03

Расчет электрического потенциала и силы Лоренца при поперечном обтекании кругового цилиндра в неоднородном магнитном поле, для различных геометрий локально ионизованной области расположенной у поверхности цилиндра

© Е.Г. Шейкин, Wei Yang Cheng

Санкт-Петербургский государственный университет, 198904 Санкт-Петербург, Россия e-mail: egsh@pochta.ru

(Поступило в Редакцию 21 ноября 2012 г. В окончательной редакции 21 мая 2013 г.)

Получено решение уравнения для электрического потенциала в локально ионизованном магнитогидродинамическом течении при поперечном обтекании кругового цилиндра в неоднородном магнитном поле, создаваемом прямолинейным проводником для различных конфигураций области ионизации. Получены аналитические формулы для расчета объемной плотности силы Лоренца, действующей на поток в локально ионизованной области. Проанализировано влияние параметра Холла и конфигурации области магнитогидродинамического взаимодействия на силу Лоренца. Показано, что увеличение параметра Холла приводит к уменьшению силы Лоренца действующей на поток, а изменение конфигурации локально ионизованной области позволяет ослабить влияние параметра Холла на величину силу Лоренца.

Введение

В настоящее время в литературе большое внимание уделяется изучению магнитогидродинамического (МГД) воздействия на поток с целью управления его характеристиками [1-16]. Рассматриваются возможности управления: потоком в воздухозаборнике летательного аппарата, процессами смешения потоков, процессами в двигателе высокоскоростного летательного аппарата, положением головной ударной волны, тепловыми потоками на обтекаемую поверхность. В большинстве рассматриваемых МГД приложений магнитное поле будет неоднородным, а равновесная проводимость потока пренебрежимо мала и для осуществления МГД воздействия на поток необходимо тем или иным способом создать в потоке неравновесную проводимость [4,6,8,17]. Поток, в этом случае, будет локально ионизован. Расчеты локально ионизованного МГД течения в [18-20] показали, что эффективность МГД управления течением во многом определяется пространственным распределением силы Лоренца. Таким образом, выбор конфигурации МГД воздействия на поток в конкретных приложениях целесообразно предварить анализом распределения силы Лоренца в области МГД взаимодействия. Это требует наличия простых способов для расчета силы Лоренца в локально ионизованном МГД течении в неоднородном магнитном поле. В работе [21] получены аналитические формулы для расчета объемной плотности силы Лоренца действующей на МГД течение при поперечном обтекании цилиндра в случае, когда у поверхности цилиндра создается область ионизации, ограниченная поверхностью цилиндра и цилиндрической поверхностью с радиусом, превышающим радиус цилиндра.

В настоящей работе будут получены формулы для расчета силы Лоренца действующей на поток при поперечном обтекании цилиндра для более общей конфигурации области ионизации, чем в [21]. Будет рассмотрена область ионизации потока, которая покрывает не всю поверхность цилиндра как в работе [21], а только ее часть. Будет исследовано влияние геометрии локально ионизованной области, параметра Холла и приложенного электрического поля на силу Лоренца в области МГД взаимодействия.

Нахождение электрического потенциала в локально-ионизованном МГД течении при поперечном обтекании кругового цилиндра в неоднородном магнитном поле

Геометрия задачи и основные обозначения показаны на рис. 1. В качестве неоднородного магнитного поля будем рассматривать поле, создаваемое прямолинейным проводником, направленным вдоль оси z и проходящим через центр координат в точке (0.0), совпадающей с осью симметрии кругового цилиндра радиуса r_0 . Рассматривается локально ионизованное МГД течение. Предполагается, что плазма вокруг цилиндра существует только в ограниченной области: $r_0 < r < r_1$; $\varphi_1 < \varphi < \varphi_2$. Данная область выделена на рис. 1 штриховкой. Проводимость потока вне этой области равна нулю. Рассматривается двумерное приближение, в котором характеристики МГД течения, электрического и магнитного поля, а также токи в плазме не зависят от координаты z.

Рис. 1. Геометрия, используемая для нахождения электрического потенциала в МГД течении в неоднородном магнитном поле, создаваемом прямолинейным током I_z , при поперечном обтекании цилиндра радиусом r_0 .

Уравнение для электрического потенциала $\Phi(r, \varphi)$ в области МГД взаимодействия при поперечном обтекании кругового цилиндра в приближении потенциального течения получено в работе [21], там же детально описаны физические допущения, использованные при выводе этого уравнения. Уравнение для $\Phi(r, \varphi)$ из работы [21] приведем в безразмерной форме с использованием безразмерных переменных:

$$(r^{2} + \beta_{0}^{2})^{2} \frac{\partial^{2} \Phi}{\partial \varphi^{2}} + r^{4} (r^{2} + \beta_{0}^{2}) \frac{\partial^{2} \Phi}{\partial r^{2}} + r^{3} (r^{2} + 3\beta_{0}^{2}) \frac{\partial \Phi}{\partial r} + (r^{3} - \beta_{0}^{2} (r + \beta_{0}^{2}/r) - 3r) \beta_{0} \cos \varphi - 2r^{2} \beta_{0}^{3} E_{z} = 0,$$
(1)

где $\beta_0 = \mu_e B_0$ — характерное значение параметра Холла, определяемое через подвижность электронов μ_e и значение магнитной индукции B_0 на поверхности цилиндра, E_z — напряженность внешнего электрического поля. Согласно [21], приложение внешнего электрического поля вдоль оси z может быть использовано для управления силой Лоренца, действующей на поток. Потенциал $\Phi(r, \varphi)$ в уравнении (1) нормирован на величину B_0Vr_0 , где V — скорость потока на бесконечном удалении от цилиндра, электрическое поле нормировано на величину B_0V , радиус нормирован на величину r_0 . Таким образом, при используемых безразмерных переменных, границе области МГД взаимодействия, расположенной на поверхности цилиндра, отвечает значение r = 1.

Остальные параметры, используемые в данной статье, также будут фигурировать во всех уравнениях в безразмерной форме. Так плотность тока j в области МГД взаимодействия нормируется на величину $\sigma B_0 V$ (где σ — проводимость потока), объемная плотность силы Лоренца F на $\sigma B_0^2 V$, скорость течения v на V, а магнитное поле B на B_0 . Отметим, в частности, что проекции нормированного вектора магнитной индукции в цилиндрической системе координат имеют для рассматриваемой задачи следующий вид: $B_r = 0$, $B_{\varphi} = 1/r$, $B_z = 0$, а радиальная проекция нормированной скорости потока в приближении потенциального течения имеет следующий вид: $v_r = (1 - 1/r^2) \cos \varphi$.

В настоящей работе рассматривается непроводящая поверхность цилиндра, так как в этом случае, согласно [21], МГД воздействие на поток позволяет реализовать более эффективное торможение потока, чем в случае с проводящей поверхностью цилиндра. Таким образом, при решении уравнения (1) будем использовать граничные условия непротекания электрического тока через границы ионизованной области:

$$j_r|_{r=1,r=r_i} = 0$$
 и $j_{\varphi}|_{\varphi=\varphi_1,\varphi=\varphi_2} = 0.$ (2)

Решение уравнения (1) для произвольных значений φ_1 и φ_2 будем искать в виде следующей суммы:

$$\Phi(r,\varphi) = \Phi_a(r,\varphi) + \Phi_b(r,\varphi), \tag{3}$$

где $\Phi_a(r, \varphi)$ — решение уравнения (1) с граничными условиями (2) в частном случае при $\varphi_1 = 0$ и $\varphi_2 = 2\pi$. Аналитическое выражение для потенциала $\Phi_a(r, \varphi)$, полученное в работе [21], с использованием безразмерных переменных может быть записано в виде

 $\langle \alpha \rangle$

$$\Phi_a(r,\varphi) = -\beta_0 E_z \ln\left(\frac{\beta_0}{r}\right) + \frac{\cos\varphi}{\beta_0} \left(C_1 Z_1(\beta_0/r) + C_1 Z_2(\beta_0/r) - \frac{r^2 + 1}{r}\right), \quad (4)$$

где функции Z_1 и Z_2 являются комбинацией модифицированных функций Бесселя: $Z_1(x) = I_1(x) + xI_2(x)$, $Z_2(x) = K_1(x) - xK_2(x)$. Константы C_1 и C_2 определяются выражениями: $C_1 = -(r_1 - 1/r_1)K_1(\beta_0)/H$, $C_2 = (r_1 - 1/r_1)I_1(\beta_0)/H$, где $H = I_1(\beta_0/r_1)K_1(\beta_0) - I_1(\beta_0)K_1 \times (\beta_0/r_1)$. Подставив выражения (3,4) в уравнение (1), получим уравнение для потенциала $\Phi_b(r, \varphi)$:

$$(r^{2}+\beta_{0}^{2})^{2}\frac{\partial^{2}\Phi}{\partial\varphi^{2}}+r^{4}(r^{2}+\beta_{0}^{2})\frac{\partial^{2}\Phi_{b}}{\partial r^{2}}+r^{3}(r^{2}+3\beta_{0}^{2})\frac{\partial\Phi_{b}}{\partial r}=0.$$
(5)

Используя соотношения (3) из работы [21], определяющие связь между проекциями плотности тока и электрическим потенциалом, и учитывая представление потенциала в форме (3), выразим проекции плотности тока j_r и j_{φ} через потенциал $\Phi_b(r, \varphi)$:

$$j_r = j_{r,a} - \frac{r^2}{(r^2 + \beta_0^2)} \,\partial\Phi_b / \partial r, \quad j_\varphi = j_{\varphi,a} - \frac{1}{r} \,\frac{\partial\Phi_b}{\partial\varphi}, \tag{6}$$

где плотности тока $j_{r,a}$ и $j_{\varphi,a}$ отвечают задаче с $\varphi_1 = 0$, $\varphi_2 = 2\pi$ и могут быть представлены в следующем виде:

$$j_{r,a} = \frac{1}{\beta_0 r} \left[C_1 I_1 \left(\frac{\beta_0}{r} \right) + C_2 K_1 \left(\frac{\beta_0}{r} \right) + \frac{r^2 - 1}{r} \right] \cos \varphi,$$

$$j_{\varphi,a} = \frac{1}{\beta_0 r} \left[C_1 I_1 \left(\frac{\beta_0}{r} \right) + C_2 Z_2 \left(\frac{\beta_0}{r} \right) - \frac{r^2 + 1}{r} \right] \sin \varphi.$$
(7)

Так как $j_{r,a}|_{r=1,r=r_1} = 0$, то граничные условия (2) с учетом (6) принимают вид

$$\left. \frac{\partial \Phi_b}{\partial r} \right|_{r=1, r=r_1} = 0, \tag{8a}$$

$$\frac{\partial \Phi_b}{\partial \varphi}\Big|_{\varphi=\varphi_1,\varphi=\varphi_2} = r j_{\varphi,a}\Big|_{\varphi=\varphi_1,\varphi=\varphi_2}.$$
(8b)

Для решения уравнения (5) используем метод разделения переменных. При этом потенциал представляется в виде ряда $\Phi_b(r, \varphi) = \sum_{k=0}^{\infty} R_k(r) \Psi_k(\varphi)$, где функции $R_k(r)$ и $\Psi_k(\varphi)$ определяются из решения систем уравнений:

$$\frac{d^2 R_k}{dr^2} + \frac{r^2 + 3\beta_0^2}{r(r^2 + \beta_0^2)} \frac{dR_k}{dr} + \lambda_k \frac{r^2 + \beta_0^2}{r^4} R_k = 0, \quad (9)$$

$$\frac{d^2\Psi_k}{d\varphi^2} - \lambda_k \Psi_k = 0. \tag{10}$$

Очевидно, что граничные условия (8a) для $\Phi_b(r, \varphi)$ будут удовлетворены, если решение уравнения (9) удовлетворяет следующим граничным условиям:

$$dR_k/dr\Big|_{r=1,r=r_1} = 0.$$
 (11)

Задача нахождения нетривиального решения уравнения (9) с граничными условиями (11) сводится к задаче Штурма—Лиувилля, в которой требуется найти собственные значения λ_k и соответствующие им собственные функции $R_k(r)$. Используя несложные математические преобразования, приведем уравнение (9) к традиционно используемому для задачи Штурма—Лиувилля виду

$$\frac{d}{dr}\left(\frac{r^3}{r^2+\beta_0^2}\frac{dR_k(r)}{dr}\right)+\lambda_k\frac{1}{r}R_k(r)=0.$$
 (12)

Согласно [22] для данного уравнения, с граничными условиями (11) минимальное собственное значение $\lambda_0 = 0$, а соответствующая ему собственная функция $R_0 = \text{const}$, остальные собственные значения λ_k положительны. Что касается собственных функций $R_k(r)$, то они ортогональны на промежутке [1, r_1] с весом 1/r

$$\int_{1}^{i} \frac{1}{r} R_j(r) R_k(r) dr = \delta_{jk}, \qquad (13)$$

где δ_{jk} — символ Кронекера, который равен единице, если индексы *j* и *k* совпадают, и нулю в случае различных индексов. Принимая во внимание, что $\lambda_k \ge 0$, решение уравнения (10) запишем в виде

$$\begin{split} \Psi_0(\varphi) &= a_0 + b_0 \varphi, \\ \Psi_k(\varphi) &= a_k \operatorname{ch} \left(\sqrt{\lambda_k} (\pi - \varphi) \right) \\ &+ b_k \operatorname{sh} \left(\sqrt{\lambda_k} (\pi - \varphi) \right), \quad k \ge 1. \end{split} \tag{14}$$

Журнал технической физики, 2013, том 83, вып. 12

Константы a_k и b_k в (14) определим используя граничное условие (8b), которое запишем в виде

$$\sum_{k=0}^{\infty} R_k(r) \left. \frac{d\Psi_k(\varphi)}{d\varphi} \right|_{\varphi=\varphi_1,\varphi=\varphi_2} = \frac{1}{\beta_0} \left(C_1 Z_1(1,\beta_0/r) + C_2 Z_2(1,\beta_0/r) - \frac{r^2 + 1}{r} \right) \sin \varphi \right|_{\varphi=\varphi_1,\varphi=\varphi_2}.$$
 (15)

Подставив (14) в (15) и используя ортогональность собственных функций $R_k(r)$ (13), получим систему уравнений для определения констант a_k и b_k . При $k \ge 1$ система уравнений принимает следующий вид:

$$egin{aligned} &\sqrt{\lambda_k} \Big(a_k \sin ig(\sqrt{\lambda_k} (\pi - arphi) ig) \ &+ b_k \cosh ig(\sqrt{\lambda_k} (\pi - arphi) ig) \Big|_{arphi = arphi_1, arphi = arphi_2} = - Q_k \sin(arphi) \Big|_{arphi = arphi_1, arphi = arphi_2}, \end{aligned}$$

где

$$Q_k = \frac{1}{\beta_0}$$

$$\times \int_{1}^{r_1} \left(C_1 Z_1(1, \beta_0/r) + C_2 Z_2(1, \beta_0/r) - \frac{r^2 + 1}{r} \right) \frac{R_k(r)}{r} dr$$

Решение данной системы уравнений может быть записано в виде

$$a_{k} = \frac{Q_{k}}{\sqrt{\lambda_{k}}} \frac{A - B}{C - D},$$

$$b_{k} = \frac{Q_{k}}{\sqrt{\lambda_{k}}} \frac{E - F}{C - D},$$

$$A = \operatorname{ch}[\sqrt{\lambda_{k}}(\pi - \varphi_{1})] \sin \varphi_{2},$$

$$B = \operatorname{ch}[\sqrt{\lambda_{k}}(\pi - \varphi_{2})] \sin \varphi_{1},$$

$$C = \operatorname{sh}[\sqrt{\lambda_{k}}(\pi - \varphi_{1})] \operatorname{ch}[\sqrt{\lambda_{k}}(\pi - \varphi_{2})],$$

$$D = \operatorname{ch}[\sqrt{\lambda_{k}}(\pi - \varphi_{1})] \operatorname{sh}[\sqrt{\lambda_{k}}(\pi - \varphi_{2})],$$

$$E = \operatorname{sh}[\sqrt{\lambda_{k}}(\pi - \varphi_{1})] \sin \varphi_{2},$$

$$F = \operatorname{sh}[\sqrt{\lambda_{k}}(\pi - \varphi_{2})] \sin \varphi_{1}.$$
(16)

При k = 0 получаем уравнение $b_0 = Q_0 \sin(\varphi) \big|_{\varphi - \varphi_1, \varphi = \varphi_2}$. Расчет величины Q_0 , проведенный с учетом того, что $R_0(r) = \text{const}$ показывает, что $Q_0 \equiv 0$, а следовательно, и $b_0 \equiv 0$. Что касается коэффициента a_0 , то без уменьшения общности решения полагаем $a_0 = 0$. Таким образом, потенциал $\Phi_b(r, \varphi)$ в области МГД взаимодействия определяется следующим соотношением:

$$\Phi_b(r, \varphi) = \sum_{k=1}^{\infty} R_k(r) \Psi_k(\varphi).$$

Из (16) нетрудно заметить, что в частном случае при $\varphi_1 = 0$ и $\varphi_2 = 2\pi$ все коэффициенты a_k и b_k равны нулю, что означает обращение в ноль $\Psi_k(\varphi)$, а следовательно и

Рис. 2. Собственные функции $R_k(r)$ задачи Штурма-Лиувилля (11), (12) для параметров $r_1 = 2$ и $\beta_0 = 10$. Значения k указаны у кривых.

Рис. 3. Собственные функции $R_k(r)$ задачи Штурма–Лиувилля (11), (12), отвечающие значению k = 5 для различных значений параметра Холла, при $r_1 = 2$. Сплошная кривая соответствует значению $\beta_0 = 1$, пунктир соответствует значению $\beta_0 = 3$, штрихпунктир соответствует значению $\beta_0 = 10$.

потенциала $\Phi_b(r, \varphi)$. Особо выделим случай симметричной относительно оси *x* области МГД взаимодействия отвечающей значению угла $\varphi_2 = 2\pi - \varphi_1$. В этом случае выражения (16) для определения коэффициентов a_k и b_k заметно упрощаются:

$$a_k = -\frac{Q_k}{\sqrt{\lambda_k}} \frac{\sin(\varphi_1)}{\sin\left(\sqrt{\lambda_k}(\pi - \varphi_1)\right)}, \quad b_k = 0.$$
(17)

Собственные значения задачи Штурма–Лиувилля (11), (12) λ_k при различных значениях параметров r_1 и β_0

k	$r_1 = 2.0$		$r_1 = 1.2$	
	$eta_0=1$	$eta_0=10$	$eta_0=1$	$eta_0=10$
1	13.519	0.38298	161.74	3.5082
2	53.694	1.5439	646.65	14.041
3	120.66	3.4792	1454.8	31.596
4	214.41	6.1886	2586.3	56.172
5	334.95	9.6721	4941.0	87.770
6	482.27	13.030	5819.0	126.39
7	656.38	18.961	7920.3	172.03
8	857.27	24.767	10344.8	224.70
9	1084.96	31.347	13092.6	284.38
10	1339.42	38.701	16163.7	351.09

При расчете электрического потенциала $\Phi_b(r, \varphi)$ вначале находятся собственные значения λ_k и собственные функции $R_k(r)$ из решения задачи Штурма–Лиувилля (11), (12). Затем, с использованием уравнений (14), (16), определяются функции $\Psi_k(\varphi)$, и потенциал с помощью выражения:

$$\Phi_b(r,\varphi) = \sum_{k=1}^N R_k(r) \Psi_k(\varphi), \qquad (18)$$

где в качестве предела суммирования используется не бесконечность, а некоторое конечное число членов разложения N.

Рис. 4. Распределение электрического потенциала $\Phi_b(r, \varphi)$ в области МГД взаимодействия при $\varphi = \pi$, рассчитанное, с использованием различного числа членов разложения N в уравнении (18) при значении параметров: $r_1 = 2$, $\beta_0 = 10$, $E_z = 0$, $\varphi_1 = 3\pi/4$, $\varphi_2 = 5\pi/4$. Штрихпунктир отвечает значению N = 1, пунктир — значению N = 2, сплошная кривая — значению N = 5.

Журнал технической физики, 2013, том 83, вып. 12

Рис. 5. Распределение электрического потенциала в области МГД взаимодействия при значении параметров: $E_z = 0$, $r_1 = 2$, $\beta_0 = 10$, $\varphi_1 = \pi/4$, $\varphi_2 = 7\pi/4$. $a - \Phi_b(r, \varphi)$, $b - \Phi(r, \varphi) = \Phi_a(r, \varphi) + \Phi_b(r, \varphi)$.

Так как аналитическое решение уравнения (12) найти не удалось, то задача Штурма–Лиувилля решалась численно с использованием процедуры SLEIGN2 [23]. Первые 10 собственных значений λ_k для различных значений β_0 и r_1 приведены в таблице. Из приведенных результатов следует, что, при фиксированном значении k, увеличение как параметра Холла β_0 , так и радиуса r_1 приводит к уменьшению значений λ_k . Собственные функции $R_k(r)$, согласно рис. 2, характеризуются монотонным уменьшением амплитуды колебаний при удалении от поверхности цилиндра. Согласно рис. 3, при увеличении параметра Холла, положения экстрему-

Журнал технической физики, 2013, том 83, вып. 12

мов собственных функций сдвигаются в направлении к поверхности цилиндра.

На рис. 4 представлено распределение потенциала $\Phi_b(r, \phi)$ вдоль линии торможения, соответствующей значению $\phi = \pi$. Потенциал рассчитан по формуле (18) при разном числе членов разложения N. C увеличением числа N результат расчета достаточно быстро сходится к точному решению. Для условий расчета, соответствующих рис. 4, распределение потенциала, отвечающее значению N = 5, практически не изменяется при дальнейшем увеличении параметра N. Необходимо отметить, что расчеты, проведенные при различных значениях параметров β_0 и r_1 , показали, что при увеличении как β_0 , так и r_1 требуется использовать большее число членов разложения N, чтобы результат расчета перестал зависеть от параметра N. Во всех последующих расчетах использовалось значение N = 50, гарантированно обеспечившее высокую точность расчета потенциала при всех рассмотренных параметрах.

На рис. 5 показано распределение потенциала $\Phi_b(r, \varphi)$ и $\Phi(r, \varphi) = \Phi_a(r, \varphi) + \Phi_b(r, \varphi)$ для симметричной, относительно оси *x*, области МГД взаимодействия. Из рис. 5, *a* следует, что у потенциала $\Phi_b(r, \varphi)$ сгущение изолиний, отвечающее максимальным значениям напряженности электрического поля, наблюдается около границ $\varphi = \varphi_1$ и $\varphi = \varphi_2$. Для потенциала $\Phi(r, \varphi)$ (рис. 5, *b*), максимальное сгущение изолиний наблюдается вдоль линии торможения при $\varphi = \pi$. Распределение потенциала вдоль линии торможения для различных конфигураций области МГД взаимодействия, симметричных относительно оси *x*, показано на рис. 6. Из рис. 6 следует, что потенциал существенно зависит от конфи

Рис. 6. Распределение электрического потенциала вдоль линии торможения, полученное для различных значений φ_1 , при значении параметров: $r_1 = 2$, $\beta_0 = 10$, $E_z = 0$, $\varphi_2 = 2\pi - \varphi_1$: $1 - \varphi_1 = 0$, $2 - \varphi_1 = \pi/4$, $3 - \varphi_1 = \pi/2$, $4 - \varphi_1 = 3\pi/4$.

гурации области МГД взаимодействия. Увеличение угла φ_1 (сужение области МГД взаимодействия) приводит к увеличению разницы потенциалов на границах области r = 1 и $r = r_1$. Согласно (6), изменение распределения потенциала приведет к изменению распределения токов в области МГД взаимодействия. А это в свою очередь должно привести к изменению силы Лоренца, действующей на поток.

Расчет силы Лоренца в локально-ионизованном МГД течении в неоднородном магнитном поле

Сила Лоренца, действующая на МГД течение при заданном распределении магнитного поля, определяется токами, протекающими в области МГД взаимодействия, с использованием соотношения: $\mathbf{F} = \mathbf{j} \times \mathbf{B}$. Используя уравнения (6), (14), (18), получим выражения для плотностей тока j_r и j_{φ} в следующем виде:

$$j_{\varphi} = j_{\varphi,a} + \frac{1}{r} \sum_{k=1}^{N} \sqrt{\lambda_k} \Big[a_k \operatorname{sh} \left(\sqrt{\lambda_k} (\pi - \varphi) \right) \\ + b_k \operatorname{ch} \left(\sqrt{\lambda_k} (\pi - \varphi) \right) \Big] R_k(r),$$

$$j_r = j_{r,a} - \frac{r^2}{(r^2 + \beta_0^2)} \sum_{k=1}^{N} \Big[a_k \operatorname{ch} \left(\sqrt{\lambda_k} (\pi - \varphi) \right) \\ + b_k \operatorname{sh} \left(\sqrt{\lambda_k} (\pi - \varphi) \right) \Big] \frac{dR_k(r)}{dr}, \qquad (19)$$

где $j_{r,a}$, $j_{\phi,a}$ определены уравнениями (7). Выражение для плотности тока j_z через плотность тока j_r получим, используя уравнение (27) из [21], в следующем виде:

$$j_z = E_z + \frac{1}{r} \left(1 - \frac{1}{r^2} \right) \cos \varphi = j_r \beta_0 \frac{1}{r}.$$
 (20)

На рис. 7 показаны линии тока в области МГД взаимодействия для двух геометрий области МГД взаимодействия. Видно, что в обоих случаях токи в плоскости xyимеют вихревой характер. В области МГД взаимодействия существуют два вихревых тока, имеющие противоположные направления вращения. Граница раздела между вихрями для геометрии, симметричной относительно оси x (рис. 7, a), совпадает с осью x. При несимметричной области МГД взаимодействия (рис. 7, b) граница раздела между вихрями смещается в сторону меньшего вихря.

Магнитное поле в рассматриваемой задаче имеет только одну ненулевую компоненту B_{φ} , вследствие этого проекция силы Лоренца $\mathbf{F} = \mathbf{j} \times \mathbf{B}$ в плоскости *xy* имеет только радиальную компоненту, определяемую соотношением $F_r = -j_z B_0$. Учитывая (20), представим F_r в

Рис. 7. Линии тока в области МГД взаимодействия при значении параметров: $E_z = 0$, $r_1 = 2$, $\beta_0 = 3$, $\varphi_1 = \pi/2$: $a - \varphi_2 = 3\pi/2$, $b - \varphi_2 = 5\pi/4$.

Рис. 8. Сила Лоренца, действующая вдоль линии торможения при значении параметров: $E_z = 0$, $r_1 = 2$, $\varphi_1 = \pi/2$, $\varphi_2 = 3\pi/2$. Значения β_0 указаны у кривых.

следующем виде:

$$F_r = -\frac{E_z}{r} - \frac{1}{r^2} \left(1 - \frac{1}{r^2} \right) \cos \varphi + \frac{j_r \beta_0}{r^2}.$$
 (21)

МГД управление потоком часто рассматривается как способ снижения теплового потока на поверхность за счет МГД торможения потока [9,15]. В этой связи наибольший интерес представляет исследование силы Лоренца вдоль линии торможения от внешней границы плазмы до критической точки, расположенной на

Рис. 9. Сила Лоренца, действующая вдоль линии торможения для различных значений φ_1 , при значении параметров: $E_z = 0$, $r_1 = 2$, $\beta_0 = 10$. Сплошные кривые отвечают симметричной области МГД взаимодействия с $\varphi_2 = 2\pi - \varphi_1$, штриховые — $\varphi_2 = 5\pi/4$: $1 - \varphi_1 = 0$, $2 - \varphi_1 = \pi/4$, $3 - \varphi_1 = \pi/2$, $4 - \varphi_1 = 3\pi/4$. Кривая 5 отвечает предельному значению силы Лоренца, рассчитанному в приближении $j_r = 0$.

передней части цилиндра. Проекции силы Лоренца в декартовой системе координат определяются следующим образом: $F_x = F_r \cos \varphi$, $F_y = F_r \sin \varphi$. Вдоль линии торможения, соответствующей значению угла $\varphi = \pi$, имеем соответственно $F_y = 0$ и $F_x = -F_r$. На рис. 8 приведена сила Лоренца F_x при различных значениях параметра Холла. Отрицательное значение F_x показывает, что сила Лоренца приводит к торможению набегающего на цилиндр потока. Согласно рис. 8, при увеличении параметра Холла эффект торможения потока в области МГД взаимодействия будет снижаться.

На рис. 9 приведена сила Лоренца при различных геометриях области МГД взаимодействия. Рассматриваются как симметричные (сплошные кривые), так и несимметричные (пунктир) относительно оси х области МГД взаимодействия. Штрихпунктирная кривая на рис. 9 соответствует силе Лоренца в случае $j_r = 0$. Эта кривая показывает предельное значение силы Лоренца, при котором будет достигаться максимальное торможение потока. Наличие минимума в зависимости предельной силы Лоренца от координаты обусловлено тем, что радиальная скорость потока уменьшается с приближением к поверхности цилиндра, а магнитное поле, наоборот, возрастает. Из рис. 9 следует, что уменьшение размаха области МГД взаимодействия по углу ϕ (увеличение ϕ_1) приводит к ослаблению влияния параметра Холла β_0 на величину силы Лоренца и приближает F_x к своему предельному значению. От-

Журнал технической физики, 2013, том 83, вып. 12

метим, что сужение области МГД взаимодействия по радиусу (уменьшение r_1), согласно работе [21], также приводит к уменьшению влияния параметра Холла на силу Лоренца. Отсюда следует, что для обеспечения эффективного МГД торможения потока вдоль линии торможения необходимо обеспечивать ионизацию потока не во всем объеме, а локально, в окрестности критической точки, расположенной на передней части цилиндра. Оптимальный выбор геометрии области МГД взаимодействия возможен при решении комплексной задачи, включающей в себя также моделирование проводимости потока.

Как следует из уравнения (21) дополнительным фактором, влияющим на силу Лоренца, является внешнее поле E_z . При этом, согласно (21), при $E_z \neq 0$ сила Лоренца F_r на поверхности цилиндра (r = 1) также будет иметь ненулевое значение. Но так как на поверхности цилиндра $v_r = 0$, то работа силы Лоренца на этой границе будет равна нулю. Поэтому сравнивая ситуации с различными значениями поля Е_z целесообразно анализировать не силу Лоренца, а работу, которую данная сила совершает. Обозначим работу, совершаемую силой Лоренца в единицу времени в единице объема как $W = F_r v_r$. Из рис. 10 видно, что зависимость величины W от координаты x для трех значений E_z . На рис. 10, при E_z > 0, у поверхности цилиндра имеется узкий приповерхностный слой, где W > 0, и, следовательно, сила Лоренца приводит к ускорению потока в этом слое. При $E_z \leq 0$ во всей области МГД воздействия и при $E_z > 0$ на некотором удалении от поверхности цилиндра величина W < 0. В этом случае сила Лоренца приводит к торможению потока. Согласно рис. 10, наложение поля $E_z < 0$, позволяет привести к дополнительному МГД торможению потока вдоль линии торможения.

Рис. 10. Величина *W* вдоль линии торможения при значении параметров: $r_1 = 2$, $\beta_0 = 10$, $\varphi_1 = 3\pi/4$, $\varphi_2 = 5\pi/4$. Значения E_z указаны у кривых.

Приближенное аналитическое решение задачи нахождения собственных функций для построения потенциала Φ_b(r, φ)

Анализ уравнения (12) для нахождения функции $R_k(r)$ показывает, что при больших значениях параметра Холла или при малых толщинах области МГД взаимодействия $r_1 - 1$ можно получить приближенное решение данного уравнения. Нетрудно заметить, что при выполнении указанных условий в знаменателе левой части уравнения (12) вместо выражения $r^2 + \beta_0^2$ можно приближенно использовать $1 + \beta_0^2$. В этом случае уравнение (12) принимает вид

$$\frac{d}{dr}\left(r^3 \frac{dR_k^{\text{appr}}(r)}{dr}\right) + (1+\beta_0^2)\lambda_k \frac{1}{r}R_k^{\text{appr}}(r) = 0.$$
(22)

Верхний индекс "аррг" в обозначении функции $R_k^{\text{аррг}}(r)$ акцентирует внимание на том, что это решение является решением приближенного уравнения. С использованием результатов [24], решение уравнения (22) может быть представлено в следующем виде:

$$R_{k}^{\text{appr}}(r) = \left[C_{3}J_{1} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} / r \right) + C_{4}Y_{1} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} / r \right) \right] / r, \quad (23)$$

где $J_{\nu}(x)$ — функция Бесселя первого рода, $Y_{\nu}(x)$ — функция Бесселя второго рода.

Неопределенную константу C_3 в (23) определим из граничного условия (11) при r = 1. В результате получим

$$R_{k}^{\mathrm{appr}}(r) = \frac{C_{4}}{r} \left[Y_{1} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} / r \right) -J_{1} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} / r \right) \frac{Y_{0} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} \right)}{J_{0} \left(\sqrt{(1+\beta_{0}^{2})\lambda_{k}} \right)} \right].$$
(24)

Константа C_4 в уравнении (24) определяется из условия нормировки собственных функций $\int_{1}^{r_1} \frac{1}{r} \left(R_k^{appr}(r)\right)^2 dr = 1$. Собственные значения λ_k определяются с использованием граничного условия (11) при $r = r_1$. Подставив (24) в (11), с помощью несложных преобразований получим следующее уравнение для нахождения собственных значений λ_k :

$$J_0\left(\sqrt{(1+\beta_0^2)\lambda_k} / r_1\right) Y_0\left(\sqrt{(1+\beta_0^2)\lambda_k}\right) - J_0\left(\sqrt{(1+\beta_0^2)\lambda_k}\right) Y_0\left(\sqrt{(1+\beta_0^2)\lambda_k} / r_1\right) = 0.$$
(25)

Рис. 11. Распределение электрического потенциала $\Phi_b(r, \varphi)$ в различных сечениях области МГД взаимодействия при значении параметров: $E_z = 0$, $r_1 = 2$, $\beta_0 = 10$, $\varphi_1 = \pi/2$, $\varphi_2 = 3\pi/2$. Приближенному решению соответствуют штриховые кривые, точному решению — сплошные кривые: a — радиальная зависимость при $\varphi = \pi$, b — угловые зависимости при различных значениях r, указанных у кривых.

Нетрудно заметить, что для нахождения собственных значений λ_k из решения уравнения (25) достаточно определить нули функции $f(\alpha) = J_0(\alpha/r_1)Y_0(\alpha) - J_0(\alpha)Y_0(\alpha/r_1)$, зависящие только от r_1 . Затем для произвольного значения параметра Холла получим $\lambda_k = \alpha_k^2/(1+\beta_0^2)$. Согласно [25], нули α_k функции $f(\alpha)$ являются действительными и простыми. Таким образом, нахождение α_k является элементарной задачей. Необходимо отметить, что собственные значения λ_k , отвечаю-

щие функции $R_k^{\text{appr}}(r)$, отличаются от собственных значений, отвечающих решению уравнения (12). В частности, при $r_1 = 2$ и $\beta_0 = 10$ десятым корнем уравнения (25) является $\lambda_{10} = 39.083$, что примерно на 1% отличается от соответствующего значения $\lambda_{10} = 38.701$ из таблицы. При $r_1 = 1.2$ и $\beta_0 = 10$ из решения уравнения (25) мы получим $\lambda_{10} = 351.78$, что больше соответствующего значения $\lambda_{10} = 351.09$ из таблицы примерно на 0.2%. При $\beta_0 = 20$ и $r_1 = 2$ величина λ_{10} для приближенного и точного решений отличается примерно на 0.2%. Таким образом, можно заключить, что при увеличении параметра β_0 и при уменьшении r_1 отличие собственных значений для приближенного и точного решений уменьшения го и точного решений уменьшения го и точного решений уменьшения го и точного решений уменьшения и точного решений уменьшения го и точного решений уменьшения и точного решений умень и точного и точного решений умень и точного решения и точно и точного решений умень и точного решения умень и точно и точного и точного и точного и точного и точного и точно

На рис. 11 проводится сравнение приближенного аналитического решения для потенциала $\Phi_b(r, \phi)$ с точным решением в различных сечениях области МГД взаимодействия. Для аналитического расчета потенциала $\Phi_b(r, \phi)$ используется выражение (18), в которое вместо $R_k(r)$ подставляется $R_k^{\text{appr}}(r)$. На рис. 11, *а* приведены зависимости $\Phi_b(r, \phi)$ от радиуса вдоль линии торможения ($\phi = \pi$). На рис. 11, *b* — потенциал от угла φ при различных значениях радиуса *г*. Согласно рис. 11, точное и приближенное решения для потенциала $\Phi_b(r, \phi)$ для рассматриваемых условий отличается незначительно. Расчеты, проведенные с использованием различных значений β_0 и r_1 показали, что для $r_1 = 2$ приближенное и точное решения практически совпадают при $\beta_0 \ge 15$. В случае $r_1 = 1.5$ приближенное и точное решения практически совпадают при $\beta_0 \ge 10$. Для $r_1 = 1.2$ расчет потенциала $\Phi_b(r, \varphi)$ можно осуществлять, используя приближенное аналитическое решение при $\beta_0 \ge 7$.

В диапазоне изменения параметров β_0 и r_1 , при которых аналитическое решение позволяет с высокой точностью рассчитывать потенциал $\Phi_b(r, \varphi)$, мы можем использовать аналитическое решение для расчета силы Лоренца, действующей на поток в области МГД взаимодействия. В этом случае сила Лоренца рассчитывается по формуле (21), в которой плотность тока рассчитывается по формуле (19). При этом в выражение (19) вместо $dR_k(r)/dr$ подставляется $dR_k^{appr}(r)/dr$, где $R_k^{appr}(r)$ определяется формулой (24).

Заключение

Получено решение уравнения для электрического потенциала в локально ионизованном МГД течении для различных конфигураций области ионизации при поперечном обтекании кругового цилиндра в неоднородном магнитном поле, создаваемом прямолинейным проводником. Проанализировано влияние параметра Холла и конфигурации области МГД взаимодействия на электрический потенциал и силу Лоренца. Показано, что уменьшение размаха области МГД взаимодействия по углу φ приводит к ослаблению влияния параметра Холла на величину силы Лоренца, которая при этом стремится к предельно достижимому значению, отвечающему условию $j_r = 0$. Показано, что наложение поля $E_z < 0$ позволяет привести к дополнительному МГД торможению потока вдоль линии торможения.

Получено приближенное аналитическое решение для нахождения собственных функций используемых при расчете потенциала и силы Лоренца. Для ряда значений r_1 приведены ограничения на параметр β_0 , при котором использование приближенного аналитического решения позволяет практически точно рассчитывать потенциал, а следовательно, и силу Лоренца в области МГД взаимодействия.

Список литературы

- [1] Фрайштадт В.Л., Куранов А.Л., Шейкин Е.Г. // ЖТФ. 1998. Т. 68. Вып. 11. С. 43–47.
- [2] Kopchenov V.I., Vatazhin A.B., Gouskov O.V. // AIAA Paper 99-4971. 9th International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk, 1999.
- [3] Головачев Ю.П., Сущих С.Ю. // ЖТФ. 2000. Т. 70. Вып. 2. С. 28–33.
- [4] Macheret S.O., Shneider M.N., Miles R.B. // AIAA Paper 2001-0492. 39th AIAA Aerospace Science Meeting and Exhibit. Reno, 2001.
- [5] Bityurin V., Bocharov A., Baranov D., Leonov S. // AIAA Paper 2002-0492. 40th AIAA Aerospace Science Meeting and Exhibit. Reno, 2002.
- [6] Kuranov A.L., Sheikin E.G. // J. Spacecraft and Rockets. 2003.
 Vol. 40. N 2. P. 174–182.
- [7] Gaitonde D. // AIAA Paper 2003-0172. 41st AIAA Aerospace Science Meeting and Exhibit. Reno, 2003.
- [8] Macheret S.O., Shneider M.N., Miles R.B. // AIAA Paper 2003-3763. 34th AIAA Plasmadynamics and Lasers Conference. Orlando, 2003.
- [9] Lineberry J.T., Bityurin V.A., Bocharov A.N., Baranov D.S., Vatazhin A.B., Kopchenov V.I., Gouskov O.B., Alferov V.I., Boushmin A.S. // 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. Moscow, April 24–26, 2001. P. 15–25.
- [10] Taylor T., Riggins D.W. // AIAA Paper 2004-0859. 42nd Aerospace Sciences Meeting and Exhibit. Reno, 2004.
- [11] Васильева Р.В., Ерофеев А.В., Лапушкина Т.А., Поняев С.А., Бобашев С.В., Ванви Д. //ЖТФ. 2005. Т. 75. Вып. 9. С. 27–33.
- [12] Sheikin E.G., Kuranov A.L. // AIAA Paper 2005-3223. AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. Capua, 2005.
- [13] Adamovich I., Nishihara M. // AIAA Paper 2006-1004. 44th Aerospace Sciences Meeting and Exhibit. Reno, 2006.
- [14] Biturin V, Bocharov A, Baranov D. // AIAA Paper 2006-1008. 44th Aerospace Sciences Meeting and Exhibit. Reno, 2006.
- [15] *Битюрин В.А., Бочаров А.Н. //* Изв. РАН. МЖГ. 2006. № 5. С. 188–203.
- [16] Sheikin E.G. // AIAA Paper 2007-1379. 45th Aerospace Sciences Meeting and Exhibit, Reno, 2007.

- [17] Шейкин Е.Г. // ЖТФ. 2007. Т. 77. Вып. 5. С. 1–9.
- [18] Sheikin E.G. // J. Phys.D: Appl. Phys. 2009. Vol. 42. P. 035 201.
- [19] *Sheikin E.G.* // AIAA Paper 2010-0832. 48th Aerospace Sciences Meeting and Exhibit. Orlando, 2010.
- [20] *Sheikin E.G.* // AIAA Paper 2012-1028. 50th Aerospace Sciences Meeting and Exhibit. Nashville, 2012.
- [21] Шейкин Е.Г., Yang С.W. // ЖТФ. 2013. Т. 83. Вып. 1. С. 54-63.
- [22] Polyanin A.D., Manzhirov A.V. Handbook of mathematics for engineers and scientists. Chapman & Hall/CRC Press, Boca Raton–London, 2007.
- [23] Bailey P.B., Everitt W.N., Zettl A. // ACM Trans. Math. Software. 2001. Vol. 27. N 2. P. 143–192.
- [24] Зайцев В.Ф., Полянин А.Д. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001. 576 с.
- [25] Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 832 с.