Высокотемпературная теплоемкость CuGa₂O₄

© В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

19

(Поступила в Редакцию 3 декабря 2012 г.)

Приведены экспериментальные данные по теплоемкости CaGa₂O₄ в интервале 329–1050 К. Величины термодинамических функций (изменения энтальпии и энтропии) рассчитаны по сглаженным значениям теплоемкости.

1. Введение

В настоящее время соединения на основе оксидов меди достаточно широко исследуются, что связано с открытием высокотемпературной сверхпроводимости [1–4]. Для оптимизации условий их получения и эксплуатации необходимо термодинамическое исследование фаз. Термодинамическое изучение возможности синтеза можно осуществить только при наличии баз данных, которые довольно часто отсутствуют [5].

Получение спинового стекла CuGa₂O₄, а также изучение его магнитных свойств и определение параметров структуры проведено авторами работы [4]. Сведения о термодинамических свойствах этого соединения не приведены.

Целью настоящей работы является исследование высокотемпературной теплоемкости C_p оксидного соединения CuGa₂O₄.

2. Эксперимент

Для измерения теплоемкости использовались керамические образцы CuGa2O4, которые получались твердофазным синтезом. После перемешивания стехиометрической смеси из CuO и Ga2O3 и последующего прессования таблетки отжигались на воздухе при 1173 К в течение 10h с двумя промежуточными помолами и прессованием. Затем эту операцию повторяли при температуре 1273 К. При выборе температур синтеза учитывались особенности поведения CuO при высоких температурах [6]. Состав полученных образцов контролировался рентгенофазовым анализом, который проводился на приборе X'Pert Pro фирмы Panalytical (Нидерланды) с полупроводниковым детектором PIXcel и графитовым монохроматором на вторичном луче (излучение $CuK_{\alpha_{1,2}}$). Сканирование проводилось в интервале углов $2\theta = 3.0 - 80.0^{\circ}$ с шагом 0.026° и накоплением в точке 20 с. С помощью рентгенограмм определялся параметр решетки методом подгонки по полному профилю (без ссылки на структуру). Полученные данные приведены на рис. 1. Установлено, что экспериментальное значение *а* равно 8.2971(3) Å, что достаточно близко к результатам [7] (a = 8.2980 Å) и несколько отличается от данных [4] (a = 8.39 Å). Следует отметить, что нами и в работе [7] образцы получены твердофазным спеканием, а в [4] — выращиванием монокристаллов из раствора–расплава PbO– $0.64B_2O_3-0.5Na_2O$. В последнем случае нужно учитывать, что в данном методе получения монокристаллы могут быть загрязнены растворителем до величин, определяющихся его растворимостью в твердой фазе при температуре кристаллизации [8].

Измерение теплоемкости проводилось в платиновых тиглях на приборе STA 449 C Jupiter (NENZSCH). Методика экспериментов подобна описанной в [9,10]. Поскольку сведений о диаграмме состояния системы $CuO-Ga_2O_3$ в литературе нами не найдено, температурный интервал исследования высокотемпературной теплоемкости выбирался на основе проведенного эксперимента (ДТА).

3. Результаты и их обсуждение

На рис. 2 приведены экспериментальные данные по влиянию температуры на молярную теплоем-

Рис. 1. Дифрактограмма CuGa₂O₄ при комнатной температуре.

Рис. 2. Температурная зависимость теплоемкости CuGa₂O₄. *1* — экспериментальные данные, *2* — аппроксимирующая кривая, *3* — расчет по модели Дебая.

кость C_p CuGa₂O₄. Видно, что в интервале температур 329–1050 К значения C_p закономерно увеличиваются. Полученные значения $C_p = f(T)$ могут быть описаны следующим уравнением (в единицах J · mol⁻¹ · K⁻¹):

$$C_p = 165.78 + 14.9 \cdot 10^{-3}T - 41.13 \cdot 10^5 T^{-2}.$$
 (1)

Наличие температурной зависимости теплоемкости позволяет по известным термодинамическим уравнениями рассчитать изменения энтальпии $H_T^0 - H_{329}^0$ и энтропии $S_T^0 - S_{329}^0$. Результаты расчета приведены в таблице.

Сравнить полученные значения C_p для CuGa₂O₄ с другими данными не представлялось возможным из-за их отсутствия. Тем не менее, принимая во внимание, что между составом оксидов и их удельной теплоемкостью C_p^0 имеется корреляция [11], можно отметить, что и для системы CuO–Ga₂O₃ (рис. 3) она соблюдается. Заметим, что полученное нами значение C_p^0 несколько ниже рассчитанного по уравнению Неймана–Коппа [5]

$$C_p^0(CuGa_2O_4) = 0.5C_p^0(CuO) + 0.5C_p^0(Ga_2O_3).$$
 (2)

Эти данные свидетельствуют о том, что в ряде случаев при оценке значений C_p аддитивным методом может быть допущена значительная ошибка, которая скажется и на значениях термодинамических величин, рассчитанных по этим данным.

Величина нормализованной молярной теплоемкости C_p^* , определяемой по соотношению $C_p^* = C_p/s$, где s - число атомов в формульной единице CuGa₂O₄ (s = 7), для этого соединения при комнатной температуре равна $C_p^* = 17.70 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Это значение близко к таковому для других оксидных соединений Li₂Ge₇O₁₅ ($C_p^* = 17.61 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$), NaLiGe₄O₉ ($C_p^* = 17.91 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$) [14].

Сглаженные значения молярной теплоемкости и термодинамические функции CuGa₂O₄

<i>T</i> ,K	$C_p,$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H_T^0 - H_{329}^0,$ kJ · mol ⁻¹	$S_T^0 - S_{329}^0,$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$
329	132.7	_	_
350	137.5	2.837	8.359
400	146.1	9.937	27.31
450	152.2	17.40	44.88
500	156.8	25.13	61.16
550	160.4	33.06	76.28
600	163.3	41.15	90.36
650	165.7	49.38	103.5
700	167.8	57.72	115.9
750	169.6	66.16	127.5
800	171.3	74.68	138.5
850	172.8	83.28	149.0
900	174.1	91.95	158.9
950	175.4	100.7	168.3
1000	176.6	109.5	177.3
1050	177.7	118.3	186.0

Используя найденное нами значение характеристической температуры Дебая $\Theta_D = 788 \text{ K}$ и воспользовавшись таблицами функций Дебая (Θ_D/T) [15], мы провели расчеты C_p , которые в первом приближении считали близкими к C_V . Эти данные в сопоставлении с экспериментальными результатами приведены на рис. 2. Видно, что, несмотря на близость экспериментальных величин C_p к рассчитанным значениям, последние все же несколько ниже экспериментальных.

Известно, что для сложных оксидных соединений теплоемкость часто представляют суперпозицией дебаевского и эйнштейновского вкладов [14–16]. Анализ полученных результатов проведем аналогично [17] в предпо-

Рис. 3. Связь состава и удельных значений теплоемкости системы CuO-Ga₂O₃: *1* — [12], *2* — [13], *3* — расчет по уравнению (2), *4* — наши данные.

Рис. 4. Аппроксимация избыточной теплоемкости функцией Эйнштейна при $T \ll \Theta_{\rm E}$.

ложении, что избыточная теплоемкость в исследуемом интервале температур описывается соотношением

$$\Delta C = R \left(\frac{\Theta_{\rm E}}{T}\right)^2 \exp\left(-\frac{\Theta_{\rm E}}{T}\right),\tag{3}$$

где $\Theta_{\rm E}$ — характеристическая температура Эйнштейна. Представление значений ΔC (разность между сглаженными значениями C_p и рассчитанными в модели Дебая) в координатах $\ln(\Delta CT^2) - T^{-1}$ дает прямую со значением коэффициента корреляции, равным 0.9986 (рис. 4). Это, по мнению авторов [17], означает, что колебательный спектр CuGa₂O₄ имеет локализованную оптическую моду, которая наблюдается в упорядоченных системах, если массы атомов компонентов существенно разнятся.

4. Заключение

Исследована температурная зависимость теплоемкости оксидного соединения CuGa₂O₄. Найдено, что имеется корреляция между составом оксидов CuO- Ga₂O₃ и их удельной теплоемкостью.

Список литературы

- [1] L.C. Chen, W. Weppner. Naturwissenschaften 65, 595 (1978).
- [2] A.A. Tsirlin, R. Zinke, A. Richter, H. Rosner. Phys. Rev. B 83, 104415 (2011).
- [3] K.T. Jacob, K.P. Jayadevan. J. Mater. Sci. 37, 1611 (2002).
- [4] G.A. Petrakovskii, K.S. Aleksandrov, L.N. Bezmaternikh, S.S. Aplesnin, B. Roessli, F. Semadeni, A. Amato, C. Baines, J. Bartolone, M. Evangelisti. Phys. Rev. B 63, 184425 (2001).
- [5] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург (1977). 230 с.

- [6] A.A. Buch, V.Ya. Shkuratov, A.B. Kuzmenko, E.A. Tishchenko. Cryst. Rep. 47, 2, 335 (2002).
- [7] J.M.R. González, C.O. Areán. J. Chem. Soc. Dalton Trans. 10, 2155 (1985).
- [8] В.М. Денисов, Э.А. Пастухов, П.В. Ченцов, Г.С. Дубовиков. Расплавы металлургии полупроводников: строение и физико-химические свойства. Наука, М. (1991). 320 с.
- [9] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [10] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ 48, 5, 790 (2010).
- [11] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 4, 642 (2011).
- [12] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [13] J. Leitner, D. Sedmidubský, P. Chuchvalec. Ceramics–Silikaty 46, 1, 29 (2002).
- [14] А.А. Буш, Е.А. Попова. ФТТ 46, 5, 875 (2004).
- [15] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия. Изд-во МГУ, М. (1966). Ч. II. 434 с.
- [16] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 855 с.
- [17] А.Ф. Прекул, В.А. Казанцев, Н.И. Щеголихина, Р.И. Гуляева, К. Edagawa. ФТТ 50, 11, 1933 (2008).