04;10 Кризис плазменного потока и предельная температура электронов в вакуумной дуге в аксиальном магнитном поле

© И.А. Кринберг

Иркутский государственный университет E-mail: krinberg@physdep.isu.ru

Поступило в Редакцию 4 ноября 2004 г.

Исследована возможность сверхзвукового движения катодной плазмы в слаботочной вакуумной дуге, помещенной в аксиальное магнитное поле. Показано, что рост электронной температуры неизбежно приводит к уменьшению скорости плазмы до скорости звука, т.е. кризису течения. Получена зависимость предельной длины стационарного потока от величины магнитного поля. Найдено, что предельно достижимая электронная температура плазмы определяется начальной энергией ионов и оказывается равной утроенному значению температуры электронов в области катодного пятна.

1. Введение. Как известно [1,2], при подведении энергии к сверхзвуковому цилиндрическому потоку газа (плазмы) поток замедляется. Если непрерывный переход к дозвуковой скорости оказывается невозможным, то на некотором расстоянии от начального сечения неизбежно наступает кризис течения, т.е. дальнейшее стационарное движение становится невозможным. Подобная ситуация может возникнуть в сверхзвуковом потоке плазмы, эмитируемом из области катодного пятна электровакуумного разряда [3]. В работах [4,5] анализируются критические условия для высокоточной вакуумной дуги, в которой скорость "быстрых" катодных ионов уменьшается до звуковой вследствие их взаимодействия со встречным потоком "медленных" ионов, идущих от анода. В настоящей работе рассматривается возможность наступления кризиса течения при наложении аксиального магнитного поля на слаботочный вакуумно-дуговой разряд с полым или сетчатым анодом, когда поток ионов от анода практически отсутствует.

Ранее было показано [6], что расширяющийся (конусообразный) плазменный поток, идущий от катода к аноду, трансформируется в

89

течение вдоль магнитного поля, если частота столкновений электронов с ионами становится меньше их ларморовой частоты. Вследствие джоулева нагрева температура электронов вдоль такого потока непрерывно возрастает, что приводит к его торможению. Изменение скорости не учитывалось в [6], но было принято во внимание в [7]. Данный модифицированный вариант модели используется в настоящей работе при анализе кризиса токонесущего плазменного потока во внешнем магнитном поле.

2. Модель плазменного потока. Квазиодномерная модель [7] предполагает постоянство плотности аксиального тока, а также плотности и температуры плазмы по сечению струи. Кроме того, пренебрегается температурой ионов по сравнению с электронной температурой и процессами вязкости и теплопроводности. В итоге получается следующая система уравнений, описывающая изменение параметров квазинейтральной плазмы в зависимости от расстояния *z* от катодного пятна:

$$\frac{d}{dz}\left(\rho V_{z}S\right)=0,\tag{1}$$

$$\rho V_z S \, \frac{dV_z}{dz} = -\frac{d(PS)}{dz} - \left(\frac{I}{c}\right)^2 \frac{d\ln R}{dz},\tag{2}$$

$$\rho V_z S \frac{dV_R}{dz} = \frac{3PS}{R} - \frac{2}{R} \left(\frac{I}{c}\right)^2 - \frac{\sigma I B^2}{e c^2 N_e} \frac{dR}{dz},\tag{3}$$

$$\frac{3}{2}\frac{dT_e}{dz} = T_e \frac{d\ln N_e}{dz} + \frac{eI}{\sigma S}.$$
(4)

Здесь I — сила разрядного тока, B = const — аксиальное внешнее магнитное поле, $\rho = mN_e/Z_i$ и $P = T_eN_e$ — плотность и давление плазмы; N_e , T_e — электронная концентрация и температура (в энергетических единицах); V_z — продольная скорость ионов (плазмы), m и Z_i — масса и средний заряд ионов, σ — проводимость плазмы, c — скорость света, e — элементарный заряд, $S = \pi R^2$ и R — сечение и радиус плазменной струи, $V_R = V_z dR/dz$ — радиальная скорость движения боковой границы струи. Для стационарного течения без вязкости и теплопроводности в отсутствие внешнего поля (B = 0) уравнения (1)–(3) совпадают с аналогичными уравнениями из работы [8].

3. Кризис течения. Исключая из (2)–(4) с помощью (1) плотность частиц, можно получить линейную алгебраическую систему

Рис. 1. Зависимость критической длины плазменного потока от величины внешнего магнитного поля при различных значениях начального радиуса потока (сила тока 200 А, медный катод).

уравнений относительно первых производных от переменных T_e , V_z , V_R и R. Детерминант такой системы равен $DET = \frac{3}{2}V_z(1-C_S^2/V_z^2)$, где $C_S = (5Z_iT_e/3m)^{1/2}$ — локальная скорость ионного звука. Если детерминант в некоторой точке $z = L_{cr}$ обращается в нуль, то система в ней имеет особенность, означающую невозможность стационарного движения при $z > L_{cr}$ [4,5]. В рассматриваемом случае условие DET = 0 будет иметь место при $V_z = C_S$. Значения критической (предельной) длины потока L_{cr} могут быть получены путем численного решения системы (1)-(4), дополненной уравнениями баланса для ионного состава [6,7]. Результаты таких расчетов представлены на рис. 1.

4. Предельное значение электронной температуры. Интегрируя (1), (2), находим

$$V_{z} - \gamma V_{0} \ln R + \frac{Z_{i} T_{e}}{m V_{z}} = V_{0} - \gamma V_{0} \ln R_{0} + \frac{Z_{0} T_{0}}{m V_{0}},$$
(5)

где V_0 , T_0 , Z_0 и R_0 — параметры потока в начальном сечении, $\gamma = eI/(mc^2V_0\delta)$ — безразмерный параметр [7], $\delta = eG/mI < 0.1$ —

коэффициент эрозии [3], $G = \rho VS = \text{const}$ — поток массы. В качестве начального сечения примем область объединения катодных плазменных микроструй в общий поток. В пределах микроструи максимальная электронная температура $T_m \approx 1.5-4.5 \text{ eV}$ [9], а ионы ускоряются до скоростей $V_0 = M (5Z_0T_m/3m)^{1/2}$, причем числа Маха $M \approx 3.5$ оказывается одинаковым для всех катодных материалов [10,11]. В области смешения (при z = 0) скорость и средний заряд ионов примерно те же, что и в конечной части микроструи, а электронная температура $T_0 < T_m$ [10]. Так как $M^2 \gg 1$, то последнее слагаемое в равенстве (5) можно не учитывать. При токах $I \leq 500$ А параметр $\gamma \leq 0.1$ [7] и соответствующими слагаемыми в (5) также можно пренебречь. Тогда для критической точки (где $V_z = V_{cr} = C_S$, $T_e = T_{cr}$) из (5) получаем $V_{cr} = \frac{5}{8}V_0$ и

$$T_{cr} = \frac{15W_0}{32Z_i},$$
(6)

где $W_0 = mV_0^2/2$ — начальная кинетическая энергия ионов. Учитывая связь V_0 с T_m , можно выразить предельное (критическое) значение электронной температуры в плазменном потоке через максимальную температуру в катодном пятне:

$$T_{cr} = \alpha \, \frac{Z_0}{Z_i} \, T_m,\tag{7}$$

где $\alpha = 75 \text{ M}^2/192 \approx 4.8.$ Сопоставление соотношений (6), (7) с экспериментом дано на рис. 2. Измерения электронной температуры в вакуумной дуге в магнитном поле взяты из [12], начальная энергия ионов — из [11,13], значения Z_i и Z_i/Z_0 — согласно [14], а значения температуры в катодном пятне — из [9]. Видно достаточно близкое согласие с формулой (6) для С- и Ті-катодов и заметное различие для U-катода. Следует отметить, что в случае С и Ті использовались измерения W_0 из работы [11], тогда как для U имеются лишь более ранние измерения W_0 тех же авторов [13], которые, по их мнению, являются менее точными и несколько завышенными. Согласие теоретической зависимости (7) с экспериментом является близким для всех катодных материалов (рис. 2, *b*). Учитывая, что для слаботочной дуги в магнитном поле $Z_i/Z_0 \approx 1.5$, из (7) получаем простую оценку $T_{cr} \approx 3T_m$.

Рис. 2. Электронная температура вакуумной дуги в магнитном поле как функция начальной энергии ионов (*a*) и электронной температуры в катодном пятне (*b*). Сплошная линия — расчет по соотношениям (6) и (7); треугольни-ки — сопоставление результатов измерений [9,11–14].

5. Заключение. Проведенное рассмотрение показывает, что стационарное сверхзвуковое течение плазмы в вакуумной дуге с магнитным полем может существовать во всем межэлектродном промежутке, если его длина $L < L_{cr}$. В случае $L > L_{cr}$ скорость потока понижается до скорости звука и возникает кризис течения. Возможны два варианта его преодоления: 1) течение плазмы после сечения, в котором $V_z = C_s$, из стационарного превращается в пульсирующее [1], 2) происходит увеличение (путем возможного расширения катодного пятна) начального сечения потока, приводящее к увеличению критической длины (рис. 1) до размера межэлектродного промежутка ($L_{cr} = L$), так что

поток замедляется до скорости звука лишь около анода. В обоих случаях температура электронов будет близка к предельному значению, что подтверждается приемлемым согласием теоретических оценок с измерениями.

Автор искренне благодарен К.Н. Ульянову за полезное обсуждение данной тематики.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 04–02–16431).

Список литературы

- [1] Новиков И.И. Прикладная магнитная гидродинамика. М.: Атомиздат, 1969. 360 с.
- [2] Абрамович Г.Н. Прикладная газовая динамика. Ч. 1. М.: Наука, 1991. 597 с.
- [3] Месяц Г.А., Баренгольц С.А. // УФН. 2002. Т. 172. № 10. С. 1113–1130.
- [4] Лондер Я.И., Ульянов К.Н. // Теплофиз. выс. темп. 2001. Т. 39. № 5. С. 699-704.
- [5] Лондер Я.И., Ульянов К.Н. // Теплофиз. выс. темп. 2004. Т. 42. № 2. С. 198-207.
- [6] Кринберг И.А. // Письма в ЖТФ. 2003. Т. 29. В. 12. С. 42-48.
- [7] Кринберг И.А. // Прикл. физика. 2004. В. 6.
- [8] Вихрев В.В., Брагинский С.И. // Вопросы теории плазмы. М.: Госатомиздат, 1980. В. 10. С. 243–318.
- [9] Anders A. // Phys. Rev. E. 1997. V. 55. N 4. P. 969–981.
- [10] Кринберг И.А. // ЖТФ. 2001. Т. 71. В. 11. С. 25-31.
- [11] Anders A., Yushkov G.Y. // J. Appl. Phys. 2002. V. 91. N 8. P. 4824-4832.
- [12] Galonska M., Hollinger R. et al. // Proc. XXI Int. Symp. On Discharges and Electr. Insulation in Vacuum. Yalta, Ukraine, 2004. V. 1. P. 209–212.
- [13] Yushkov G.Y., Anders A. et al. // J. Appl. Phys. 2000. V. 88. N 10. P. 5618-5622.
- [14] Oks E.M., Anders A. et al. // IEEE Trans. Plasma Sci. 1996. V. 24. N 3. P. 1174– 1183.