18,08

Атомы переходных и редкоземельных металлов на однослойном графене: оценки перехода заряда и энергии адсорбции

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 30 января 2013 г.)

Для описания адсорбции атомов *d*- и *f*-металлов на однолистном графене предлагается гамильтониан, учитывающий *s*- и d(f)-состояния адатома. Показано, что в переход заряда Δn_a между адатомом и графеномподложкой основной вклад вносят *s*-электроны. Расчет Δn_a проводился по аналитическим формулам, предложенным ранее в рамках *M*-модели плотности состояний графена. Для оценки энергии адсорбции E_{ads} предложено простое аналитическое выражение. Расчеты проделаны для 3*d*-, 4*d*-, 5*d*- и 4f-адатомов. Результаты расчетов сопоставлены с данными других авторов.

Работа выполнена в рамках программ Президиума РАН "Квантовая физика конденсированных сред" и "Основы фундаментальных исследований нанотехнологий и наноматериалов" и поддержана грантами РФФИ (проекты № 11-02-00662а и 12-02-00165а).

1. Введение

В последние годы весьма интенсивно идет теоретическое изучение адсорбции атомов *d*-металлов на однослойном графене [1-16], что обусловлено как интересом к фундаментальным аспектам взаимодействия чужеродных атомов с графеном, так и сугубо практическими целями (созданием контактов к графеновому листу, допированием или так называемой функционализацией графена). Среди разнообразных задач, связанных с адсорбцией переходных металлов (ТМ) на однослойном графене, наиболее интересными нам представляются исследования изменения какой-либо адсорбционной характеристики для соответствующего *d*-ряда адсорбатов, например, зависимостей перехода электронов между адатомом и графеном (или, что то же самое, заряда адатома Z) и энергии адсорбции от номера N элемента в *d*-ряду [4–6,8–12,14].

Все указанные работы посвящены численным расчетам, выполненным в рамках того или иного варианта формализма функционала плотности. В настоящей публикации для тех же целей предлагается модельный гамильтониан, включающий *s*- и *d*-электроны. Следует напомнить, что аналогичная задача решалась ранее для адсорбции атомов *d*-металлов на *d*-подложках [17,18]. В свете последующего рассмотрения уместно также упомянуть работу по адсорбции лантана на вольфраме [19], где впервые была введена двухуровневая модель для *s*- и *d*-оболочек. Для построения модели адсорбции ТМ на графене (а в дальнейшем и для случая редких земель) будем использовать результаты [19,20].

2. Общее рассмотрение

Рассмотрим адатом и выделим в его электронной оболочке *s*- и *d*-электроны с одночастичными энергиями *E_s* и E_d соответственно. Учтем кулоновское отталкивание s- (U_s) и d-электронов (U_d) , обладающих противоположными спинами. Будем считать, что состояния $|s\sigma\rangle$ и $|dm\sigma\rangle$ (σ — спиновый индекс, m — номер двухэлектронной орбитали, $2\sum_m 1 = 10$) связаны с подложкой матричными элементами V_s и V_d , а друг с другом — кулоновским отталкиванием U_{sd} . Соответствующий гамильтониан H в рамках расширенного приближения Хартри-Фока может быть представлен в виде

$$H = \sum_{k\sigma} \varepsilon_k \hat{n}_{k\sigma} + \sum_{\sigma} \varepsilon_{s\sigma} \hat{n}_{s\sigma} + \sum_{m\sigma} \varepsilon_{dm\sigma} \hat{n}_{d\sigma} + V_s \sum_{k\sigma} (c^+_{k\sigma} s_{\sigma} + \text{h.c.}) + V_d \sum_{k\sigma} (c^+_k d_{\sigma} + \text{h.c.}) - U_{sd} n_s \sum_{m\sigma} n_{dm\sigma} - U_s n_{s\uparrow} n_{s\downarrow} - \frac{1}{2} U_d \sum_{m'\sigma' \neq m\sigma} n_{m'\sigma'} n_{m\sigma}.$$
(1)

Здесь ε_k — энергия электрона в графене, $\varepsilon_{dm\sigma} = E_d + U_{sd}n_s + U_dn_{dm-\sigma}$, $\varepsilon_{s\sigma} = E_s + U_{sd}n_d + U_sn_{s-\sigma}$; $\hat{n}_{k\sigma} = c_{k\sigma}^+ c_{k\sigma} -$ оператор числа заполнения состояния $|\mathbf{k}\sigma\rangle$ в графене, $c_{k\sigma}^+ (c_{k\sigma})$ — операторы рождения (уничтожения) электрона в состоянии $|\mathbf{k}\sigma\rangle$; $\hat{n}_{s\sigma} = s_{\sigma}^+ s_{k\sigma}$ и $\hat{n}_{dm\sigma} = d_{m\sigma}^+ d_{m\sigma}$ — операторы чисел заполнения состояний $|s\sigma\rangle$ и $|dm\sigma\rangle$, $s_{\sigma}^+ (s_{\sigma})$ и $d_{m\sigma}^+ (d_{m\sigma})$ — операторы чисел заполнения состояний $|s\sigma\rangle$ и $|dm\sigma\rangle$, $s_{\sigma}^+ (s_{\sigma})$ и $d_{m\sigma}^+ (d_{m\sigma})$ — операторы рождения (уничтожения) электрона в состояниях $|s\sigma\rangle$ и $|dm\sigma\rangle$; $n_{s,dm\sigma} = \langle \hat{n}_{s,dm\sigma} \rangle$, где скобки означают усреднение по основному состоянию гамильтониана (1); $n_{s,dm} = \sum_{\sigma} n_{s,dm\sigma}$; h.с. — эрмитово сопряженные слагаемые. Обменным взаимодействием *d*-электронов пренебрегаем.

Будем рассматривать немагнитные решения и считать энергии $\varepsilon_{dm\sigma}$ и $\varepsilon_{s\sigma}$ вырожденными соответственно десятикратно и двукратно, т.е. положим $n_{k\uparrow} = n_{k\downarrow} = \frac{1}{2} n_k$, $n_{s\uparrow} = n_{s\downarrow} = \frac{1}{2} s_k$, $n_{dm\uparrow} = n_{dm\downarrow} = \frac{1}{2} dm_k$. Тогда (1) можно

переписать в виде

$$H = \sum_{k} \varepsilon_{k} \hat{n}_{k} + \varepsilon_{s} \hat{n}_{s} + 5\varepsilon_{d} \hat{n}_{d} + V_{s} \sum_{k\sigma} (c_{k}^{+}s + \text{h.c.})$$
$$+ V_{d} \sum_{k\sigma} (c_{k}^{+}d + \text{h.c.}) - 5U_{sd}n_{s} - \frac{1}{4} U_{s}n_{s}^{2} - \frac{45}{4} U_{d}n_{d}^{2},$$
(2)

где $\varepsilon_d = E_d + U_{sd}n_s + \frac{9}{2}U_dn_d$, $\varepsilon_s = E_s + 5U_{sd}n_d + \frac{1}{2}U_sn_s$. Гамильтониан (1) с точностью до обозначений эк-

вивалентен гамильтониан (г) с то шестыю до сосола юши эк вивалентен гамильтониану Александера–Андерсона, отвечающему задаче о двух примесных атомах в металлической матрице [21]. Действительно, в случае гамильтониана Александера–Андерсона речь идет о двух одноуровневых адатомах, здесь же об одном адатоме с двумя различными уровнями. Тогда функции Грина G_s и G_d для состояний $|s\rangle$ и $|d\rangle$ могут быть представлены в виде (см. [22,23])

$$G_{s,d} = (\omega - \varepsilon_{s,d} - \Lambda_{s,d} + i\Gamma_{s,d})^{-1}, \qquad (3)$$

$$\Lambda_{s(d)}(\omega) = V_{s(d)}^2 P \sum_k (\omega - \varepsilon_k + is)^{-1},$$

$$\Gamma_{s(d)}(\omega) = \pi V_{s(d)}^2 \rho_g(\omega),$$

$$\rho_g(\omega) = \sum_k \delta(\omega - \varepsilon_k).$$
(4)

Здесь ω — энергетическая переменная, $\rho_g(\omega)$ — плотность состояний графена, $\delta(...)$ — функция Дирака, *Р* — символ главного значения, $s = 0^+$. В (3) для простоты мы пренебрегли косвенным взаимодействием $|s\rangle$ - и $|d\rangle$ -состояний через электронный газ графена (см. [22,23]). Получаем, таким образом, две формально не зависящие друг от друга функции Грина $G_j = (\omega - \bar{\varepsilon}_j - \Lambda_j + i\Gamma_j)^{-1}$ (где j = s, d), связанные, однако, кулоновским отталкиванием U_{sd} .

Перейдем теперь к вычислению соответствующих плотностей состояний ρ_j . Для этого воспользуемся *М*-моделью плотности состояний графена [24]. В рамках *М*-модели плотность состояний графена $\rho_g(\omega)$ задавалась в виде $\rho_g(\omega) = 2\rho_m |\omega|/\Delta$ при $|\omega| < \Delta/2$, $\rho_m \Delta/2 |\omega|$ при $\Delta/2 < |\omega| < 3\Delta/2$ и 0 при $|\omega| > 3\Delta/2$. Здесь нуль энергии совпадает с точкой Дирака; $\Delta = 2t$ — ширина области "псевдощели", t — интеграл перехода электрона между ближайшими соседями в графене, $\rho_m = 4/(1 + 2 \ln 3)\Delta^{-1}$. Локальная плотность состояний на адатоме $\rho_j(\omega)$ для одного спинового направления определяется выражением

$$\rho_{j}(\omega) = \frac{1}{\pi} \frac{\Gamma_{j}(\omega)}{\left(\omega - \bar{\varepsilon}_{j} - \Lambda_{j}(\omega)\right)^{2} + \Gamma_{j}^{2}(\omega)}, \quad j = s, d, \quad (5)$$

где $\Lambda_j(\omega) = \rho_m V_j^2 \lambda(x), \quad \lambda(x) = x \ln |x^2/(1-x^2)|$ + $x^{-1} \ln |(1-x^2)/(1-(x/3)^2)|, \quad x = 2\omega/\Delta.$ Числа заполнения n_j состояний $|s\rangle$ и $|dm\rangle$ (для одного спинового направления) при нулевой температуре

Таблица 1. Энергетические параметры (в eV), числа заполнения и составляющие энергии адсорбции (в eV) для 3*d*адатомов

Параметр	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
\mathcal{E}_{s}	0.77	0.76	1.12	1.17	0.45	0.07	0.13	0.37	0.19
V_s	1.89	2.18	2.50	2.60	2.53	2.63	2.65	2.68	2.57
V_d	1.47	1.52	1.68	1.58	1.48	1.35	1.27	1.17	1.00
$-E_{ion}$	1.09	1.28	1.40	1.43	1.28	1.10	1.05	1.15	1.05
$E_{\rm pot}$	1.45	1.71	1.63	1.66	2.32	2.79	2.75	2.53	2.62
$-\delta E_{\rm kin1}$	1.07	1.27	1.59	1.68	1.53	1.49	1.48	1.56	1.42
$-\delta E_{\rm kin2}$	0.24	0.53	0.37	0.60	0.44	0.56	0.59	0.57	0.55

удобно представить в виде суммы зонного n_{bj} и локального n_{lj} вкладов [24]

$$n_{bj} = \int_{-3\Delta/2}^{0} \rho_j(\omega) d\omega, \quad n_{lj} = \left| 1 - \frac{d\Lambda_j(\omega)}{d\omega} \right|_{\omega_{lj}}^{-1}, \quad (6)$$

где предполагается, что уровень Ферми проходит через точку Дирака, так что следует учитывать только локальный уровень ω_{lj} , лежащий ниже дна валентной зоны графена, энергия которого относительно точки Дирака равна $-3\Delta/2$. Способ вычисления энергии адсорбции E_{ads} , приведен в работе [25].

3. Оценки перехода заряда

Начнем с оценки матричных элементов V_s и V_d ; для этого воспользуемся методом связывающих орбиталей Харрисона [26–28]. Несмотря на то что многие ТМ адсорбируются в позиции H (центр гексагона), оценки для простоты будут сделаны для позиции T, когда адсорбированный атом находится непосредственно над атомом углерода графена.

Матричный элемент связи состояния адатома $|s\rangle$ с орбиталью углерода $|p_z\rangle$ есть $V_{sd} \equiv V_{sp\sigma} = \eta_{sp\sigma}(\hbar^2/m_0d^2)$, где $\eta_{sp\sigma} = 1.42$ (здесь индекс σ означает σ -связь), m_0 — масса свободного электрона, \hbar — приведенная постоянная Планка, $d = r_a(C) + r_a(TM)$ — длина адсорбционной связи углерод-атом TM ($r_a(C)$ — атомный радиус углерода, равный 0.77 Å [28]). Матричный элемент связи состояний адатома $|d\rangle$ с $|p_z\rangle$ -орбиталью углерода положим равным $V_d \equiv V_{pd\sigma} = \eta_{pd\sigma}(\hbar^2 r_d^{3/2}/m_0 d^{7/2})$, где $\eta_{pd\sigma} = 2.95$, r_d — радиус *d*-состояния (см. [26], Т. 2). Значения V_s и V_d представлены в табл. 1. Величины r_a брались из справочника [29].

Из табл. 1 следует, что $V_s > V_d$, причем это неравенство усиливается при переходе к элементам конца *d*-рядов. Здесь, однако, необходимо отметить следующее обстоятельство. В соответствии с исходным гамильтонианом Андерсона [30,31] матричные элементы V_s и V_d являются величинами, усредненными по

 $^{^1}$ Мы принимаем положительное значение коэффициента $\eta_{pd\sigma}$ для того, чтобы V_s и V_d имели одинаковые знаки.

волновым векторам **k**: $V_s = \sqrt{\langle |V_{sk}|^2 \rangle_k}$, $V_d = \sqrt{\langle |V_{dk}|^2 \rangle_k}$, где $V_{ak} = \langle a | \hat{V} | \mathbf{k} \rangle$ ($|a \rangle$ — есть орбиталь $|s \rangle$ или $|d \rangle$), \hat{V} оператор перехода электрона между адатомом и графеном, $\langle \ldots \rangle_k$ — усреднение по волновым векторам первой зоны Бриллюэна графена. Как показано в работе [32],

$$V_{ak} = \langle a | \hat{V} | p_z \rangle_0 + (N_g - 1)^{-1/2} \sum_{n \neq 0} \exp(i \mathbf{k} \mathbf{R}_n) \langle a | \hat{V} | p_z \rangle_f,$$

где $|p_z\rangle$ — орбиталь графена, **R**_n — радиус-вектор *n*-го атома графена, *n* = 0 соответствует атому углерода, на котором адсорбирован атом ТМ, Ng — число узлов решетки графена. Если можно пренебречь перекрытием волновых орбиталей адатома и трех соседних по отношению к нему атомов графена (трех ближайших соседей нулевого атома углерода), то допустимо положить $V_{s(d)} \approx \langle s(d) | V | p_z \rangle$. Отметим, что для всех TMэлементов выполняется неравенство $r_a(\text{TM}) > 1.42 \text{ Å}$ (расстояние между ближайшими соседями в графене), так что пренебрежение перекрытием с ближайшими соседями может вносить заметную ошибку. Это в особенности относится к начальным элементам *d*-рядов, так как атомные радиусы r_a убывают от начала d-рядов к их концу. Таким образом, приведенные в табл. 1 значения матричных элементов являются сугубо оценочными величинами. Отметим, что матричные элементы V_s и V_d имеют один порядок величины, так что с этой точки зрения нужно учитывать как $|s\rangle$ -, так и $|d\rangle$ -состояния.

Значения энергий ε_d^0 и ε_x^0 для свободных приведены в Отметим, атомов ΤM [28]. что $\varepsilon_d^0 = E_d + 2U_{sd} + (N-1)U_d$, $\varepsilon_s^0 = E_s + NU_{sd} + U_s$, где N — номер ТМ-элемента в *d*-ряду. Здесь везде предполагается, что в |s>-состоянии свободного атома ТМ находятся два электрона. В том случае, когда $|s\rangle$ -состояние занимает один электрон (Cr, Mo, Ru, Rh, Pt, Cu, Ag, Au [33]), имеем $\varepsilon_d^0 = E_d + U_{sd} + (N-1)U_d$, $\varepsilon_s^0 = E_s + NU_{sd};$ если электронов в $|s\rangle$ -состоянии нет (Pd [33]), to $\varepsilon_d^0 = E_d + (N-1)U_d$, $\varepsilon_s^0 = E_s + NU_{sd}$. Теперь можем выразить энергии ε_d и ε_s через ε_d^0 и ε_s^0 . При этом в дальнейшем необходимо вычислить значения кулоновских взаимодействий, что можно сделать по схеме, описанной в [17]. Поскольку в настоящее время, насколько известно автору, экспериментальные характеристики адсорбции ТМ на графене отсутствуют, здесь ограничимся простыми оценками.

Предположим, что на адсорбцию работают только два одноэлектронных уровня: наиболее высоко лежащие *s*- и *d*-уровни, которые будем считать заполненными.² Для свободного атома энергию ε_s^0 положим равной взятой с обратным знаком энергии ионизации *I*, значения ε_d^0 возьмем из таблиц, приведенных в [26], Т. 2 (здесь энергии отсчитываются от вакуума). Представим $\varepsilon_{s,d}^0 = \bar{\varepsilon}_{s,d}^0 + U_{sd}$. Как и в работе [19], будем считать, что вследствие взаимодействия с электронным газом подложки уровень *s* испытывает кулонов-

ский сдвиг: $\varepsilon'_s = -I + V_{im}$, где потенциал изображения $V_{im} = e^2/4r_a$ (TM), e — заряд позитрона [34,35]. Уровень d, встроенный в *s*-оболочку, кулоновского сдвига не испытывает. Полагая работу выхода чистого графена $\phi = 5.11 \text{ eV}$ [36], получим для адатомов 3*d*-ряда, отсчитываемых от уровня Ферми, значения энергий $\varepsilon_s = \varepsilon'_s + \phi$, приведенные в табл. 1.

Из таблиц [26] следует, что для 3*d*-ряда энергия наиболее высоко лежащего d-уровня (Sc) равна относительно уровня Ферми -4.24 eV. Для энергий, меньших $\Delta/2 = 2.38 \,\mathrm{eV}$, гибридизационный сдвиг $\Lambda < 0$ [24]. Более того, в адсорбированном состоянии *d*-уровень испытывает дополнительный энергетический сдвиг $-U_{sd}Z_s$, где $Z_s = 1 - n_s$. Следовательно, *d*-уровни адатомов 3*d*ряда лежат достаточно глубоко под уровнем Ферми, так что для последующих оценок можно считать $Z_d = 1 - n_d \approx 0$. Таким образом, $|d\rangle$ -состояния практически не вносят вклада в переход заряда, и задача сводится к расчету $Z_s = 1 - n_s$. Значения чисел заполнения n_s вычислялись по аналитическим выражениям работы [24], хорошо зарекомендовавшим себя при описании адсорбции атомов водорода, щелочных металлов и галогенов на графене [24,37,38]. Как показывают результаты этих работ, для энергий ε_a , лежащих заметно выше уровня Ферми, вкладом локальных состояний можно пренебречь.

В рамках принятой нами двухуровневой модели величина перехода заряда $\Delta n_a = \Delta n_s + \Delta n_d$, где $\Delta n_{s(d)}$ есть переход заряда с s(d)-уровней на графен. Легко понять, что $\Delta n_{s,d} = 1 - n_{s,d} = Z_{s,d}$. $\Delta n_d \approx 0$, поэтому $0 < \Delta n_a \approx \Delta n_s < 1$.

Результаты расчета для 3*d*-ряда в сопоставлении с данными работ [4,14] показаны на рис. 1. Полученные

Рис. 1. Значения перехода заряда для 3*d*-адатомов. Темными кружками обозначены наши результаты, светлыми кружками — результаты работы [14], треугольниками — работы [4].

² Здесь считаем, что при приближении к подложке атома палладия один *d*-электрон переходит в *s*-состояние.

Рис. 2. Значения перехода заряда для 4*d*- и 5*d*-адатомов. Наши результаты обозначены светлыми кружками (4*d*) и треугольниками (5*d*), темными кружками (4*d*) и ромбами (5*d*) отмечены результаты работы [9].

нами значения перехода заряда представляются вполне разумными по порядку величины, хотя о согласии с данными других авторов говорить не приходится: в особенностях зависимостей Δn_a от номера N адатома в 3*d*-ряду наблюдаются существенные различия. Из-за полного отсутствия экспериментальных данных, обсуждение полученных результатов преждевременно. Для полноты картины, однако, отметим, что, например, в [13] для адатома Ті получено теоретическое значение перехода заряда, равное -0.18, а в [12] для адатома Fe значение порядка 0.1.

Оценки по таблицам [26] показывают, что наиболее высоко лежащие *d*-уровни 4*d*- и 5*d*-рядов (Y и Lu) имеют относительно уровня Ферми энергии -1.69и -1.51 eV соответственно. Будем поэтому и в данном случае считать *d*-состояния не участвующими в переходе заряда. Результаты расчетов для 4*d*- и 5*d*-адатомов представлены в табл. 2 и 3 и на рис. 2. На рис. 2 приведены также результаты работы [9], где рассматривался случай высокой концентрации 5*d*-адатомов. Отметим один существенный момент: при высоких концентрациях адатомов имеет место сильная их деполяризация (см., например, [39]), так что полученные в [9] для Zr, Nb, Мо и Hf большие значения перехода заряда представляются несколько сомнительными.

4. Оценки энергии адсорбции

Энергию адсорбции одиночного адатома на однолистном графене E_{ads} можно представить в виде суммы ионной *E*_{ion} и металлической *E*_{met} составляющих [25]. Ионная составляющая может быть оценена классической формулой

$$E_{\rm ion} = -\frac{Z_a^2 e^2}{4r_a},\tag{7}$$

где заряд адатома $Z_a = Z_s + Z_d$, r_a — радиус атома ТМ. В дальнейшем, как и выше, будем полагать, что $Z_a \approx Z_s$. Значения E_{ion} приведены в табл. 1–3.

Перейдем теперь к металлической составляющей энергии адсорбции E_{met} [25], которая в общем виде может быть представлена как $E_{\text{met}} = \int_{-\infty}^{0} \omega \delta \rho_{\text{sys}}(\omega) d\omega$, где $\delta \rho_{\text{sys}} = \rho_{\text{sys}} - \rho_{\text{sys}}^{0}$ — изменение плотности состояний системы "атом плюс подложка", вызванное адсорбцией, $\rho_{\text{sys}}(\rho_{\text{dyd}}^{0})$ — плотность состояний системы в конечном (начальном) состоянии.

Прежде всего отметим, что $\gamma_{s,d} = 2\rho_m V_{s,d}^2 / \Delta < 1$ для всех переходных металлов, адсорбированных на графене (рис. 3). Поскольку $\gamma_{s,d} \propto (V_{s,d}/\Delta)^2$, такое неравенство отвечает слабой связи адатома с графеном-подложкой (по сравнению со связью соседних атомов углерода в графене). Однако непосредственно воспользоваться оценками работы [25], полученными для случая $\gamma_{s,d} \ll 1$, возможным не представляется, так что требуется численный расчет. Оставаясь в рамках поставленной здесь цели не рассчитать, а только оценить адсорбционные характеристики, сделаем некоторые грубые, но простые оценки.

Таблица 2. Энергетические параметры (в eV), числа заполнения и составляющие энергии адсорбции (в eV) для 4*d*адатомов

Параметр	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
\mathcal{E}_{s}	0.88	0.73	0.83	0.59	0.48	0.43	0.28	-0.60	0.03
V_s	1.63	1.93	2.20	2.30	2.38	2.43	2.36	2.36	2.22
V_d	1.62	1.93	2.00	1.96	1.86	1.77	1.54	1.43	1.18
$-E_{ion}$	1.30	1.27	1.29	1.19	1.15	1.18	1.04	0.51	0.96
$E_{\rm pot}$	1.11	1.52	1.65	1.98	2.17	2.26	2.35	3.23	2.47
$-\delta E_{\rm kin1}$	0.94	1.12	1.30	1.32	1.36	1.42	1.28	0.89	1.14
$-\delta E_{\rm kin2}$	0.11	0.20	0.29	0.36	0.41	0.42	0.44	0.67	0.40

Таблица 3. Энергетические параметры (в eV), числа заполнения и составляющие энергии адсорбции (в eV) для 5*d*адатомов

Пара- метр	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au
\mathcal{E}_{s}	1.46	0.57	-0.31	-0.32	-0.14	-0.97	-1.29	-1.26	-1.62
V_s	1.55	1.94	2.18	2.28	2.36	2.38	2.38	2.32	2.22
V_d	1.49	1.92	2.11	2.10	2.06	1.91	1.79	1.61	1.42
$-E_{ion}$	1.74	1.14	0.69	0.72	0.79	0.34	0.12	0.19	0.42
$E_{\rm pot}$	0.47	1.69	2.78	2.87	2.77	3.62	3.94	3.85	4.12
$-\delta E_{kin1}$	1.04	1.07	0.95	1.02	1.12	0.74	0.43	0.53	0.75
$-\delta E_{\rm kin2}$	0.03	0.24	0.48	0.52	0.54	0.78	0.97	0.84	0.62

Параметр	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
\mathcal{E}_{s}	1.55	1.62	1.57	1.52	1.47	1.21	0.97	1.28	1.20	1.14	1.05	0.99	0.73
V_s	1.61	1.61	1.61	1.62	1.64	1.37	1.65	1.68	1.68	1.69	1.69	1.70	1.48
V_{f}	0.24	0.22	0.20	0.19	0.18	0.15	0.15	0.16	0.15	0.15	0.14	0.14	0.14
$-E_{\rm ion}$	1.47	1.48	1.48	1.47	1.46	1.39	1.34	1.35	1.54	1.19	1.12	1.34	1.25
$E_{\rm pot}$	0.43	0.36	0.42	0.47	0.53	0.56	1.04	0.75	0.83	0.91	1.00	1.07	1.14
$-\delta E_{\rm kin1}$	0.99	0.99	0.99	1.00	1.00	0.79	0.97	1.02	1.06	0.91	0.91	1.00	0.84
$-\delta E_{ m kin2}$	0.08	0.08	0.08	0.08	0.09	0.15	0.12	0.10	0.08	0.15	0.17	0.12	0.09

Таблица 4. Энергетические параметры (в eV), числа заполнения и составляющие энергии адсорбции (в eV) для 4f-адатомов

Во-первых, будем учитывать вклад только *s*-электронов. Отметим, что предположение о малой роли *d*-состояний в переходе заряда априори не свидетельствует о том, что и при расчете энергии связи адатом—подложка ими можно пренебречь (см. далее). Во-вторых, представим $E_{\rm met}$ в виде суммы вкладов потенциальной и кинетической составляющих.

Под потенциальной энергией $E_{\rm pot}$ будем понимать энергию, требуемую для перевода электрона с *s*-уровня свободного атома ε_s^0 на уровень Ферми графена в том случае, когда уровень адатома лежит выше уровня Ферми, и на уровень ε_s , когда этот уровень находится под уровнем Ферми, т.е. положим

$$E_{\text{pot}} = \begin{cases} I - \phi, & \varepsilon_s > 0, \\ V_{\text{im}}, & \varepsilon_s < 0, \end{cases}$$
(8)

где, как и в табл. 1–4, энергия уровня адатома ε_s отсчитывается от уровня Ферми. Отметим, что для

Рис. 3. Значения параметров γ_s и γ_d для 3*d*-, 4*d*- и 5*d*-адатомов. γ_s — темные символы, γ_d — светлые символы. Кружки относятся к 3*d*-ряду, квадраты — к 4*d*-ряду, крестики к 5*d*-ряду.

Рис. 4. Значения энергии адсорбции E_{ads} для 3*d*-адатомов. Наши результаты обозначены темными кружками ($w_{ads} = 0$), темными квадратами отмечены значения, взятые из работы [8], крестиками — из [11], темными ромбами — из [12], светлыми кружками — из [14], светлыми ромбами — из [4]. Для случая адсорбции атомов Си приведены также результаты работы [6]: маленькие ромбы — результаты трех методов расчета для *T*позиции, маленький квадрат — для *B*-позиции.

всех рассмотренных в работе случаев $E_{\rm pot} > 0$. Вклад кинетической энергии оценим исходя из соотношения неопределенностей $\Delta r \cdot \Delta p \sim \hbar$, где Δr и Δp — соответственно неопределенности в координате и импульсе. В свободном атоме $\Delta r \sim r_a$. Полагая $\Delta p \sim p$, получим кинетическую энергию электрона в свободном атоме, равную $\hbar^2/2mr_a^2$. В адсорбированном состоянии Z_a электронов переходят на графен, где теперь $\Delta r \rightarrow \infty$. Следовательно, в результате делокализации атомного электрона при адсорбции имеется выигрыш в энергии

$$\delta E_{\rm kin1} = -\hbar^2 Z_a / 2m_0 r_a^2. \tag{9}$$

Для $n_a = 1 - Z_a$ электронов, локализованных на адатоме, характерная длина локализации имеет порядок d, так -E_{ads}, eV

-2Nb Mo Ru Rh Pd Ag Y Zr Tc Lu Ta Hf W Re Os Pt Aū Ir Рис. 5. Значения энергии адсорбции E_{ads} для 4d- и 5d-

адатомов. Результаты наших оценок при $w_{ads} = 0$ обозначены светлыми кружками (4d) и треугольниками (5d), темными кружками (4d) и ромбами (5d) отмечены результаты работы [9], светлыми квадратами (4d) и крестиком (5d) — результаты работы [10].

что в данном случае выигрыш в кинетической энергии

$$\delta E_{\rm kim2} = -(\hbar^2 n_a/2m_0)(r_a^{-2} - d^{-2}). \tag{10}$$

Таким образом, энергию адсорбции можем записать в виде суммы

$$E_{\rm ads} \approx E_{\rm ion} + E_{\rm pot} + \delta E_{\rm kin1} + \delta E_{\rm kin2} + w_{\rm ads},$$
 (11)

где слагаемое w_{ads} содержит вклады d-электронов и изменения состояния графена, наведенное адсорбцией.

На рис. 4 представлены значения энергий адсорбции атомов 3*d*-ряда, рассчитанные по формуле (11) при $w_{ads} = 0$, в сопоставлении с результатами других авторов. По величине наши оценки E_{ads} отвечают в среднем результатам численных расчетов [4,6,8,11,12,14], хотя в характере зависимостей $E_{ads}(N)$ наблюдаются различия. В частности, найденные нами пики $E_{ads}(N)$ сдвинуты от Ті и Со к Сг и Ni. Здесь, как и при обсуждении зависимостей $\Delta n_a(N)$, следует отметить, что из-за полного отсутствия соответствующих экспериментальных данных преждевременно было бы проводить подробный сравнительный анализ.

Рис. 5 демонстрирует зависимости $E_{ads}(N)$ для 4*d*- и 5*d*-адатомов, вычисленные по формуле (11) при $w_{ads} = 0$, там же приведены результаты расчетов [9,10]. Для 4*d*-ряда (за исключением Pd, обладающего аномально высокой энергией ионизации I = 8.34 eV) наблюдается достаточно хорошее согласие результатов

настоящей работы и [9]. Что же касается 5*d*-адатомов, то о согласии с [9,10] говорить не приходится. Более того, наши оценки дают $E_{ads} < 0$ только для Lu и Hf. Происходит это вследствие высоких значений энергий ионизации *I*, приводящих, по-видимому, к переоценке положительного вклада E_{pot} . Таким образом, роль отброшенного нами в (11) слагаемого w_{ads} возрастает при переходе от 3*d*- к 5*d*-ряду. По поводу сравнения полученных нами оценок с результатами работ других авторов следует отметить, что в [9] рассматривалась высокая степень покрытия графена адатомами, а в [10] адсорбция на графеновой ленте, пассивированной водородом.

5. Редкоземельные адатомы

В отличие от случая переходных металлов адсорбция редкоземельных металлов (REM) на графене изучена слабо. Нам известны только три работы [40–42], причем вторая из них посвящена лантану, у которого f-электроны отсутствуют, а в третьей рассматриваются слои REM.

Легко понять, что все общие формулы раздела 2 настоящей работы могут быть переписаны для случая REM с заменой всех символов d на f, следует также заменить числа 5 на 7 и 9/2 на 13/2 в формулах, следующих за гамильтонианом (2). Энергии f-уровней [43] лежат, как легко показать, глубоко под уровнем Ферми графена.

Рис. 6. Переход заряда и энергия адсорбции для атомов 4fадатомов. a — крестиками отмечены наши значения перехода заряда, треугольниками — результаты работы [40]; темные кружки — γ_s , светлые кружки — γ_f (наши данные). b — наши оценки энергии адсорбции при w_{ads} отмечены ромбами, результаты работы [40] — квадратами.

Согласно [44], матричный элемент $V_f \equiv V_{pf\sigma}$ равен (см. сноску 1)

$$V_f = (3\sqrt{15}/2\pi)(\hbar^2/m_0)\frac{(r_p r_f^3)^{1/2}}{d^4},$$
 (12)

где параметр *p*-состояния атома углерода $r_p = 6.59$ Å [44], r_f — радиус *f*-состояния [45], $d = r_a(C) + r_a(REM)$, где $R_a(REM)$ — атомный радиус REM [29]. Матричные элементы V_s и V_f приведены в табл. 4, откуда следует, что $V_f \ll V_s$. Это неравенство (наряду с глубоким залеганием *f*-уровней) позволяет рассматривать в дальнейшем только *s*-состояния. Результаты расчетов для 4f-адатомов приведены в табл. 4^3 и на рис. 6, где представлены, в частности, значения перехода заряда, рассчитанные нами по аналитическим выражени-ям [24], в сопоставлении с результатами работы [40]. Там же приведены соответствующие значения параметров γ_s и γ_f .

Из рис. 6 следует, что наши оценки вполне удовлетворительно согласуются с результатами [40], за тем, однако, исключением, что при переходе от Еи к Gd изменение энергий адсорбции имеет разные знаки. Отметим, что предположение о неучастии в адсорбционной связи f-уровней оправдано в большей степени, чем для 5d-уровней, так как для всех 4f-адатомов получаем $E_{ads} < 0$.

6. Заключение

В настоящей работе рассчитаны числа заполнения n_a и тем самым заряды, или переход электронов, для адатомов переходных металлов и лантанидов. Расчет был проведен в предположении, что, во-первых, на переход заряда работает лишь s-уровень адатома и, во-вторых, что вклад резонансных состояний в число заполнения много больше, чем вклад локальных состояний. При этом рассматривался немагнитный случай заполнения и использовались приближенные аналитические выражения работы [24]. Таким образом, при расчете n_a делалось достаточно много предположений, о справедливости которых можно будет судить только на основе экспериментальных данных, в настоящее время отсутствующих. Что же касается согласия полученных нами значений с результатами работ других авторов, то здесь имеются как сходства, так и различия.

Энергия адсорбции E_{ads} в настоящей работе не вычислялась сколь-либо строго. Вместо этого для оценки величины E_{ads} была предложена простая формула (11), учитывающая только эффекты, связанные с *s*-уровнем адатома ($w_{ads} = 0$). Такой подход дал вполне разумные результаты для адатомов 3*d*-, 4*d*- (за исключением Pd) и 4*f*-рядов, но оказался непригодным для большинства адатомов 5*d*-ряда. Причины последнего обстоятельства

неясны. Не исключено, что вследствие меньшей локализации 5*d*-состояний (по сравнению со всеми рассмотренными) 5*d*-адатомы в наибольшей степени возмущают подложку (графен), что не учитывается нами в настоящей работе. И здесь, как и в случае перехода заряда, для дальнейшего анализа нужны экспериментальные данные.

Список литературы

- I. Gierz, C. Riedl, U. Starke, C.R. Ast, K. Kern. Nano Lett. 8, 12, 4603 (2008).
- [2] K.T. Chan, J.B. Neaton, M.L. Cohen. Phys. Rev. B 77, 235430 (2008).
- [3] K. Pi, M. McCreary, W. Bao, W. Han, Y.F. Chiang, Y. Li, S.-W. Tsai, C.N. Lau, R.K. Kawakami. Phys. Rev. B 80, 075 406 (2009).
- [4] H. Johll, H.C. Kang, E.S. Tok. Phys. Rev. B 79, 245416 (2009).
- [5] C. Cao, M. Wu, J. Jiang, H.-P. Cheng. Phys. Rev. B 81, 205424 (2010).
- [6] M. Amft, S. Lebegue, O. Eriksson, N.V. Skorodumova. arXiv: 1011.1113.
- [7] D. Jacob, G. Kotliar. arXiv: 1006.2779.
- [8] H. Valencia, A. Gil, G. Frapper. J. Phys. Chem. C 114, 33, 14141 (2010).
- [9] V. Zolyomi, A. Rusznyak, J. Kurti, C.J. Lambert. J. Phys. Chem. C 114, 43, 18548 (2010).
- [10] R.C. Longo, J. Carrete, L.J. Gallego. Phys. Rev. B 83, 235415 (2011).
- [11] X. Liu, C.Z. Wang, Y.X. Yao, W.C. Lu, M. Hupalo, M.C. Tringides, K.M. Ho. Phys. Rev. B 83, 235 411 (2011).
- [12] T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson. arXiv: 1107.3012.
- [13] J.E. Santos, N.M.R. Peres, J.M.B. Lopes dos Santos, A.H. Castro Neto. Phys. Rev. B 84, 085 430 (2011).
- [14] J. Ding, Z. Qiao, W. Feng, Y. Yao, Q. Niu. arXiv: 1108.6235.
- [15] K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang, Y. Li, S.-W. Tsai, C.N. Lau, R.K. Kawakami. Phys. Rev. B 76, 075 429 (2007).
- [16] Y.L. Mao, J.M. Yuan, J.X. Zhong. J. Phys.: Cond. Matter 20, 115 209 (2008).
- [17] B.J. Thorpe. Surf. Sci. 33, 2, 306 (1972).
- [18] S.Yu. Davydov, S.K. Tikhonov. Surf. Sci. 371, 1, 157 (1997).
- [19] С.Ю. Давыдов. ФММ 46, 2, 241 (1978).
- [20] F.D.M. Haldane, P.W. Anderson. Phys. Rev. B 13, 6, 2553 (1976).
- [21] S. Alexander, P.W. Anderson. Phys. Rev. **133**, *6A*, A1594 (1964).
- [22] С.Ю. Давыдов. ФТП 46, 3, 379 (2012).
- [23] С.Ю. Давыдов. ФТТ 54, 8, 1619 (2012).
- [24] С.Ю. Давыдов, Г.И. Сабирова. ФТТ 53, 3, 608 (2011).
- [25] С.Ю. Давыдов. ФТТ 53, 12, 2414 (2011).
- [26] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Т. 1. 382 с.; Т. 2. 332 с.
- [27] W.A. Harrison. Phys. Rev. B 27, 6, 3592 (1983).
- [28] W.A. Harrison. Phys. Rev. B **31**, *4*, 2121 (1985).
- [29] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [30] P.W. Anderson. Phys. Rev. 124, 1, 41 (1961).

³ Для Рт мы приняли $r_a = 1.81$ Å, что является средним арифметическим атомных радиусов Nd и Sm [29].

- [31] Ч. Киттель. Квантовая теория твердых тел. Наука, М. (1967). 492 с.
- [32] С.Ю. Давыдов. ФТП 46, 2, 204 (2012).
- [33] А.А. Радциг, Б.М. Смирнов. Параметры атомов и атомных ионов. Справочник. Энергоатомиздат, М. (1986). 344 с.
- [34] J.W. Gadzuk. Phys. Rev. B 1, 5, 2110 (1970).
- [35] Теория хемосорбции / Под ред. Дж. Смита. Мир, М. (1983). 336 с.
- [36] A. Mattausch, O. Pankratov. Phys. Rev. Lett. 99, 076 802 (2007).
- [37] С.Ю. Давыдов, Г.И. Сабирова. Письма в ЖТФ 36, 24, 77 (2010).
- [38] С.Ю. Давыдов, Г.И. Сабирова. Письма в ЖТФ **37**, *11*, 51 (2011).
- [39] S.Yu. Davydov. Appl. Surf. Sci. 257, 5, 1506 (2010).
- [40] X. Liu, C.Z. Wang, M. Hupalo, Y.X. Yao, M.C. Tringides, W.C. Lu, K.M. Ho. Phys. Rev. B 82, 245408 (2010).
- [41] J.-H. Parq, J. Yu, Y.-K. Kwon, G. Kim. arXiv: 1009.6146.
- [42] З.З. Алисултанов. ФНТ 39, 2, 225 (2013).
- [43] В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты в *d*- и *f*-металлах и их соединениях. УрО РАН, Екатеринбург (2004). 472 с.
- [44] W.A. Harrison, G.K. Straub. Phys. Rev. B 36, 5, 7668 (1987).
- [45] G.K. Straub, W.A. Harrison. Phys. Rev. B 31, 12, 7668 (1985).