04

Особенности диэлектрического спектра CaCu₃Ti₄O₁₂ в низкочастотном диапазоне

© В.Г. Гавриляченко, Ю.В. Кабиров, Е.М. Панченко, Е.И. Ситало, Т.В. Гавриляченко, Е.В. Милов, Н.В. Лянгузов

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

E-mail: salv62@mail.ru

(Поступила в Редакцию 13 февраля 2013 г.)

Представлены диэлектрические спектры керамики CaCu₃Ti₄O₁₂, отличающейся гигантскими значениями диэлектрической проницаемости. В высокочастотной части спектра в области $10^6 - 10^7$ Hz проявляется дисперсия дебаевского типа с энергией активации 0.075 eV, а также характерное плато в частотной зависимости диэлектрической проницаемости в области $10^4 - 10^5$ Hz. В низкочастотной части спектра наблюдается значительное увеличение фактора потерь ε'' , а при частоте менее 10^{-2} Hz в некоторых образцах обнаружен переход от импеданса емкостного типа к индуктивному. Обсуждаются причины такого перехода.

1. Введение

Среди материалов, обладающих гигантскими значениями эффективной диэлектрической проницаемости ε , выделяются CaCu₃Ti₄O₁₂ (CCTO) и родственные ему материалы. Их преимущество состоит в том, что, не являясь сегнетоэлектриками, они в широких интервалах температур и частот измерительного поля имеют практически постоянные и весьма высокие значения ε [1,2].

Необычные диэлектрические свойства ССТО принято обсуждать в рамках модели зерно-прослойка, основанной на междуслойной поляризации по Максвеллу и Вагнеру в неоднородной диэлектрической среде. В этой модели рассматривается чередование слоев, имеющих полупроводниковую проводимость, с тонкими обедненными барьерными слоями типа барьера Шоттки [1–4].

В подобных системах в низкочастотном диапазоне диэлектрического спектра был обнаружен эффект отрицательной емкости (ОЕ), проявляющийся в том, что импеданс образца при снижении частоты изменяется от емкостного к индуктивному при отсутствии "депо" магнитного поля [5–7].

Цель настоящей работы — исследовать диэлектрический спектр керамических образцов ССТО в диапазоне частот $10^{-4}-10^7$ Hz и установить характер дисперсии ε , уделив основное внимание слабо изученной низкочастотной области спектра.

2. Методика эксперимента

Образцы ССТО были приготовлены по стандартной керамической технологии из прессованных стехиометрических смесей CaCO₃, TiO₂, и CuO. Время спекания при температуре 1100°C составляло от 3 до 20 h. Для диэлектрических измерений на образцы диаметром 8 mm и толщиной 2 mm были нанесены электроды вжиганием серебряной пасты при температуре 750°C. Рентгено-

структурное тестирование прекурсоров и образцов проводилось с помощью дифрактометра ДРОН-3М методом Брэгга–Брентано (θ –2 θ) с шагом сканирования 0.02°. Время экспозиции на каждом шаге — 2 s. Использовано излучение Си K_{α} -анода с длиной волны 1.5406 Å. Точность измерения параметров составила 0.003 Å. Обработка данных выполнена методом полнопрофильного анализа. Приготовленные материалы однофазны, их кристаллическая структура кубическая с пространственной группой симметрии $Im\bar{3}$ № 204 [1], a = 7.3923 Å. Электронно-микроскопическое изучение керамических образцов проведено с помощью растрового электронного микроскопа Zeiss Supra 25. Диэлектрические свойства изучены с помощью RLC-измерителя WK4300 и комплекса Novocontrol ALPHA.

3. Результаты исследований и их обсуждение

Нами исследованы диэлектрические спектры ряда образцов ССТО, различающихся временем спекания. Увеличение времени спекания (от 3 до 20 h) заметно сказалось на микроструктуре и других характеристиках образцов. При этом средний размер кристаллитов уменьшился с 2μ m (рис. 1) до 0.5μ m (рис. 2), произошло образование аморфизированных конгломератов. Рентгеноструктурный анализ позволил установить некоторое уменьшение областей совершенства, что проявилось в уширении дифракционных отражений. Эти данные указывают на возможный рост концентрации дефектов кристаллической структуры, которые заметно влияют как на концентрацию и транспорт носителей заряда, так и на поляризуемость образцов.

Диэлектрические спектры также претерпели заметные изменения. В образцах, время спекания которых не превышало 7 h, они мало отличались от приведенных в литературе [2,4], в то время как в спектрах образцов,

Рис. 1. Микроструктура поверхности образца после 3 h отжига при 1100°С.

Рис. 2. Микроструктура образца после 20 h отжига при 1100°С.

спекавшихся 20 h, в низкочастотной области, как правило, проявлялся эффект OE.

Рассмотрим типичные диэлектрические спектры таких образцов. На рис. 3 приведен спектр образца, полученный при температуре 250 К, а на рис. 4 — спектр, полученный при 300 К. В высокочастотной области спектров проявилась характерная для ССТО дисперсия дебаевского типа. Частота ω_p , при которой достигается максимум фактора потерь ε'' , связана с временем релаксации τ соотношением $\omega_p \tau = 1$, откуда следует, что время релаксации при 250 К составляет $\tau_1 = 2.6 \cdot 10^{-7}$ s, а при 300 К оно снижается до $\tau_2 = 1.5 \cdot 10^{-7}$ s. Для определения энергии активации процесса релаксации нами была использована известная формула

$$E_a = [kT_1T_2/(T_2 - T_1)]\ln(\omega_2/\omega_1),$$
(1)

где k — константа Больцмана, ω_1 и ω_2 — частоты ω_p при температурах $T_1 = 250$ К и $T_2 = 300$ К. Величина энергии активации оказалась равна $E_a = 0.075$ eV, что близко к значениям, приведенным в других работах [2,4]. Близкие значения E_a в различающихся по технологии изготовления образцах позволяют предположить, что за высокочастотную релаксацию отвечают характерные для ССТО микродиполи, например комплексы разновалентных ионов переходных металлов либо кислородных вакансий и соседних анионов. Подобные диполи вносят заметный вклад в релаксационную поляризацию как электронного, так и ионного типа [3].

В диапазоне $10^2 - 2 \cdot 10^5$ Hz можно отметить плато, где ε' слабо зависит от частоты и температуры, достигая значений от $1.1 \cdot 10^4$ до $2 \cdot 10^4$ в разных образцах, при этом tg $\delta \sim 0.07$.

В низкочастотной области спектра при снижении частоты от 100 до 1 Hz численные значения ε' и ε'' заметно возрастают. По-видимому, в этом диапазоне частот происходит переход от дебаевской к низкочастотной дисперсии (НЧД) по Джоншеру [8,9]. При НЧД фактор потерь изменяется с частотой ω по степенному

Рис. 3. Диэлектрический спектр образца при температуре 250 К.

Рис. 4. Диэлектрический спектр образца при температуре 300 К. При значении частоты $6 \cdot 10^{-3}$ Hz наблюдается переход в состояние OE.

Рис. 5. Низкочастотная область диэлектрических спектров образца при температурах 300 и 250 К.

закону

$$\varepsilon'' = R(T)\omega^{n-1},\tag{2}$$

где R(T) — не зависящая от частоты величина, слабо изменяющаяся с температурой, а параметр *n* положителен и близок к нулю. НЧД обусловлена объемными зарядами, образующимися за счет накопления носителей заряда вблизи неоднородностей. Объемные заряды обратимо перемещаются между неоднородностями под действием переменного поля. Это превращает комплексы зерно– прослойка в переориентирующиеся макродиполи, вследствие чего по мере снижения частоты диэлектрическая проницаемость заметно возрастает.

В спектре, полученном при более высокой температуре (рис. 4), проявилась аномалия ε' , характерная для ОЕ. По мере снижения частоты от 10 до 10^{-3} Hz сначала замедляется возрастание величины ε' , затем в интервале одной-двух декад она слабо зависит от частоты, после чего заметно спадает. Минимум ε' достигается при частоте $\sim 7 \cdot 10^{-3}$ Hz. Дальнейшее снижение частоты приводит к отрицательным значениям емкости образца, которые можно характеризовать численными значениями модуля ε' .

На рис. 5 показана низкочастотная область спектров, полученных при разных температурах. В той части спектра, где происходит переход к НЧД, параметр *n* степенного закона (2) в среднем близок к нулю, однако по мере снижения частоты в начале указанного диапазона $n \sim 0.01$, в области ОЕ n = 0, а в конце диапазона $n \sim -0.01$. Фактор потерь ε'' положителен и является монотонной функцией частоты, что указывает на отсутствие резонансных явлений при переходе к ОЕ. Характер импеданса образца при снижении частоты плавно переходит от емкостного к активному, а затем и к индуктивному без влияния внешних реактивных элементов. Отметим, что ОЕ проявлялась в образце после нагревания его на 50 K, при этом ε'' возросла на порядок, а ε' при частотах, близких к аномалии, изменилась незначительно.

Многочисленные системы, в которых был обнаружен эффект ОЕ, объединяет одно качество — инерционная проводимость, механизм которой в каждом конкретном случае необходимо установить [6,7]. Можно полагать, что диэлектрические свойства керамики ССТО в основном определяются барьерной емкостью прослоек, изменения которой отражаются в значениях эффективной емкости образца. Представим, что в области барьера существуют ловушки захвата с концентрацией N_t, энергетический уровень которых находится вблизи центра запрещенной зоны. Процессы захвата носителей заряда на глубокие ловушки и их опустошение характеризуются определенным временем релаксации τ_t [10]. Объемный заряд локализованных на ловушках носителей заряда изменяет емкость барьера. Изменение емкости пропорционально N_t. По мере снижения частоты внешнего поля при прямом включении барьера Шоттки ловушки захватывают все больше носителей заряда из квазинейтральной области (зерна), что приводит к росту эффективной емкости образца. Когда ловушки практически заполнены, величина емкости достигает насыщения. В наших образцах такой эффект проявляется при частоте порядка 0.1 Hz. При обратном включении поля происходит опустошение ловушек и выброс носителей заряда в квазинейтральную область зерна. Этот процесс эффективно протекает в том случае, когда период внешнего поля больше или равен т_t. В результате в зависимости спадающего со временем тока через образец проявляется размытый максимум [5], что характерно для инерционной проводимости.

Таким образом, при определенной частоте внешнего поля возникают условия, когда ток смещения и реактивная часть тока взаимно компенсируются, при этом проводимость образца имеет активный характер. Знак сдвига фаз зависит от частоты при постоянных параметрах системы (концентрация дефектов и носителей заряда, амплитуда внешнего поля, температура). При снижении частоты в образцах керамики ССТО характер импеданса изменяется от емкостного к индуктивному, что согласуется с идеями, изложенными в [5–7].

Захват носителей заряда ловушками в барьерном слое и их эмиссия в область зерна — процессы, эквивалентные переключению макродиполей во внешнем поле, что ведет к росту диэлектрических потерь по мере снижения частоты. На это указывает рост фактора потерь ε'' .

4. Заключение

Приготовленные керамические образцы ССТО в практически важной области частот (10–10⁵ Hz) обладают высокой диэлектрической проницаемостью порядка 10⁴ при значении тангенса угла диэлектрических потерь не более 0.1.

Нами установлено, что в образцах керамики ССТО с повышенной дефектностью при низких частотах внешнего поля (ниже 10^{-2} Hz) происходит смена импеданса емкостного типа на импеданс индуктивного типа на фоне низкочастотной дисперсии.

Мы полагаем, что эффект ОЕ может быть реализован при значительной концентрации ловушек захвата в области прослоек керамического образца. Процессы захвата носителей заряда на ловушки и их опустошение с последующей эмиссией носителей в область зерна могут привести к инерционной проводимости, следствием которой и является эффект OE.

Отсутствие эффекта ОЕ при низкой температуре образцов и его проявление при более высокой температуре в исследованном диапазоне частот может быть обусловлено снижением τ_t .

Список литературы

- M.A. Subramanian, Dong Li, N. Duan, B.A. Reisner, A.W. Sleight. J. Solid State Chem. 151, 323 (2000).
- [2] P. Linkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl.http://arxiv.org/pdf/1003.4272.pdf
- [3] П.Т. Орешкин. Физика полупроводников и диэлектриков. Изд. Высш. шк., М. (1977). 448 с.
- [4] D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West. Appl. Phys. Lett. 80, 2153 (2002).
- [5] S.H. Zaidi, A.K. Jonscher. Semicond. Sci. Technol. 2, 587 (1987).
- [6] J. Chulman, Y.Y. Xue, S. Tsui, F. Chen, C.W. Chu. Phys. Rev. B 80, 134 202 (2009).
- [7] Н.А. Пенин. ФТП 30, 4, 626 (1996).
- [8] A.K. Jonscher. Nature 267, 673 (1977).
- [9] A.K. Jonscher J. Phys. D 32, 57 (1999).
- [10] Э.Х. Родерик. Контакты металл-полупроводник. Радио и связь, М. (1982). 208 с.