13

ХАNES-исследования межатомных взаимодействий в многослойных наноструктурах ($Co_{45}Fe_{45}Zr_{10}/a$ -Si)₄₀ и ($Co_{45}Fe_{45}Zr_{10}/SiO_2$)₃₂

© Э.П. Домашевская¹, А.В. Чернышев¹, С.Ю. Турищев¹, Ю.Е. Калинин², А.В. Ситников², Д.Е. Марченко³

¹ Воронежский государственный университет,

Воронеж, Россия

² Воронежский государственный технический университет,

Воронеж, Россия

³ Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II,

Berlin, Germany

E-mail: ftt@phys.vsu.ru

(Поступила в Редакцию 19 июня 2012 г. В окончательной редакции 28 ноября 2012 г.)

Электронная структура и фазовый состав аморфных многослойных наноструктур $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$ и $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ исследованы с помощью метода рентгеновского поглощения вблизи главного края XANES, который является наиболее чувствительным к химическому окружению элементов многокомпонентных наноструктур. В результате межатомного взаимодействия в системе образуются сложные "наноферриты" FeO · Fe₂O₃ · ZrO₂(CoO), в которых наряду с двух- и трехзарядными ионами железа Fe²⁺ и Fe³⁺ в обменном взаимодействии в пределах металлического слоя участвуют ионы Zr⁴⁺ и частично Co²⁺. Трансформация тонкой структуры $L_{2,3}$ -спектров железа отражает изменение отношения двух- и трехвалентных ионов в его окислах в составе "наноферритов" FeO · Fe₂O₃ · ZrO₂(CoO), оценка которого произведена на основе математического моделирования спектров XANES. Работа выполнена при поддержке Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009–2013 гг.

1. Введение

В последние годы в связи с развитием спиновой электроники все больше внимания уделяется наноструктурам, содержащим контактирующие магнитные и немагнитные слои. Структуры, представляющие собой металлические гранулы размером в несколько нанометров, внедренные в немагнитные металлические или диэлектрические матрицы, представляют интерес в силу ряда физических свойств, среди которых гигантское магнетосопротивление (ГМС) и спин-зависимое электронное туннелирование, аномальный эффект Холла, аномально высокие значения эффекта Керра и другие эффекты [1-7]. Совокупность таких свойств делает наногранулированные композиты чрезвычайно привлекательными материалами для применения их в твердотельной электронике. Наногранулированные материалы и физические принципы, определяющие электроннотранспортные свойства композитов, лежат в основе создания элементов бурно развивающегося направления микроэлектроники — спинтроники.

Согласно литературным данным, не все атомы металла сконцентрированы в области гранул многослойной наноструктуры. Существенная их часть может находиться в атомарном состоянии в составе матрицы, растворяться, а также химически взаимодействовать с другими атомами металлических гранул и неметаллической матрицы. Условия синтеза и термическая обработка существенным образом будут влиять на межатомное взаимодействие элементов, входящих в состав композитов. При этом форма гранул, а также их взаимное расположение оказывают определяющее влияние на магнитные и электрические свойства нанокомпозитов [1,2].

При рассмотрении электронно-транспортных свойств таких гетерофазных систем используется теория перколяции. В композитах с небольшим содержанием металлической компоненты проводящие гранулы окружены диэлектрической матрицей, и процесс электропереноса осуществляется за счет туннелирования электронов из гранулы в гранулу или за счет термоактивированных прыжков по локализованным состояниям.

В наших предыдущих работах [8–10] с помощью синхротронных исследований спектров XANES мы показали наличие взаимодействия между атомами металлической и диэлектрической компонент в нанокомпозитах (CoFeZr)_x(SiO₂)_{1-x} и (CoFeB)_x(SiO₂)_{1-x}. Установлено, что наиболее активная роль в этом процессе принадлежит ионам *d*-металлов (Fe³⁺, Fe²⁺, Co²⁺), которые взаимодействуют с ионами кислорода диэлектрической компоненты и образуют "наноферриты" Fe₂O₃ · CoO · ZrO₂ (в случае нанокомпозита (CoFeZr)_x(SiO₂)_{1-x}) и FeO · Fe₂O₃ · CoO (в случае нанокомпозита (CoFeB)_x(SiO₂)_{1-x}).

В работе [11] были исследованы магнитные и магнитотранспортные свойства многослойных наноструктур $Co_{45}Fe_{45}Zr_{10}/a$ -Si, полученных методом ионно-лучевого распыления вблизи перколяционного перехода, которые представляют интерес для возможного применения в спиновой электронике. Показано, что даже в условиях слабой диффузии атомов металла в слои кремния

свойства наноструктуры определяются наличием между слоями низкоомных контактов, связанных с присутствием металла в кремниевых прослойках. Подобные контакты способствуют понижению порога перколяции и переходу к трехмерной проводимости, в результате чего температурная зависимость проводимости таких структур оказывается сходной с аналогичной зависимостью для металл-диэлектрических нанокомпозитов. В этих структурах наблюдается отрицательное магнитосопротивление, которое связано с взаимодействием антиферромагнитных гранул соседних металлических слоев. Показано присутствие анизотропного магнитосопротивления, величина которого достаточна для регистрации планарного эффекта Холла, природа которого связана с изменением направления магнитного момента, а природа отрицательного магнитосопротивления — с его увеличением в магнитном поле на величину примерно 30%. Подобные свойства системы могут быть обусловлены наличием межслоевых микроконтактов, обеспечивающих антиферромагнитное взаимодействие гранул соседних слоев.

Основной целью данной работы является проведение экспериментальных исследований с помощью методики ближней тонкой структуры края рентгеновского поглощения (XANES — X-ray absorption near edge structure) по выявлению механизмов межатомных взаимодействий и определению фазового состава двух систем многослойных аморфных наноструктур ($Co_{45}Fe_{45}Zr_{10}/a$ -Si)₄₀ и ($Co_{45}Fe_{45}Zr_{10}/SiO_2$)₃₂, различающихся составом немагнитных прослоек и числом бислоев (40 и 32 соответственно).

2. Методика получения многослойных образцов и спектров XANES

Все образцы нанокомпозитов, исследованные в данной работе, были получены на кафедре ФТТ ВГТУ с помощью установки ионно-лучевого распыления [12].

Многослойные наноструктуры (Со₄₅Fe₄₅Zr₁₀/a-Si)₄₀ и (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂ были получены методом ионнолучевого распыления двух мишеней на вращающуюся ситалловую подложку. Одной мишенью являлась металлическая пластина сплава Co₄₅Fe₄₅Zr₁₀, полученного методом индукционной плавки в вакууме. Вторая мишень представляла собой пластину кварца (SiO₂) либо кремния. Для создания градиента толщины полупроводниковой прослойки между мишенью и подложками устанавливался V-образный экран. Напыление проводилось в атмосфере Ar при давлении 5 · 10⁻⁴ Torr. Прежде чем получать многослойные структуры, производилось предварительное распыление мишеней в течение 30 min при закрытой подложке с целью снятия верхнего слоя мишени. После окончания предварительного распыления в течение 20-30 min осуществлялась также ионная очистка подложек в процессе вращения подложкодержателя. Скорость травления поверхности составляла

Обозначение образца	Многослойная наноструктура	Толщина слоев в наноструктуре металл/неметалл, nm
A1	$(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$	1.4/0.5
A2	$(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$	1.6/0.5
A3	(Co ₄₅ Fe ₄₅ Zr ₁₀ / <i>a</i> -Si) ₄₀	2/2
A4	$(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$	2/3
A5	$(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$	2/4
01	$(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$	10/0.5
02	$(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$	12/3

 $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$

 $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$

03

04

Таблица 1. Соотношение толщин металлических слоев и неметаллических прослоек в многослойных наноструктурах

0.1 μ m/h. Напыление проводилось в течение нескольких часов на вращающуюся подложку. Толщины напыляемых слоев контролировались, исходя из предварительно измеренной скорости их осаждения и составляли $d_m = (1.5-2.5)$ nm для Co₄₅Fe₄₅Zr₁₀ и $d_s = (0.5-5)$ nm для *a*-Si. В случае образцов с прослойкой из SiO₂: $d_m = (9.5-14)$ nm и $d_s = (0-16.5)$ nm. В табл. 1 приведены толщины контактирующих слоев исследуемых многослойных структур и обозначения образцов исследуемых структур.

Спектры XANES были получены на российскогерманском канале синхротрона BESSY II (Берлин). Энергетическое разрешение и относительная погрешность в определении интенсивности составляли 0.1 eV и 1% соответственно. Вакуум в аналитической камере во время эксперимента поддерживался на уровне 5 · 10⁻⁹-10⁻¹⁰ Torr. Монохроматор оборудован плоской решеткой 1200 штрихов на миллиметр. Регистрация спектров производилась при угле скольжения синхротронного излучения (СИ) $\theta = 30^{\circ}$. Интенсивность СИ на выходе составляла 2.5 · 10¹¹ photon/s при ширине выходной щели 200 · 10³ nm. В ходе эксперимента измерялся полный квантовый выход электронов χ при регистрации тока с образца, возникающего при компенсации выхода электронов с его поверхности. Глубина анализа по методике XANES составляла около 5 nm.

3. Спектры XANES

Спектры XANES отражают распределение плотности электронных состояний в зоне проводимости с точностью до множителя вероятности, равного квадрату матричного элемента оператора перехода

$$\mu(h\upsilon) \sim \upsilon^3 \sum_k |M_{kc}|^2 \delta(E_k - E_c - h\upsilon), \qquad (1)$$

где $|M_{kc}| = \int \phi_k^* \hat{H} \varphi_c dr$ — матричный элемент вероятности перехода электрона с остовного уровня с волновой функцией φ_c и собственным значением E_c в состояния

14/8

15/13

Рис. 1. ХАNES Fe $L_{2,3}$ -спектры многослойных наноструктур серии A (Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ (*a*) и серии O (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂ (*b*) вместе с эталонными ХАNES Fe $L_{2,3}$ -спектрами для Fe и FeO [14].

зоны проводимости с волновой функцией φ_k и собственным значением E_k , \hat{H} — оператор возмущения, $h\upsilon$ — энергия поглощения фотона синхротронного излучения [13].

Поскольку величина коэффициента поглощения μ в образце пропорциональна величине квантового выхода χ при данном угле θ в соответствии с соотношением

$$\chi = \frac{[1 - R(\theta)]hc}{4E\lambda} \frac{\mu}{\sin\theta},\tag{2}$$

где χ — величина выхода внешнего фотоэффекта рентгеновского излучения, θ — угол скольжения СИ, отсчитываемый от поверхности образца, μ — коэффициент поглощения СИ в образце, $R(\theta)$ — коэффициент отражения от образца, который при малых θ становится отличным от нуля и стремится к единице при дальнейшем уменьшении θ (при полном внутреннем отражении), E — энергия, приходящаяся в среднем на один подвижный электрон, λ — длина волны излучения. В обычных случаях при углах скольжения, существенно больших критического для полного внешнего отражения, значение коэффициента отражения $R(\theta)$ приближается к нулю и зависимость квантового выхода от энергии квантов повторяет спектральную зависимость μ , что и используется для измерения спектров XANES различных объектов в ультрамягкой области рентгеновского излучения.

Интерпретация XANES-спектров проводилась в дипольном приближении с учетом современных представлений о мультиплетной структуре спектров 3d-металлов. В этом приближении XANES $L_{2,3}$ -спектры металлов отражают распределение локальной парциальной плотности состояний (ЛППС) s, d-симметрии в зоне проводимости, в то время как XANES K-спектры кислорода отражают распределение ЛППС p-симметрии в той же зоне.

3.1. ХАNES Fe $L_{2,3}$ -спектры многослойных структур. На рис. 1 приведены спектры поглощения для двух серий наноструктур: серия A с прослойками из аморфного кремния a-Si: $(Co_{45}Fe_{45}Zr_{10}/a$ -Si)₄₀ и серия O с прослойками из SiO₂: $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$. Количество пар нанослоев металл/прослойка в серии A составляло 40, а в серии O — 32. Помимо спектров структур на рисунках представлены спектры для Fe и FeO [14], а также эталонные спектры Fe₂O₃ и Fe₃O₄, полученные нами.

Многослойные наноструктуры и эталонные соединения	Энергии двух максимумов и их разность: $\pm \Delta E(t_{2g} - e_g)$, eV		$\Delta E_{s,l}, \mathrm{eV}$	$I(t_{2g})/I(e_g)$	Относительное содержание Бео/БезО2 %	
и эталонные соединения	t_{2g}, ev	e_g, ev	$\Delta E(t_{2g}-e_g), ev$			100/10203,70
A1	708.54	709.91	1.37	12.95	0.70	25
A2	708.51	709.91	1.40	13.02	0.81	36
A3	708.52	709.87	1.35	12.97	0.95	48
A4	708.52	709.95	1.43	12.97	0.98	50
A5	708.44	709.83	1.39	12.99	1.11	60
01	708.59	709.98	1.39	12.98	0.75	28
02						
(травление	708.86	710.06	1.20	13.09	0.70	25
60 min)						
02	708.59	710.03	1.44	13.06	0.80	35
03	708.52	709.83	1.31	12.97	0.85	40
04	708.48	709.87	1.39	12.97	0.95	48
Fe ₂ O ₃	708.59	710.06	1.47	13.02	0.50	_
Fe ₃ O ₄	708.59	710.02	1.43	13.05	0.58	—
FeO [14]	708.82	—	_	12.73	—	100

Таблица 2. Энергетические характеристики XANES Fe L_{2,3}-спектров

В табл. 2 приведены энергетические характеристики всех полученных спектров L_3 и L_2 , величины спинорбитального взаимодействия, т.е. расстояние между L_3 и L_2 спектрами $\Delta E_{s,l}$, соотношение интенсивностей двух пиков Fe L_3 -спектра $I(t_{2g})/I(e_g)$ и энергетическое расстояние между ними $\Delta E(t_{2g}-e_g)$.

Анализируя эталонные спектры XANES для Fe и FeO из работы [14], можно выделить следующие особенности: L_3 -край поглощения для Fe проявляется при энергии 706.9 eV, тогда как для FeO — при 707.5 eV. Эталонные спектры для Fe₂O₃ и Fe₃O₄, полученные нами в ходе эксперимента, имеют более сложную тонкую структуру (рис. 1).

Согласно [15], величина спин-орбитального расщепления $L_{2,3}$ составляет 12.8 и 13.2 eV для двух- и трехвалентного железа соответственно. Полученные нами результаты показывают, что в исследуемых нанокомпозитах данная величина с небольшим отклонением остается на уровне ~ 13 eV, т.е. показывает промежуточное значение по отношению к первым двум значениям.

На приведенных на рис. 1 спектрах хорошо видно, что L_2 - и L_3 -края спектров Fe $L_{2,3}$ XANES для наноструктур проявляют тонкую структуру. Fe L_3 -край состоит из двух четко разделенных максимумов (энергия расщепления ~ 1.5 eV). Появление данных максимумов в спектрах соединений *d*-металлов обусловлено воздействием кристаллического поля, а также p-d- и d-d-кулоновским обменным взаимодействием электронов [16]. Эти спектральные особенности L_3 -края отражают переходы $2p \rightarrow 3d$ в низкоэнергетическое t_{2g} и высокоэнергетическое e_g -состояния, обусловленные как октаэдрической, так и тетраэдрической симметрией окружения ионов Fe³⁺ и Fe²⁺ ионами кислорода.

Согласно модели и
онной связи, для FeO с двухзарядным и
оном ${\rm Fe}^{2+}~(3d^6\to 2p^53d^7)$ это конфигурации

 $(t_{2g}\uparrow)^3(e_g\uparrow)^2(t_{2g}\downarrow)^1$, а для Fe₂O₃ с трехзарядным ионом Fe³⁺ ($3d^5 \rightarrow 2p^53d^6$) — конфигурации ($t_{2g}\uparrow)^3(e_g\uparrow)^2$. Таким образом, появление дублетной структуры L_3 -края Fe³⁺ отражает свободные t_{2g} -(пик 708.6 eV) и e_g -(пик 710 eV) состояния, разделенные энергией кристаллического поля ~ 1.5 eV. L_2 -край имеет подобную структуру.

Начало края поглощения для Fe₂O₃ наблюдается при 707.8 eV, для Fe₃O₄ при 707.4 eV. Спектральные особенности для L_2 - и L_3 -края представлены двумя пиками, которые отвечают наличию как ионов Fe²⁺, так и Fe³⁺. Смещения пиков незначительные и находятся на отметке 708.5 eV (t_{2g}) и 710 eV и (e_g) соответственно для L_3 -края и 721.6 eV и 723.2 eV для L_2 -края.

Спектры многослойных наноструктур (МНС) отличаются более сложной тонкой структурой. Начало L_3 -края поглощения соответствует ~ 706.5 eV. В отличие от спектра поглощения металлического Fe в спектрах МНС различима "ступенька" при энергиях 706.5–707.4 eV для L_3 -края и 719.5–720.7 eV для L_2 -края. Данная особенность характерна для спектров FeO и обусловлена взаимодействием *p*-ионов кислорода и *d*-ионов металла, т. е. p-d-взаимодействием. Далее следуют два пика, отражающие свободные t_{2g} -(~ 708.5 eV) и e_g -(~ 709.9 eV) состояния.

При сравнении спектров МНС со спектрами эталонов следует отметить закономерное увеличение интенсивности t_{2g} -состояний в многослойных наноструктурах с увеличением толщины металлического слоя CoFeZr. Наглядно эту закономерность можно проследить в табл. 2 при сравнении отношения интенсивностей $I(t_{2g})/I(e_g)$ в МНС и эталонных спектрах. Такая закономерность обусловлена относительным уменьшением содержания трехзарядных ионов железа Fe³⁺ в металлическом слое с увеличением толщины прослойки.

Для оценки вклада ионов различного заряда Fe^{2+} и Fe^{3+} в экспериментальные спектры было применено математическое моделирование сглаженных Фурье-образов функций эталонных спектров, которые складывались с разным процентным вкладом по интенсивности от фаз FeO и Fe₂O₃. На рис. 2 приведено последовательное сложение сглаженных Фурье-образов функций сигналов от эталонных спектров FeO [14] и Fe₂O₃, взятых в различных соотношениях, чтобы получить спектры, наиболее близкие по форме к экспериментальным.

1206

Сравнение экспериментальных спектров многослойных наноструктур с модельными позволяет определить соотношение количества двухзарядных ионов Fe^{2+} к трехзарядным в каждом образце и сделать вывод о влиянии толщины металлического слоя на конечные свойства структуры. В табл. 3 представлены зависимости отношения максимумов $I(Fe^{2+})/I(Fe^{3+})$ модельных спектров от содержания фазы FeO по отношению к Fe₂O₃. При максимальном содержании фазы FeO с двухзарядными ионами Fe²⁺ 60% форма спектра в образце A5, с наиболее толстой прослойкой, в 2 раза превышающей по толщине металлический слой, и модельный спектр совпадают.

В последних столбцах табл. 3 приведены оценки содержания оксидной фазы двухзарядного Fe^{2+} по от-

Рис. 2. Моделированные XANES Fe $L_{2,3}$ -спектры, полученные из эталонных XANES Fe $L_{2,3}$ -спектров FeO [14] и Fe₂O₃ в различных соотношениях.

Таблица 3. Зависимость отношения максимумов $I(Fe^{2+})/I(Fe^{3+})$ модельных спектров от содержания фазы FeO по отношению к Fe₂O₃

Фаза	Содержание FeO, %	$I(\mathrm{Fe}^{2+})/I(\mathrm{Fe}^{3+})$	
FeO _{0.1} (Fe ₂ O ₃) _{0.9}	10	0.55	
$FeO_{0.2}(Fe_2O_3)_{0.8}$	20	0.63	
$FeO_{0.3}(Fe_2O_3)_{0.7}$	30	0.78	
$FeO_{0.4}(Fe_2O_3)_{0.6}$	40	0.86	
$FeO_{0.5}(Fe_2O_3)_{0.5}$	50	0.99	
$FeO_{0.6}(Fe_2O_3)_{0.4}$	60	1.12	

ношению к оксиду с трехзарядным Fe³⁺. Результаты этих оценок показывают, что с увеличением толщины прослойки вклад ионов Fe³⁺ в металлическом слое уменьшается. Способ получения кремниевых прослоек также сказывается на соотношении оксидных фаз с Fe²⁺ и Fe³⁺. В серии *O*, т.е. при наличии кислорода в распыляемой мишени SiO₂ при получении прослоек, относительное содержание ионов Fe³⁺ увеличивается по сравнению с образцами серии *A*, прослойки в которых получались распылением кремниевых пластин.

3.2. ХАNES Со $L_{2,3}$ -спектры многослойных наноструктур. На рис. З приведены $L_{2,3}$ спектры поглощения кобальта в наноструктурах (Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ и (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂, которые также состоят из двух краев L_3 и L_2 , разделенных энергией спин-орбитального взаимодействия ~ 15 eV, вместе с эталонными спектрами металлического кобальта, двухвалентного кобальта (октаэдрическое окружение) в соединении СоО из работы [14] и спектра для Со₃O₄, полученного нами. Данные спектры поглощения также отражают переходы электронов из остовных 2*p*-состояний на *d*-состояния зоны проводимости.

Переход, образующий XANES $L_{2,3}$ -спектры в модели ионной связи для CoO с двухзарядным ионом Co²⁺ $(3d^7 \rightarrow 2p^5 3d^8)$, имеет конфигурацию $(t_{2g}\uparrow)^3 (e_g\uparrow)^2 (t_{2g}\downarrow)^2$.

При сравнении спектров МНС с эталонными видно, что спектры наноструктур состоят из двух краев поглощения с энергиями: 779.2 eV для L₃-края и 794.1 eV для L₂-края. Оба края представляют спектры металлического кобальта с небольшим влиянием двухвалентного кобальта. L-края поглощения кобальта более высокой валентности в Со₃О₄, полученные нами, а также известные из литературных данных [15], сдвинуты в более высокоэнергетические положения и поэтому не используются при моделировании. В табл. 4 приведены энергетические положения главных максимумов спектров L₃ и L₂ кобальта в МНС вместе со значениями энергий спинорбитального расщепления $\Delta E_{s,l}$. Эти величины $\Delta E_{s,l}$ в образцах серии А имеют значения, более близкие к $\Delta E_{s,l}$ металла Со (15.10 eV), тогда как в серии О величины $\Delta E_{s,l}$ несколько уменьшаются в результате большего влияния двухзарядных ионов Со²⁺ окисла СоО $(\Delta E_{s,l} = 14.80 \,\mathrm{eV}).$

Рис. З. XANES Co $L_{2,3}$ -спектры наноструктур серии A (Co₄₅Fe₄₅Zr₁₀/a-Si)₄₀ (a) и серии O (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂ (b)) вместе с эталонными XANES Co $L_{2,3}$ -спектрами Co и CoO [14].

Вид L_3 -края спектра CoO представляет собой мультиплетную структуру, что обусловлено расщеплением состояния $2p^53d^8$ кристаллическим полем и гибриди-

Многослойные наноструктуры	Энергии основных особенностей и максимумов		
и эталонные соединения	<i>L</i> ₃ -край	<i>L</i> ₂ -край	ΔL _S ,l
A1	778.96	794.02	15.06
A2	778.96	794.02	15.06
A3	778.88	794.83	15.95
A4	778.77	793.92	15.15
A5	778.92	794.01	15.09
01	779.05	794.01	14.96
02	779.05	794.01	14.96
03	778.96	794.19	15.23
04	779.05	794.01	14.96
CoO [14]	777.15 778.40 779.65	793.20	14.80
Co ₃ O ₄	778.40 780.30	794.65	14.35
Co metal [14]	778.80	793.90	15.10

Таблица 4. Энергетические характеристики XANES Co *L*_{2,3}-спектров

зацией с состоянием $2p^5 3d^9L^{-1}$, образование которого является следствием переноса заряда и формирует сателлит при энергии 782.3 eV [16].

"Плечо" на левом склоне L_3 -края (777.5 eV) экспериментальных спектров, обусловленное правым максимумом L_3 -края спектра CoO, едва различимо в спектрах многослойных наноструктур (рис. 3, *a*, *b*). Характерная особенность при 779.65 eV также существенно сглажена в спектрах для (Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ и едва различима в спектрах для (Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ и едва различима в спектрах для (Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ и едва различима в спектрах для (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂. Слабое влияние особенностей, характерных для CoO на спектрах MHC, является результатом явного преобладания металлического Co в составе многослойных наноструктур. Таким образом, XANES Co $L_{2,3}$ -спектры исследованных нанокомпозитов отражают очень слабое влияние двухвалентного кобальта на их тонкую структуру.

Для оценки этого влияния на экспериментальные спектры было применено математическое моделирование, аналогичное описанному в 3.1. На рис. 4 приведены результаты последовательного сложения сглаженных Фурье-образов функций сигналов от эталонных спектров металлического Со и оксида СоО из работы [14] в различных соотношениях металлической и оксидной фаз. При сравнении модельных спектров с экспериментальными видно, что в исследуемых образцах относительное содержание ионов оксида CoO составляет менее 20% в многослойных структурах серии A(Co₄₅Fe₄₅Zr₁₀/*a*-Si)₄₀ и еще меньшую величину в образцах серии O (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂, в которых преобладающая часть кобальта находится в металлической фазе.

3.3. ХАNE.S Si L2.3-спектры многослойных Для анализа неметаллической компоструктур. ненты SiO₂ в наноструктурах $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ и аморфного кремния в (Co₄₅Fe₄₅Zr₁₀/a-Si)₄₀ были получены XANES-спектры Si L2.3, отражающие переходы $2p \rightarrow 3s, d$ в незаполненные состояния зоны проводимости. На рис. 5 приведены полученные нами XANESспектры Si L2.3 для экспериментальных образцов и эталонов. Как видно из приведенного рисунка, эталонный спектр для SiO₂ состоит из препика в виде дублета при 106.0 и 106.5 eV (переходы $2p_{1/2,3/2} \rightarrow a_{1g}$) и максимума при 108.4 eV (переход $2p \rightarrow t_{2u}$) [17]. Если сопоставить структуру спектров от МНС со структурой, характерной для SiO₂, то можно отметить существенные различия между энергетическими положениями и интенсивностями главных максимумов a_{1g} и t_{2u} , отношение которых определяет характер гибридизации s, p-состояний σ^* связей кремний-кислородного тетраэдра в SiO₂.

Рис. 4. Моделированные XANES Со $L_{2,3}$ -спектры, полученные из эталонных XANES Со $L_{2,3}$ -спектров Со и СоО [14] в различных соотношениях.

Рис. 5. XANES Si $L_{2,3}$ -спектры наноструктур серии O (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂ (O1-O4) и серии A (Co₄₅Fe₄₅Zr₁₀/a-Si)₄₀ (A4 и A5) вместе с эталонными спектрами для SiO₂ и a-Si.

При сравнении спектров МНС с эталонным спектром SiO₂ нетрудно видеть, что Si $_{L2,3}$ -спектры наноструктурр $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ и $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$ имеют вместо четкого дублета a_{1g} и последующего максимума t_{2u} размытую структуру, энергетическое положение которой отличается от SiO₂ и практически не зависит от способа получения и толщины прослойки (a-Si или SiO₂) образцов серии A и серии O. Наиболее интенсивный спектр Si $L_{2,3}$ был получен для образца O3 с наибольшей толщиной прослойки 8 nm (рис. 5), в котором четко проявляются три пика в области 104.1–108 eV. Подобная форма краев в спектрах поглощения наблюдалась нами в пленках аморфного карбида кремния, приведенного в работе [18].

Полученные нами результаты свидетельствуют о том, что разделяющие слои в обеих сериях представляют собой аморфный оксикарбид кремния, независимо от способа их получения: распыления в плазме кремниевой пластины или кварцевой пластины.

3.4. ХАNES О К-спектры многослойных наноструктур. Далее рассмотрим ХАNES О К-спектры в наноструктурах $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ и $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$, которые отражают локальные пар-

циальные вклады плотности состояний О 2*p* от окислов всех элементов, участвующих в образовании нанокомпозитов.

На рис. 6 представлены экспериментальные XANES O *K*-спектры некоторых многослойных структур серии O $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ и серии A $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$, а также модельный спектр, наиболее близкий к спектрам МНС. Спектры МНС представляют собой сложную тонкую структуру с явно выраженными спектральными особенностями, которые являются следствием взаимодействия с кислородом компонент металлической фазы нанокомпозита и неметаллической прослойки.

К сожалению, нам не удалось зарегистрировать $M_{4,5}$ спектр циркония, так как энергетический диапазон, в котором можно его получить, находится в области 345–370 eV и на него "накладывается" второй порядок

Рис. 6. XANES О *К*-спектры серии O (Co₄₅Fe₄₅Zr₁₀/SiO₂)₃₂ (O1 и O2) и серии A (Co₄₅Fe₄₅Zr₁₀/a-Si)₄₀ (A1, A2 и A5) вместе с моделированным О *K* XANES спектром.

Рис. 7. Нормированные спектры XANES O *K*-спектры бинарных оксидов, используемые при моделировании O *K*-спектра MHC.

Рис. 8. Моделированные XANES О *К*-спектры оксидов железа, полученные из эталонных спектров FeO [21], Fe₂O₃ и Fe₃O₄ в различных соотношениях.

поглощения железа (700–730 eV). Поэтому об участии циркония в межатомном взаимодействии можно судить косвенно по результатам моделирования О *K*-спектров в МНС.

На рис. 7 приведены О *К*-спектры оксидных фаз, которые были получены нами (Fe₃O₄, ZrO₂, a-Si, SiO₂), а также литературные данные для CoO [19], которые использовались нами при моделировании спектров MHC.

О *К*-спектр фазы Fe₃O₄ был выбран нами для моделирования спектров кислорода после того, как мы показали, что к нему асимптотически приближается модельный спектр {0.85 FeO + 0.15 Fe₃O₄} и в предположении, что в MHC ионы Fe³⁺ могут находиться не только в октаэдрическом, но и в тетраэдрическом окружении, как в работе [20].

Исходя из результатов эксперимента и моделирования, можно заключить следующее. В XANES О К-спектрах для экспериментальных образцов и модельного спектра начало края поглощения находится на уровне ~ 529.6 eV, затем появляется первый максимум в виде плеча (~ 530.6 eV) с последующим плато до отметки $\sim 531.7 \,\text{eV}$ и главным максимумом на отметке $\sim 533.1\,{\rm eV}$. Проявление первого подъема интенсивности является следствием влияния оксидов железа с ионами Fe²⁺ и Fe³⁺ в октаэдрическом и тетраэдрическом окружении фазы $FeO \cdot Fe_2O_3$ (40 at.%). Появление плато и главного максимума является результатом взаимодействия кислорода с цирконием в окисле ZrO_2 (25 at.%) и кобальтом CoO (10 at.%). Вклад в оксиды от диэлектрической составляющей экспериментальных наноструктур проявляется в последнем широком размытом максимуме на интервале 530-547 eV.

Для оценки вклада каждой из составляющих в сложный спектр О *К* также было применено математическое моделирование Фурье-образов экспериментальных сигналов от эталонных спектров, представленных на рис. 8. Моделирование позволило получить функцию сигнала, наиболее близкую к XANES О *К*-спектрам МНС при следующем содержании оксидов металлического слоя и неметаллической прослойки: 40%[FeO · Fe₂O₃] + 25%[ZrO₂] + 10%[CoO] + 15%[SiO₂] + 10%[ecтественный оксид *a*-Si].

4. Заключение

Полученные полуколичественные оценки участия кислорода в межатомном взаимодействии могут лишь свидетельствовать о большой вероятности образования сложных "наноферритов" $FeO \cdot Fe_2O_3 \cdot ZrO_2(CoO)$ и существовании четырехзарядных ионов циркония Zr^{4+} , которые наряду с двух- и трехзарядными ионами железа Fe^{2+} и Fe^{3+} , а также частично с ионами Co^{2+} участвуют в обменном взаимодействии металлического слоя MHC и обусловливают анизотропное магнитосопротивление, величина которого достаточна для регистрации планарного эффекта Холла [11].

Кроме того, данные по спектрам XANES позволяют получать информацию об участии каждого элемента в межатомном взаимодействии сложного объекта в пределах поверхностного слоя около 5 nm. Полученные данные свидетельствуют о частичном перемешивании атомов металлического (Ме) слоя и неметаллической прослойки, поскольку мы одновременно регистрируем спектры как атомов Ме слоя, так и прослойки. Это явление способствует понижению порога перколяции и переходу к трехмерной проводимости, в результате чего температурная зависимость проводимости МНС оказывается сходной с аналогичной зависимостью для металл-диэлектрических нанокомпозитов (FeCoZr)_x(SiO₂)_{1-x} [5,11].

Авторы работы выражают благодарность Директору и администрации Гельмгольц Центра Берлин, а также Координаторам Российско-Германского канала синхротрона BESSY II Гельмгольц Центра Берлин. Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.В37.21.1272.

Список литературы

- О.В. Стогней. Электроперенос и магнитные свойства аморфных наногранулированных композитов металлдиэлектрик. Автореф. докт. дис. ВГТУ, Воронеж (2004). 289 с.
- [2] О.В. Стогней, Ю.Е. Калинин, А.В. Ситников, И.В. Золотухин, А.В. Слюсарев. Физика металлов и металловедение 91, 24 (2001).
- [3] Ю.Е. Калинин, С.Б. Кушев, П.В. Неретин, А.В. Ситников, О.В. Стогней. ЖПХ 73, 439 (2000).
- [4] A.B. Pakhomov, X. Yan. Solid State Commun. 99, 139 (1996).
- [5] Б.А. Аронзон, Д.Ю. Ковалев, А.Н. Лагарьков, Е.З. Мейлихов, В.В. Рыльков, М.А. Седова, Н. Негре, М. Гойран, Дж. Леотин. Письма в ЖЭТФ 2, 87 (1999).

- [6] И.В. Быков, Е.А. Ганьшина, А.Б. Грановский, В.С. Гущин, А.А. Козлов, Т. Масумото, С. Онума. ФТТ 2, 268 (2005).
- [7] Н.Е. Казанцева, А.Т. Пономаренко, В.Г. Шевченко, И.А. Чмутин, Ю.Е. Калинин, А.В. Ситников. Физика и химия обработки материалов 1, 5 (2002).
- [8] Э.П. Домашевская, С.А. Сторожилов, С.Ю. Турищев, В.М. Кашкаров, В.А. Терехов, О.В. Стогней, Ю.Е. Калинин, А.В. Ситников, С.Л. Молодцов. ФТТ 50, 135 (2008).
- [9] Э.П. Домашевская, С.А. Сторожилов, С.Ю. Турищев, В.М. Кашкаров, В.А. Терехов, О.В. Стогней, Ю.Е. Калинин, А.В. Ситников, С.Л. Молодцов. Изв. РАН. Сер. физ. 72, 448 (2008).
- [10] E.P. Domashevskaya, S.A. Storozhilov, S.Yu. Turishchev, V.M. Kashkarov, V.A. Terekhov, O.V. Stognej, Yu.E. Kalinin, S.L. Molodtsov. J. Electron Spectroscop. Related Phenom. 156–158, 180 (2007).
- [11] Б.А. Аронзон, А.Б. Грановский, А.Б. Давыдов, М.Е. Докукин, Ю.Е. Калинин, С.Н. Николаев, В.В. Рыльков, А.В. Ситников, В.В. Тугушев. ЖЭТФ 130, 127 (2006).
- [12] О.В. Стогней, Ю.Е. Калинин, А.В. Ситников. Физика металлов и металловедение **91**, 21 (2006).
- [13] Т.М. Зимкина, В.А. Фомичев. Ультрамягкая рентгеновская спектроскопия. ЛГУ, Л. (1971). 132 с.
- [14] C. Colliex, T. Maunobi, C. Ortiz. Phys. Rev. B 44, 11402 (1991).
- [15] K. Kupper. PhD thesis to the Department of Physics Osnabruck University. Osnabruck Germany (2005). 157 p.
- [16] S.A. Chambers. Surf. Sci. Rep. 39, 105 (2000).
- [17] P.L. Hansen, R. Brydson, D.W. McComb. Microscopy Microanalysis Microstruct. 3, 213 (1992).
- [18] В.А. Терехов, Е.И. Теруков, И.Н. Трапезников, В.М. Кашкаров, О.В. Курило, С.Ю. Турищев, А.Б. Голоденко, Э.П. Домашевская. ФТП **39**, 863 (2005).
- [19] T.C. Rojas, J.C. Sanchez-Lopez, M.J. Sayagnes, E.P. Reddy, A. Coballero, A. Fernandez. J. Mater. Chem. 9, 1011 (1999).
- [20] C.I. Pearce, D.J. Vaughan, G. van der Laan, R.A.D. Pattrick, C.M.B. Henderson. Amer. Mineralogist 91, 880 (2006).