11,02

Теплофизические и термоэлектрические свойства твердых тел в области полиморфного и сверхпроводящего переходов

© И.К. Камилов, М.И. Даунов, А.Ю. Моллаев, С.Ф. Габибов

Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия E-mail: a.mollaev@mail.ru

(Поступила в Редакцию 20 августа 2012 г.

В окончательной редакции 26 ноября 2012 г.)

Приведены соотношения для эффективных кинетических коэффициентов теплопроводности и термоэдс в области сверхпроводящего и полиморфного фазовых переходов. Верификация полученных соотношений проведена по экспериментальным данным в пористых средах, насыщенных флюидом. Проанализированы экспериментальные данные в высокотемпературном сверхпроводнике YBa₂Cu₃O_x (*x* = 6.8, 6.9) и *n*-InAs.

1. Согласно теоретическому анализу, структурный фазовый переход между фазами высокого и низкого давления в случае изотермического нагружения при однородном состоянии вещества происходит в твердом теле при постоянном давлении [1]. Тем не менее данные эксперимента об эффективных кинетических коэффициентах и рентгеноструктурные исследования при изотропном давлении свидетельствуют о наличии конечного интервала давлений, в котором сосуществуют исходная и конечная фазы вещества (см., например, [2]), что обусловлено принципиально неустранимым беспорядком, связанным с флуктуациями температуры, давления и дефектами. Интервал давления флуктуационного размытия полиморфного фазового перехода растет с увеличением степени беспорядка [3,4].

При сверхпроводящем переходе в высокотемпературных сверхпроводниках (ВТСП) при температурах, превышающих температуру обращения в нуль сопротивления $T = T_C$, наблюдается избыточная проводимость, обусловленная появлением зародышей сверхпроводящей фазы [5,6]. Уместно отметить, что по результатам одновременного измерения удельного сопротивления и намагниченности был определен относительный объем сверхпроводящей фазы $V_{2C} = 0.2$ при $T = T_C$ [7]. Рассчитанная же различными методами критическая доля разрешенного объема V_{2C} в теории протекания изменяется от 0.15 до 0.19 [8].

Итак, в качестве характеристических особенностей термодинамики рассматриваемых фазовых переходов в реальном твердом теле можно назвать появление областей сосуществования фаз как при полиморфном переходе, так и до формирования бесконечного кластера при сверхпроводящем переходе, причем область флуктуационного размытия тем больше, чем больше степень беспорядка. Степень превращения при фиксировании термодинамических условий достигается весьма быстро и далее остается неизменной при сколь угодно длительной выдержке: реализуется устойчивое двухфазное метастабильное равновесие составляющих систему фаз [9]. Относительное количество новой фазы есть функция термодинамических условий превращения. С целью количественного описания гетерофазного состояния в динамике при движении по изотерме или изобаре в области структурного и сверхпроводящего переходов в твердом теле в [6,10] предлагается аппроксимационная модель гетерофазная структура—эффективная среда (ГСЭС), являющаяся синтезом модифицированного метода эффективной среды и теории протекания. В качестве характеристического экспериментального параметра была выбрана электропроводность, так как методика измерения и задача вычисления электропроводности являются наиболее простыми.

В настоящей работе подходы, использованные в [6,10], применены для описания теплофизических и термоэлектрических свойств твердого тела в области полиморфного и сверхпроводящего переходов.

2. Для количественного описания зависимостей эффективных кинетических коэффициентов удельного сопротивления ρ , теплопроводности λ и термоэдс Q в области полиморфного и сверхпроводящего фазовых переходов от управляющего параметра воспользуемся известными математическими выражениями, полученными для гетерогенных систем в приближении метода эффективной среды [11–15]:

$$\rho = \frac{\sum_{i} V_i \rho_i f_i}{\sum_{i} V_i f_i}, \quad f_i = \frac{3\rho}{A\rho + (3-A)\rho_i}, \quad (1)$$

$$\lambda^{-1} = \frac{\sum_{i} V_i \lambda_i^{-1} f_i(\lambda)}{\sum_{i} V_i f_i(\lambda)}, \quad f_i(\lambda) = \frac{3\lambda_i}{A\lambda_i + (3-A)\lambda}, \quad (2)$$

$$Q = \frac{\sum_{i} V_i Q_i f_i \lambda_i^{-1} f_i(\lambda)}{\sum_{i} V_i f_i \lambda_i^{-1} f_1(\lambda)}.$$
(3)

Здесь *i* — номер фазы, *V_i* — относительный объем фазы, *A* — коэффициент, учитывающий конфигурацию включений фазы.

При коэффициенте A = 0 реализуется нитевидная конфигурация включений (параллельное соединение),

при A = 1 — сферические включения, при A = 3 — слоистая конфигурация включений (последовательное соединение).

Непосредственно из (1) и (2) для двухфазной системы $(V_1 + V_2 = 1)$ следует

$$\sigma = \frac{V_1 \sigma_1 L(\sigma) + V_2 \sigma_2}{V_1 L(\sigma) + V_2},$$

$$L(\sigma) = \frac{A \sigma_2 + (3 - A_2)\sigma}{A \sigma_1 + (3 - A_1)\sigma} = \frac{V_2}{V_1} \frac{(x - \alpha)}{(1 - x)\alpha},$$

$$\lambda = \frac{V_1 \lambda_1 L(\lambda) + V_2 \lambda_2}{V_1 L(\lambda) + V_2},$$

$$L(\lambda) = \frac{A \lambda_2 + (3 - A_2)\lambda}{A \lambda_1 + (3 - A_1)\lambda} = \frac{V_2}{V_1} \frac{(z - \beta)}{(1 - z)\beta},$$
(5)

где σ и λ — эффективные электропроводность и теплопроводность, σ_1 , σ_2 и λ_1 , λ_2 — электропроводности и теплопроводности двух фаз: первой низкопроводящей (нормальной) (фаза 1) и второй высокопроводящей (сверхпроводящей) (фаза 2), $\alpha = \sigma_1/\sigma_2$, $x = \sigma_1/\sigma$, $\beta = \lambda_1/\lambda_2$, $z = \lambda_1/\lambda$.

Таким образом, формулы для эффективных кинетических коэффициентов электропроводности и теплопроводности идентичны с заменой σ , σ_1 , σ_2 на λ , λ_1 , λ_2 .

Из (4), (5) следует

$$kx^{2} + Bx - (3 - k)\alpha = 0, \quad B = 3V_{2} - k + \alpha[3V_{1} - k],$$
(6)
$$kz^{2} + Bz - (3 - k)\beta = 0, \quad B = 3V_{2} - k + \beta[3V_{1} - k],$$
(7)

Коэффициент k зависит от конфигурации фаз и фазового состава. Для пороговой величины $V_2 = V_{2C}$, при которой формируется бесконечный кластер фазы 2, и $\alpha = 0$, согласно (6), x = B = 0 и $k = 3V_{2C}$.

В модели ГСЭС [10] предполагается, что коэффициент *A* различен для разных фаз, и соответственно их конфигурации различны. В этом приближении

$$k = V_1 A_2 + V_2 A_1. (8)$$

Отметим, что для соотношений (4)-(7) допущение о различии коэффициентов *A* для фаз 1 и 2 не является необходимым. На начальной (фаза 1) и конечной (фаза 2) стадиях фазового перехода конфигурацию зародышей соответственно конечной и начальной фаз (изолированных кластеров) естественно аппроксимировать сферами. Согласно (8), при $V_1 = 1$, $V_2 = 0$ $k = A_2 = 1$, а при $V_2 = 1$, $V_1 = 0$ $k = A_1 = 1$.

С целью определения коэффициента k в интервале $0 \leq V_2 \leq 1$ в промежуточных областях $0 < V_2 < V_{2C}$ и $V_{2C} < V_2 < 1$ для $0 \leq \alpha \leq 1$ и $0 \leq \beta \leq 1$ использована следующая интерполяция коэффициентов A_1 и A_2 [10]:

$$A_{1} = 1 + 2(1 - \alpha)V_{1}, \quad A_{2} = \alpha + (1 - \alpha)V_{1}^{n},$$

$$A_{1} = 1 + 2(1 - \beta)V_{1}, \quad A_{2} = \beta + (1 - \beta)V_{1}^{n}.$$
(9)

Показатель n = 14.3 был определен в [10] для порогового значения $V_{2C} = 0.17$ [8] и $x = \alpha = 0$. Используя (8), (9), для коэффициента k получим

$$k = (1 - \alpha)[V_1^{n+1} - 2V_1^2 + V_1] + 1,$$

$$k = (1 - \beta)[V_1^{n+1} - 2V_1^2 + V_1] + 1.$$
 (10)

Интерполяционные соотношения (9) введены в [10] исходя из следующих соображений. При фазовых превращениях $1 \leftrightarrows 2$ в начальный момент для зародышей фазы 2 $(1 \rightarrow 2)$ и фазы 1 $(2 \rightarrow 1)$ адекватным является сферическое приближение и $A_2 = 1$ $(1 \rightarrow 2)$, $A_1 = 1$ $(2 \rightarrow 1)$. Очевидно также, что при $A_1 = 3$ $(1 \rightarrow 2)$ и $A_2 = 0$ $(2 \rightarrow 1)$ формируются соответственно электроизолирующие (теплоизолирующие) слои, перпендикулярные электрическому полю, и электропроводящие

Рис. 1. *а*) Зависимости $z = \lambda_1/\lambda$ от относительного объема высокопроводящей (сверхпроводящей) фазы V_2 , рассчитанные по формулам (7) (сплошные кривые) и (15) (штриховые кривые). $\beta = \lambda_1/\lambda_2$: I - 1, 2 - 0.8, 3 - 0.5, 4 - 0.3. *b*) Зависимость $z = \lambda_1/\lambda$ от β для относительного объема высокопроводящей (сверхпроводящей) фазы в критической точке $V_{2C} = 0.17$, рассчитанная по формулам (7) (I) и (15) (2).

№ п/п	Вещество		Объемная доля компонентов		Теплопроводность компонентов, $W \cdot m^{-1} \cdot K^{-1}$		Эффективная теплопроводность системы, $W \cdot m^{-1} \cdot K^{-1}$	
	Фаза 1	Фаза 2	V_1	V_2	λ_1	λ_2	λ_{exp}	λ_{calc}
1	СО2 (газ)	$\begin{array}{c} {\rm Стекло \ xc-3}\\ ({\rm SiO}_2-71.5\%,\\ {\rm Na}_2{\rm O}-14.5\%,\\ {\rm CaO}-6.5\%,\\ {\rm Al}_2{\rm O}_3-2.5\%,\\ {\rm MgO}-2.5\%,\\ {\rm B}_2{\rm O}_3-2.0\%,\\ {\rm K}_2{\rm O}-0.5\%) \end{array}$	0.4	0.6	0.016	1.1066	0.5271	0.44*
2	C_7H_{16} (жидкость)	Стекло хс-3 (состав тот же)	0.4	0.6	0.121	1.1066	0.61053	0.56* 0.71**
3	СО2 (газ)	Стекло АБ-1 (SiO ₂ — 75%, Na ₂ O — 13%, CaO — 4%, MgO — 5%, Al ₂ O ₃ — 3%)	0.4	0.6	0.016	1.16043	0.5527	0.46* 0.7**
4	То же	Кварцевое стекло КВ (SiO ₂ — 99.9%)	0.1	0.9	0.016	1.355	1.178	1.14* 1.21**

Теплопроводность двухфазных систем — пористых стекол, насыщенных флюидом при $T = 300 \, \text{K}$ и $P = 0.1 \, \text{MPa}$

* Расчет согласно (7).

** Расчет согласно (15).

(теплопроводящие) каналы, параллельные электрическому полю (градиенту температуры). Таким образом, на границах перехода в случае $\alpha = \beta = 0$ при $1 \rightarrow 2 A_1 = 3$, $A_2 = 1$ и при $2 \rightarrow 1$ $A_1 = 1$, $A_2 = 0$. В области между граничными значениями для коэффициентов A_1 и A_2 использована линейная аппроксимация, которая в случае коэффициента A_2 усилена введением подгоночного параметра *n*.

Для термоэдс из (1)-(3) следует

$$Q = \frac{Q_1 V_1 L(\sigma) L(\lambda) \alpha + Q_2 V_2}{V_1 L(\sigma) L(\lambda) \alpha + V_2},$$
(11)

$$Q = \frac{Q_1(x - \alpha)L(\lambda) + Q_2(1 - x)}{(x - \alpha)L(\lambda) + (1 - x)},$$
 (12)

$$Q = \frac{Q_1 \alpha(z - \beta)L(\sigma) + Q_2 \beta(1 - z)}{\alpha(z - \beta)L(\sigma) + \beta(1 - z)}.$$
 (13)

Представим термоэдс в удобном для последующего обсуждения виде

$$\frac{b-\gamma}{1-b} = \frac{V_2}{V_1} \frac{(x-\alpha)(z-\beta)}{(1-x)(1-z)\beta} = \frac{(x-\alpha)}{(1-x)L(\lambda)},$$
 (14)

где $b = Q/Q_1$, $\gamma = Q_2/Q_1$.

Теплопроводности в отличие от электропроводности и термоэдс в различных фазах, в частности полупроводниковой и металлической, нормальной и сверхпроводящей, близки по величине. Как видно из рис. 1, *a*, *b* и таблицы, в этом случа
е $L(\lambda)\approx 1.$ Отсюда из (5), (14) при $L(\lambda)=1$ получим

$$\lambda = V_1 \lambda_1 + V_2 \lambda_2, \tag{15}$$

$$z = \frac{\beta}{V_1 \beta + V_2},\tag{16}$$

$$b = \frac{x(1-y) + (y-\alpha)}{(1-\alpha)}.$$
 (17)

Из (17) следует, что при $\alpha = \gamma = 0$ (сверхпроводящий переход)

$$b = x, \tag{17a}$$

а при $\alpha \ll \gamma \ll 1$ (полиморфный переход полупроводник-металл)

$$b = x + \gamma. \tag{17b}$$

В пороговой точке и $\alpha < 0.1$, согласно [10] и (17b),

$$b = x_C + \gamma = 2.21\sqrt{\alpha} + \gamma. \tag{17c}$$

Верификация полученных соотношений (7), (15) проведена по данным эксперимента при комнатной температуре и атмосферном давлении в двухкомпонентной системе пористых стекол, насыщенных флюидом [16,17].

С учетом погрешностей в определении относительных объемов фаз, теплопроводностей фаз и эффективной теплопроводности согласие между измеренной эффективной величиной теплопроводности и рассчитанной по формулам (7) и (15) удовлетворительное (см. таблицу).

Рис. 2. Температурные зависимости нормализованных удельного сопротивления ρ/ρ_1 и термоэдс Q/Q_1 при различной объемной доле свехпроводящей фазы V_2 в высокотемпературном сверхпроводнике YBa₂Cu₃O_{6.8}.

Рис. 3. Барические зависимости нормализованного электросопротивления ρ/ρ_1 при фиксированной температуре 91.6 К (1) и относительной объемной доли сверхпроводящей фазы V_2 (2) в высокотемпературном сверхпроводнике YBa₂Cu₃O_{6.8}.

На рис. 2–5 приведены экспериментальные данные для ВТСП $YBa_2Cu_3O_x$ (x = 6.8) [6,18] и для полупроводника InAs *n*-типа [19], а также результаты их количественного анализа с использованием формул (6), (7), (17). Экспериментальные данные для ВТСП $YBa_2Cu_3O_x$ (x = 6.9) идентичны.

По характеру температурных зависимостей удельного сопротивления $\rho(T)$ и термоэдс Q(T) при T < 100 К до критической температуры $T = T_C$ (рис. 2) и барических зависимостей нормализованного удельного сопротивления и относительной объемной доли сверхпроводящей фазы V_2 при фиксированной температуре 91.6 К (рис. 3) в исследованных ВТСП можно наблюдать появление избыточной проводимости σ' и се рост, а также убывание термоэдс, обусловленные появлением включений сверхпроводящей фазы и увеличением V_2 с убыванием тем-

пературы и возрастанием давления. Непосредственно из формулы для эффективной электропроводности следует

$$\sigma' = \sigma - \sigma_1 = \sigma_1 \frac{3V_2}{[V_1^{n+1} - 2V_2^2]}.$$
 (18)

Избыточная проводимость возрастает с увеличением V_2 : при $V_2 \ll 1~\sigma' \sim V_2$, при $V_2 \rightarrow V_C~\sigma' \rightarrow \infty$. Величина V2 увеличивается с убыванием температуры от нулевой величины при $T = T_1$ до $V_{2C} = 0.17$ при $T = T_C$, где $\rho = 0$ (рис. 2,3), и далее до $V_2 = 1$ при $T = T_2$ (рис. 4). Одновременно в температурном интервале $(T_1,$ T_2) с убыванием температуры наблюдается возрастание эффективной теплопроводности λ , резко усиливающееся вблизи $T = T_C$, с максимумом при $T_{\rm max} \approx T_C/2$ и ее последующее убывание (рис. 4). Очевидно, зависимость $\lambda(T)$ при $T < T_C$ определяется температурной зависимостью теплопроводности сверхпроводящей фазы $\lambda_2(T)$, так как в несверхпроводящих образцах того же состава максимум отсутствует. На рис. 4 приведены зависимости $\lambda_2(T)$, рассчитанные по величинам V_2 и температурной зависимости нормальной фазы $\lambda_1(T)$, определенным соответственно интерполяцией и экстраполяцией. Характер температурной зависимости $\chi_2(T)$ в ВТСП обсуждался в [20,21]. Отметим, что, согласно (17а), в температурном интервале $(T_1, T_C) Q/Q_1 \cong \rho/\rho_1$ (рис. 2),

Рис. 4. Температурные зависимости эффективной теплопроводности λ (сплошная линия), теплопроводности сверхпроводящей фазы λ_2 (штриховая линия) и относительной объемной доли высокопроводящей фазы V_2 (на вставке) в высокотемпературном сверхпроводнике YBa₂Cu₃O_{6.8}.

Рис. 5. Зависимости нормализованных удельного сопротивления (эксперимент) (1), термоэдс (2) и теплопроводности (3) (пояснения в тексте) от всестороннего давления в *n*-InAs при 300 К. 4 — рассчитанные значения относительного объема высокопроводящей фазы. Горизонтальные и вертикальные штриховые линии фиксируют величины удельного сопротивления и давления при критическом значении $V_{2C} = 0.17$, когда формируется бесконечный кластер высокопроводящей фазы.

т.е. $L(\lambda) \approx 1$, и для оценки $\lambda(T)$ можно использовать соотношение (15).

Аналогичная ситуация реализуется в полупроводниках, например в *n*-InAs (рис. 5), в области полиморфного перехода полупроводник—металл в интервале давлений от начала превращения до $P = P_C$, где $V_2 = V_{2C}$, с поправкой на конечную величину термоэдс металлической фазы $|Q_2| > 0$ согласно (17b). В *n*-InAs $\alpha \approx 10^{-8} \ll 1$, $\gamma \approx 10^{-3} \ll 1$, $\beta \approx 10^{-1}$ и $\alpha \ll \gamma \ll \beta$. Для вычисления зависимостей Q/Q_1 , λ/λ_1 от давления при 300 К использованы известные данные о теплопроводности и термоэдс при атмосферном давлении в *n*-InAs [22] и их типичные значения для металлической фазы.

3. Предлагаемые соотношения для описания теплофизических и термоэлектрических свойств в области полиморфного и сверхпроводящего фазовых переходов могут быть использованы не только при фазовых превращениях в твердом теле в динамике, но и для контроля и прогнозирования в технологических процессах при создании разнообразных структур, а также могут быть обобщены на любое число компонентов. Модель ГСЭС является синтезом модифицированного метода эффективной среды и теории протекания и применима при $0 \le \alpha \le 1$ и $0 \le \beta \le 1$, тогда как приближение эффективной среды дает ошибочные результаты в окрестности порога протекания, а теория протекания применима лишь вблизи его порога [23].

Список литературы

- [1] А.Ю. Гуфан. ФТТ 53, 11, 2226 (2011).
- [2] Т.И. Дюжева, С.С. Кабалкина, В.П. Новичков. ЖЭТФ, 74, 5, 1784 (1978).

- [3] S.B. Quadri, E.F. Skelton, A.W. Webb. J. Appl. Phys., 54, 3609 (1983).
- [4] J.Z. Jiang, O.J. Staun, L. Gervard, S. Steensnrup. High Press. Res. 22, 395 (2002).
- [5] А.Б. Батдалов, Б.К. Чакальский, М.С. Буттаев, А.М. Омаров. В сб.: Транспортные и магнитные явления в оксидах металлов. Махачкала (1989). С. 168.
- [6] M.I. Daunov, M.S. Buttaev, A.B. Magomedov. Superconductivity 5, 1, 72 (1992).
- [7] О.В. Григуть, Ю.М. Иванченко, Е.Н. Малышев, П.Н. Михеенко, Ю.Ф. Ревенко. ФНТ **13**, 1083 (1987).
- [8] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979). 415 с.
- [9] А.Л. Ройтбурд. УФН 113, 1, 69 (1974).
- [10] M.I. Daunov, I.K. Kamilov, R.K. Arslanov, D.M. Daunova, S.F. Gabibov. J. Phys.: Cond. Matter 15, 2335 (2003).
- [11] В.И. Одолевский. ЖТФ 21, 6, 667 (1951).
- [12] С.Ф. Айрапетянц. ЖТФ 27, 3, 478 (1957).
- [13] Б.Я. Балагуров. ЖЭТФ 85, 2, 568 (1983).
- [14] R.L. McCulogh. Compos. Sci. Tech. 22, 1, 3 (1985).
- [15] В.В. Шенников. ФММ 67, 1, 93 (1989).
- [16] Г.Г. Гусейнов. Изв. Самар. науч. центра РАН 11, 5(2), 386 (2009).
- [17] Г.Г. Гусейнов. Изв. Самар. науч. центра РАН 11, 5(2), 390 (2009).
- [18] И.К. Камилов, А.Б. Батдалов, М.С. Буттаев, Б.К. Чакальский. СФХТ. 4, 10, 1899 (1991).
- [19] А.Ю. Моллаев, Р.К. Арсланов, С.Ф. Габибов, С.Ф. Маренкин. ФТВД **11**, *4*, 61 (2001).
- [20] L. Teword, Th. Wolkhausen. Solid State Commun. 70, 8, 839 (1989).
- [21] L. Teword, Th. Wolkhausen. Solid State Commun. 75, 6, 515 (1990).
- [22] Физико-химические свойства полупроводниковых веществ. Справочник / Под ред. А.В. Новоселовой, В.Б. Лазарева. Наука, М. (1979). 340 с.
- [23] А.Г. Забродский, С.А. Немов, Ю.И. Равич. Электронные свойства неупорядоченных систем. Наука, СПб (2000). 70 с.