначено сопротивление VO_2 -канала в полупроводниковой фазе при $T \sim T_t$, емкости под левым (рис. 1, *a*) контактом: C_{ox} — емкость подзатворного диэлектрика ${\rm SiO}_2,\ C_{sc}$ — емкость области пространственного заряда (ОПЗ) на границе Si-SiO₂, C_{ss} емкость поверхностных состояний (ПС). Следует отметить, что под заземленным правым (рис. 1, a) контактом емкость не учитывается, так как она не участвует в токопереносе. Следует также отметить некоторое упрощение, связанное с отсутствием в схеме (рис. 1, c) емкости ОПЗ VO_2 -слоя C_{VO_2} , что в идеале соответствует случаю расположения Alконтактов непосредственно на SiO₂. Это упрощение является адекватным также и в силу более высокой концентрации n_e основных носителей (электронов) в VO₂-пленке ($n_e \sim 10^{18} \, {\rm cm^{-3}}$ [2], $T_0 \sim 300 \, {\rm K}$) в полупроводниковой фазе по сравнению с концентрацией n_p основных носителей (дырок) в Si-подложке (Si-*p*-типа, $n_p \sim N_A = 10^{16} \, {\rm cm}^{-3}$, $T_0 \sim 300 \,{\rm K}, \, N_A$ — концентрация акцепторов), в результате чего длина Дебая в ОПЗ VO2-пленки почти на порядок меньше, чем в ОПЗ Siподложки, и дает меньший вклад в результирующую емкость структуры.

Управление амплитудой тока, проходящего через $R_{\rm VO_2}$, осуществляется варьированием общей емкости *C* за счет изменения величины поверхностного потенциала ψ_s , который является функцией $U_{\rm Si}$ [9]. По схеме (рис. 1, *c*) легко видеть, что выражение для *C* имеет вид

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{sc} + C_{ss}}.$$
(2)

Если представить C_{sc} в виде трех слагаемых: C_p — емкости ОПЗ в области обогащения, C_B — емкости ОПЗ в области обеднения и слабой инверсии, C_n — емкости ОПЗ в области сильной инверсии, а также

Рис. 1. Схема включения структуры Si-SiO₂-VO₂ (*a*) (d_{VO_2} — толщина VO₂-пленки, d_{SiO_2} — толщина SiO₂-слоя, *I* — источник переменного сигнала с частотой *f* и амплитудой *U*, *2* — источник постоянного напряжения смещения на Si-подложке, R_1 и R_2 — ограничительное и токовое сопротивления, C_1R_3 — фильтр, U_{ν} и I_{ν} — выходы для измерения BAX); вид сверху (*b*) (*l*, *h* — длина и ширина канала переключения, *D* — диаметр Al-контактов); эквивалентная схема (*c*).

учесть зависимость C_n и C_{ss} от частоты [9], то (2) примет следующий вид:

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_p + C_B + \frac{C_n}{1 + \omega^2 \cdot \tau_n^2} + \frac{C_{ss}}{1 + \omega^2 \cdot \tau_{ss}^2}},$$
(3)

где τ_n — времени жизни неосновных носителей в ОПЗ, τ_{ss} — время перезарядки ПС, $\omega = 2\pi f$. Суммирование C_p , C_B и C_n имеет место не потому, что они включены параллельно, а для придания универсализма формуле (3) при проведении численных расчетов, так как при разных ψ_s одна из емкостей имеет превалирующее значение по сравнению с другими [9], и их сумма адекватно описывает зависимость C_{sc} от ψ_s .

Из схемы (рис. 1, c) легко найти выражение для амплитуды тока I, проходящего через R_{VO_2} :

$$I = \frac{U}{\sqrt{\left(R_1 + R_{\text{VO}_2}\right)^2 + \left(\omega \cdot C \cdot R_1 \cdot R_{\text{VO}_2}\right)^2}}.$$
(4)

Учитывая, что C_p , C_B и C_n есть функции ψ_s [9], и предполагая, что энергетический спектр распределения ПС на границе раздела Si-SiO₂ является квазинепрерывным [9], на основании формул (4) и (3) мы рассчитали зависимость I от ψ_s на частоте f = 6 kHz (рис. 2, кривая I). В модельных расчетах использовались значения: U = 14 V, $R_1 = 100$ kΩ, $R_{VO_2} = 160$ kΩ, $h = 40 \,\mu$ m, $l = 13 \,\mu$ m, D = 1 mm ($S = 7.85 \cdot 10^{-3}$ cm² — площадь контакта), $d_{VO_2} = 3000$ A, $\varepsilon_s = 11.9$ — диэлектрическая проницаемость Si, $\varepsilon_{ox} = 3.82$ — диэлектрическая проницаемость SiO₂, $L_d = 4.06 \cdot 10^{-6}$ cm — дебаевская длина, $T_0 = 290$ K, $d_{SiO_2} = 10^{-5}$ cm, $\varphi_0 = 0.35$ V — расстояние между уровнем Ферми и серединой запрещенной зоны в квазинейтральном объеме Si, $N_A = 10^{16}$ cm⁻³ (Si p-типа), $N_{ss} = 10^{-11}$ cm⁻² eV⁻¹ — энергетическая плотность ПС, $\tau_n = 2.5 \cdot 10^{-4}$ s, $\tau_{ss} = 10^{-4}$ s, $j_{th} = 4.17 \cdot 10^2$ A · cm⁻² — критическая плотность тока ($I_{th} = 5 \cdot 10^{-5}$ A).

Как видно, кривая I пересекает уровень I_{th} (пунктирная линия 2) в двух рабочих точках $\psi_s = 0.1$ V и $\psi_s = 0.84$ V, которые соответствуют двум экспериментально определенным критическим управляющим напряжениям смещения $U_{\text{Si}} = 4.6$ V и $U_{\text{Si}} = -12.2$ V [3] соответственно. Численное моделирование показало, что при увеличении

Рис. 2. Рассчитанная зависимость амплитуды тока *I*, проходящего через R_{VO_2} от ψ_s для двух частот *f* (кривые *I* и *I'*) с соответствующими уровнями значений I_{th} (пунктирные линии 2 и 2'); I - f = 16 kHz, $2 - I_{th} = 5 \cdot 10^{-5}$ A (правая шкала); $I' - f = 10^9$ Hz, $2' - I_{th} = 3.75 \cdot 10^{-7}$ A (левая шкала).

частоты сигнала, подаваемого на структуру, происходит уменьшение максимальной амплитуды тока I_{\max} (I_{\max} , I_{\min} — максимальное и минимальное значение амплитуды тока I при варьировании ψ_s), что при условии $I_{\max} < I_{th}$ приводит к исчезновению переключения. Однако если уменьшить геометрические размеры переключателя, а именно площадь контакта S, то I_{\max} снова превысит I_{th} .

Влиять на параметры переключателя, такие как критический ток I_{th} , критическое напряжение переключения U_{th} и $R_{\rm VO_2}$, можно при помощи варьирования размеров межэлектродного промежутка. Значение I_{th} можно оценить следующим образом:

$$I_{th} = j_{th} \cdot h \cdot d_{\rm VO_2}.\tag{5}$$

Значения U_{th} и R_{VO_2} оцениваются как

$$U_{th} = \rho_{\mathrm{VO}_2} \cdot j_{th} \cdot l, \tag{6}$$

$$R_{\rm VO_2} = \frac{\rho_{\rm VO_2} \cdot l}{h \cdot d_{\rm VO_2}},\tag{7}$$

где $\rho_{\rm VO_2}$ — удельное сопротивление пленки VO₂ в полупроводниковой фазе при $T \sim T_t~(\rho_{\rm VO_2} \sim 14.8~\Omega\cdot\,{\rm cm}).$

Используя (1)–(7), мы рассчитали зависимость I от ψ_s на частоте $f = 10^9$ Hz (рис. 2, кривая I') со следующими измененными относительно расчетов на частоте f = 6 kHz параметрами: U = 8 V, $R_{\rm VO_2} = 164$ k Ω , $h = 0.3 \,\mu$ m, $l = 0.1 \,\mu$ m, $D = 35 \,\mu$ m ($S = 9.62 \cdot 10^{-6}$ cm²), $I_{th} = 3.75 \cdot 10^{-7}$ A, $U_{th} = 0.062$ V. Как видно (рис. 2), при переходе в гигагерцовый диапазон частот, когда $f^{-1} \ll \tau_n, \tau_{ss}$, наблюдается значительное смещение одной из рабочих точек в область больших значений ψ_s ($\psi_s > 2$), реально недостижимых при любом $U_{\rm Si}$ [9].

Таким образом, в данной работе мы показали, что если уменьшать геометрические размеры переключателя, например, с помощью разрабатываемого нами литографического процесса по оксидам ванадия [10], то уменьшается время электрического переключения Si–SiO₂–VO₂ структуры с возможностью достижения гигагерцового диапазона рабочих частот. При условии $f^{-1} \ll \tau_n$, τ_{ss} переключатель имеет одно критическое управляющее напряжение смещения U_{Si} . Полученные результаты делают указанную структуру перспективным элементом для использования в высокочастотной микроэлектронике в качестве близкого аналога тиристоров и фототиристоров (возможность оптического управления была ранее продемонстрирована в [3]).

Исследования, описанные в данной работе, были проведены в рамках проекта № РZ-013-02, поддерживаемого Американским фондом гражданских исследований и развития (CRDF), грантов Министерства образования РФ № Y1-P-13-02, № А04-2.9-718, проектом "Нанопористые материалы, технологии и наноструктуры на основе полупроводниковых и оксидных соединений" по программе "Развитие научного потенциала высшей школы".

Список литературы

- [1] Бугаев А.А., Захарченя Б.П., Чудновский Ф.А. // Фазовый переход металл-полупроводник и его применение. Л.: Наука, 1979. 183 с.
- Борисков П.П., Величко А.А., Пергамент А.Л. и др. // Письма в ЖТФ. 2002.
 Т. 28. В. 10. С. 13–18.
- Величко А.А., Кулдин Н.А., Стефанович Г.Б. и др. // Письма в ЖТФ. 2003. Т. 29. В. 12. С. 49–53.
- [4] Кулдин Н.А., Величко А.А. // Успехи современного естествознания. 2004. В. 4. С. 44-46.
- [5] Cavalleri A., Toth C., Siders C. et al. // Phys. Rev. Lett. 2001. V. 87. P. 237 401– 237 404.
- [6] Очан Ю.С. // Методы математической физики. М.: Высш. школа, 1965. 383 с.
- [7] Самсонов Г.В. // Физико-химические свойства окислов. М.: Металлургия, 1978. 472 с.
- [8] Stefanovich G., Pergament A., Stefanovich D. // Journal of Physics: Condensed Matter. 2000. V. 12. P. 8837–8845.
- [9] Зи С. // Физика полупроводниковых приборов. М.: Мир, 1984. Т. 1. 455 с.
- [10] Stefanovich G., Pergament A., Velichko A. et al. // Journal of Physics: Condensed Matter. 2004. V. 16. P. 4013–4024.