03,04

Высокотемпературная теплоемкость $Dy_2Cu_2O_5$

© В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик, Н.В. Белоусова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 20 марта 2013 г.)

Получены данные по теплоемкости Dy₂Cu₂O₅ в интервале температур 346-981 К. По экспериментальным данным определены термодинамические свойства оксидного соединения.

1. Введение

В последнее время объектом пристального внимания исследователей являются металлоксидные соединения, к которым относится купрат диспрозия состава $Dy_2Cu_2O_5$ [1–7]. Несмотря на такое внимание к данному соединению, многие его свойства не изучены. В первую очередь это касается теплофизических свойств. Теплоемкость $Dy_2Cu_2O_5$ исследована для интервала температур 2–30 K [3,8]. Сведения о свободной энергии Гиббса образования соединения приведены в работах [6,9,10].

Целью настоящей работы является исследование высокотемпературной теплоемкости и расчет по этим данным термодинамических свойств Dy₂Cu₂O₅.

2. Эксперимент

Для получения $Dy_2Cu_2O_5$ использовали керамический метод. Предварительно исходные навески Dy_2O_3 и CuO прокаливали при 1173 K, принимая во внимание особенности поведения CuO при высоких температурах [11]. После перемешивания стехиометрической смеси и последующего прессования таблетки отжигали на воз-

Рис. 1. Дифрактограмма Dy₂Cu₂O₅ при комнатной температуре.

духе при 1273 К в течение 25 h (с промежуточными перетираниями через каждые 5 h и последующими прессованиями). Фазовый состав образцов контролировали методом рентгенофазового анализа с использованием дифрактометра X'Pert Pro фирмы Panalytical с полупроводниковым детектором PIXel и графитовым монохроматором (Си K_{α} -излучение). Из рентгенограмм определяли параметры элементарной ячейки по полному профилю, без ссылки на структуру. Полученные данные приведены на рис. 1. Синтезированные образцы имели орторомбическую структуру с параметрами решетки a = 10.8370 Å, b = 3.5194 Å, c = 12.4850 Å. Эти результаты полностью совпадают с данными работы [1] и не сильно отличаются от данных [5,12]: a = 10.830 Å, b = 3.514 Å, c = 12.465 Å.

Измерение теплоемкости проводили в платиновых тиглях на приборе STA 449 C Jupiter (NETZSCH). Методика экспериментов подобна описанной в [13,14].

3. Результаты и их обсуждение

На рис. 2 приведена температурная зависимость молярной теплоемкости $Dy_2Cu_2O_5$. Видно, что значения C_p закономерно увеличиваются с ростом температуры, а на кривой $C_p = f(T)$ нет различного рода экстремумов. Полученные данные могут быть описаны уравнением (в единицах J/mol·K)

$$C_p = 97.58 + 73.7 \cdot 10^{-3}T$$

- 42.91 \cdot 10⁵T⁻² + 2.36 \cdot 10³T^{-0.5}. (1)

Установлено, что уравнение (1) лучше описывает температурную зависимость теплоемкости для $Dy_2Cu_2O_5$, чем классическое уравнение Майера–Келли $C_p = a + bT + cT^{-2}$, особенно в области более низких температур.

С использованием уравнения (1) по известным термодинамическим уравнениям рассчитаны изменение энтальпии $H_T^0 - H_{346}^0$ и энтропии $S_T^0 - S_{346}^0$. Полученные результаты приведены в таблице.

Из таблицы следует, что при температурах выше 550 К теплоемкость превышает классический предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице Dy₂Cu₂O₅ (s = 9).

Рис. 2. Температурная зависимость теплоемкости $Dy_2Cu_2O_5$. I — экспериментальные данные, 2 — расчет по модели Дебая, 3 — аппроксимация избыточной теплоемкости функцией Эйнштейна при $T \ll \Theta_E$.

Сравнить полученные значения C_p для этого соединения не представлялось возможным, так как другими авторами они измерены только для низких температур [3,8]. Тем не менее рассчитать значения $C_{p,298}$ для $Dy_2Cu_2O_5$ можно аддитивным методом Неймана–Коппа [15–17]. Проведенный нами расчет с использованием данных для Dy_2O_3 [16,18] и CuO [16] показал, что это значение меньше на 3.6% по сравнению с найденным по уравнению (1). Инкрементный метод Кумока [15] дает еще меньшее значение $C_{p,298}$ (расхождение в этом случае достигает 6.1%).

По экспериментальным данным C_p для $Dy_2Cu_2O_5$ при низких температурах нами определена температура Дебая. Она оказалась равной 340 K, что совпадает со значением $\Theta_D = 336$ K, приведенным в работе [8]. Расчет значений C_p по модели Дебая [19] показывает, что

<i>Т</i> ,К	$C_p,$ $\mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H_T^0 - H_{346}^0,$ kJ · mol ⁻¹	$S_T^0 - S_{346}^0,$ J · mol ⁻¹ · K ⁻¹
346	214.3	_	_
400	218.5	11.69	31.40
450	221.0	22.68	57.29
500	223.0	33.79	80.68
550	224.7	44.98	102.0
600	226.4	56.26	121.6
650	228.1	67.62	139.8
700	229.8	79.07	156.8
750	231.6	90.60	172.7
800	233.4	102.2	187.7
850	235.4	113.9	201.9
900	237.4	125.8	215.4
950	239.5	137.7	228.3

Термодинамические свойства Dy₂Cu₂O₅

наблюдается различие рассчитанных и экспериментальных значений C_p , причем с ростом температуры это различие увеличивается. Этого можно было ожидать, так как указано выше, при определенных температурах значения C_p превышают предел Дюлонга-Пти. Следует отметить, что в модели Дебая рассчитывают C_V , а не C_p . Существует много уравнений, позволяющих найти разность $C_p - C_V$ [19–21]. В тоже время для того, чтобы ими воспользоваться, требуются дополнительные сведения. Так, например, для уравнения [21]

$$C_p = C_V (1 + 3\gamma_G \alpha T) \tag{2}$$

необходимы данные по температурному коэффициенту линейного расширения α и постоянной Грюнайзена γ_G . Для Dy₂Cu₂O₅ такие данные нами не найдены. Поэтому предполагали, что в первом приближении C_p и C_V для этого соединения несущественно отличаются между собой.

Анализ результатов проведем подобно [21] в предположении, что избыточная теплоемкость в анализируемом интервале температур описывается уравнением

$$\Delta C = R \left(\frac{\Theta_E}{T}\right)^2 \exp\left(-\frac{\Theta_E}{T}\right),\tag{3}$$

где Θ_E — характеристическая температура Эйнштейна. Представление полученных данных в координатах $\ln(\Delta CT^2) - 1/T$ дает прямую линию (рис. 2) со значением коэффициента корреляции 0.9981.

Ранее нами была показана связь между составом оксидных соединений и их удельной теплоемкостью C_p^0 [22]. Можно отметить, что для системы Dy_2O_3 —СиО значения закономерно увеличиваются в ряду $Dy_2O_3(0.31 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1})$ — $Dy_2Cu_2O_5(0.40 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1})$ — $-CuO(0.53 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1})$. Значения для Dy_2O_3 и СиО взяты из работ [18] и [16] соответственно.

По нашим данным удельная теплоемкость купратов лантаноидов состава $Ln_2Cu_2O_5$ изменяется в ряду $La_2Cu_2O_5-Dy_2Cu_2O_5-Ho_2Cu_2O_5$ (0.39, 0.40, 0.43 J · g⁻¹ · K⁻¹). Следует отметить, что в ряду La-Dy-Но происходит уменьшение ионного радиуса (Ln^{3+} , Å): 1.032, 0.912, 0.901 [23].

4. Заключение

Исследована температурная зависимость молярной теплоемкости купрата диспрозия состава Dy₂Cu₂O₅. Установлено, что имеется корреляция между составом оксидов Dy₂O₃-CuO и их удельной теплоемкостью.

Список литературы

- W. Wong-Ng, B. Paretzkin, E.R.Ir. Fuller. J. Solid State Chem. 85, 117 (1990).
- [2] Z.A. Kazai, N.P. Kolmakova, R.Z. Levitin, B.V. Mill, V.V. Moshchalkov, V.N. Orlov, V.V. Snegirev, Ja.J. Zoubkova. J. Magn. Magn. Mater. 86, 124 (1990).

- [3] V.V. Moshchalkov, N.A. Samarin, Y. Zoubkova, B.V. Mill. Physica C 163, 237 (1990).
- [4] I.V. Golosovsky, V.P. Plakhty, V.P. Harchenkov, S.V. Sharigin, J. Schweizer, J. Magn. Magn. Mater. 129, 233 (1994).
- [5] J.L. Garcia-Munoz, J. Rodriguez-Carvajal. J. Solid State Chem. 115, 324 (1995).
- [6] M. Kopyto, K. Fitzner. J. Mater. Sci. 31, 2797 (1996).
- [7] W. Wong-Ng, Z. Yang, L.P. Cook, J. Frank, M. Loung. Physica C 439, 93 (2006).
- [8] V.V. Moshchalkov, N.A. Samarin, I.O. Grishchenko, B.V. Mill, Y. Zoubkova. J. Magn. Magn. Mater. 90–91, 533 (1990).
- [9] Yu.D. Tretyakov, A.R. Kaul, N.V. Makukhin. J. Solid State Chem. 17, 183 (1976).
- [10] K.T. Jacob, T. Mathews, J.P. Hajra. High Temper. Mater. Proc. 12, 4, 251 (1993).
- [11] A.A. Bush, V.Ya. Shkuratov, A.B. Kuz'menko, E.A. Tishchenko. Crystall. Rep. 47, 2, 335 (2002).
- [12] K.P. Jayadevan, K.T. Jacob. High Temper. Mater. Proc. 19, 6, 389 (2000).
- [13] В.М. Денисов, Л.Т. Денисова, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [14] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ **48**, *5*, 790 (2010).
- [15] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). УрО РАН, Екатеринбург (1997). 230 с.
- [16] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [17] J. Leitner, P. Vonka, D. Sedmidubsky, P. Svoboda. Thermochim. Acta 497, 7 (2010).
- [18] С.П. Гордиенко, Б.В. Феночка, Г.Ш. Виксман. Термодинамика соединений лантаноидов. Наук. думка, Киев (1979). 376 с.
- [19] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия.
 Ч. II. МГУ, М. (1966). 434 с.
- [20] Б.Г. Лившиц, В.С. Крапошин, Я.Л. Линецкий. Физические свойства металлов и сплавов. Металлургия, М. (1980). 320 с.
- [21] А.Ф. Прекул, В.А. Казанцев, Н.М. Щеголихина, Р.И. Гуляева, К. Edagawa, ФТТ 50, 11, 1933 (2008).
- [22] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 4, 642 (2011).
- [23] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, А.В. Потемкин, Б.И. Покровский, Ф.М. Спиридонов, В.А. Антонов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов I–III групп. Наука, М. (1983). 280 с.