09,11

Влияние атмосферной влажности на симметрию и фазовые переходы слоистых калиевых оксифторидов K₂NbOF₅ · H₂O

© С.В. Мельникова¹, Н.М. Лапташ²

 ¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
² Институт химии ДВО РАН, Владивосток, Россия
E-mail: msv@iph.krash.ru, laptash@ich.dvo.ru

(Поступила в Редакцию 22 ноября 2012 г.)

Выращены кристаллы K₂NbOF₅ · H₂O, проведены поляризационно-оптические исследования, измерены двулучепреломление и углы вращения оптической индикатрисы в интервале температур 100–400 К. Установлено, что при комнатной температуре этот слоистый кристалл в зависимости от степени влажности атмосферы может находиться в трех состояниях: *A*, *B* и *C*, различающихся симметрией и свойствами. Кристалл K₂NbOF₅ · H₂O в состоянии *A*, реализующийся при относительной влажности RH = 90–100%, испытывает несобственный сегнетоэластический фазовый переход первого рода $P\overline{1} \leftrightarrow C2/m$, сопровождающийся сильными аномалиями оптических характеристик, двойникованием, появлением сдвиговой деформации x_6 при температурах $T_2^{\downarrow} = 308$ К и $T_2^{\uparrow} = 313$ К. Наиболее устойчивое состояние K₂NbOF₅ · H₂O — *B* (RH = 20–90%) — сохраняет моноклинную симметрию C2/m в области температур 100–370 К. В сухой атмосфере (RH = 0–20%) или при $T_1 \approx 370$ К кристалл становится безводным (K₂NbOF₅) с симметрией P4/nmm (состояние *C*). Различие кристаллов в состояниях *A* и *B* объясняется наличием или отсутствием молекул воды в межслоевых пространствах.

Работа выполнена при финансовой поддержке гранта Президента РФ (НШ-4828.2012.2).

1. Введение

Интерес к оксифторидным соединениям объясняется возможностью получить новые функциональные материалы с ацентричной симметрией и широким диапазоном прозрачности, так как структура таких веществ состоит из катионов А и изолированных полярных комплексов $[BX_6]^{2-}$ [1]. Сравнительный анализ соединений с общей формулой A_2BX_6 , где A = K, Rb, Cs, Na, NH₄; B = Nb, Mo, W; X = O(F), показал особенность структуры калиевых кристаллов [1-8]. Анионные группы ВХ₆ в этих веществах изолированы и расположены так, что образуют два типа межоктаэдрических полиэдров. Первый тип — октаэдрические полости, образованные вершинами шести соседних комплексов ВХ₆. В них размещена половина ионов калия. Второй тип двенадцатикоординированные полиэдры, образованные гранями ВХ₆-групп. Они заполнены только наполовину оставшимися атомами калия. Свободные полости может занимать вода, образуя кристаллогидраты. При потере воды общий мотив структуры сохраняется, но изменяются атомные координаты и параметры ячейки, что приводит к смене симметрии вещества. Безводные кристаллы K₂NbOF₅, K₂MoO₂F₄, $K_2WO_2F_4$ имеют симметрию P4/nmm (Nb: a = 6.12 Å, c = 8.98 Å, Z = 4) [2–4], тогда как кристаллогидраты вырастают моноклинными с разными пространственными группами. Согласно [4-6], кристаллы K₂NbOF₅ · H₂O, $K_2MoO_2F_4 \cdot H_2O$ и $K_2WO_2F_4 \cdot H_2O$ имеют симметрию

*P*2₁/*c* (Nb: a = 6.241 Å, b = 6.197 Å, c = 17.935 Å, $\beta = 95.03^{\circ}, Z = 4$), a K₂MoOF₅ · H₂O — *C*2/*m* [7].

Недавние исследования структуры $K_2WO_2F_4\cdot H_2O$ на монокристалле показали, что при комнатной температуре вещество имеет группу симметрии C2/m (a = 8.791(1)Å, b = 8.792(1)Å, c = 9.152(1)Å, $\beta = 98.675^{\circ}, Z = 4)$ [8]. Молекулы H₂O расположены в двенадцатикоординированных полиэдрах и удерживаются водородными связями со всеми лигандами. Выбранная модель структуры с разупорядочением кристаллической воды в двух положениях вокруг оси второго порядка предполагает возможность понижения симметрии при охлаждении. Кроме того, обнаружено [8], что в зависимости от степени влажности атмосферы слоистый кристалл $K_2WO_2F_4 \cdot H_2O$ имеет два состояния (A и B) с разными последовательностями обратимых и необратимых фазовых превращений. В образцах типа А наблюдается смена симметрии фаз: $P\bar{1} \leftrightarrow C2/m \rightarrow P4/nmm$. Собственный сегнетоэластический фазовый переход второго рода $(P\bar{1} \leftrightarrow C2/m)$ сопровождается двойникованием и появлением сдвиговой деформации x₆. В кристаллах типа В при обратимом фазовом переходе сингония изменяется: $m \leftrightarrow C2/m \rightarrow P4/nmm$. вещества не Экспериментально доказано, что структура, симметрия и параметры решетки кристалла K2WO2F4·H2O в состояниях А и В при комнатной температуре одинаковы [8]. Кристаллическая вода в K₂WO₂F₄·H₂O исчезает при $T_1 \approx 350 - 380 \, \text{K}$, затем легко восстанавливается из атмосферы в течение суток. Предполагается, что различие кристаллов в состояниях А и В вызвано

Рис. 1. Коноскопические картины от пластинок $(001)_T$ кристалла K₂NbOF₅ · H₂O в состояниях A, B, C.

наличием (A) или отсутствием (B) молекул воды (кроме кристаллической) в межслоевых пространствах в количестве не более 0.1% от общей массы вещества.

В настоящей работе синтезированы и выращены монокристаллы $K_2NbOF_5 \cdot H_2O$, проведены поляризационнооптические исследования, измерены двулучепреломление и угол погасания в области температур 100-400 K с целью поиска и изучения фазовых переходов, а также для определения симметрии фаз.

2. Выращивание кристаллов

Синтез кристаллов оксофторониобата калия осуществлялся путем взаимодействия исходного оксида ниобия (V) с концентрированной (40%) кислотой HF при нагревании на плитке (например, 20 g оксида и 40-45 ml HF). Затем раствор отфильтровывали и вводили калийсодержащий реагент (химически чистые KCl, KHF₂ и KF). Добавление их в стехиометрическом количестве в расчете на образование K₂NbOF₅ не приводило к получению желаемого результата. По данным рентгенофазового анализа обильный кристаллический осадок представлял собой оксофторониобаты более сложного состава: $K_5NbO_3F_{14} \cdot H_2O$ или $K_3Nb_2OF_{11}$. К полученному осадку добавляли избыток KF (например, $20 g K_5 NbO_3 F_{14} \cdot H_2 O$ смешивали с 5 g KF), растворяли в водном растворе HF, фильтровали и при упаривании на воздухе получали пластинчатые кристаллы K₂NbOF₅ · nH₂O. Сразу после выращивания кристаллы содержали 1.9 H₂O (данные термогравиметрии). Со временем содержание воды изменилось, и при относительной влажности RH = 40-50% состав стал точно соответствовать стехиометрической формуле $K_2NbOF_5 \cdot H_2O$.

Кристаллы вырастают в основном в виде прямоугольных слюдоподобных пластинок $(001)_T$ [2] с идеальной плоскостью спайности. Боковая огранка таких пластинок осуществляется по $(110)_T$ и $(1\overline{10})_T$. В то же время отобранные образцы среза (010) всегда представляют собой поликристаллические сростки-двойники с разориентацией оптических индикатрис в соседних областях на

угол $2\varphi \approx 5^{\circ}$. Этот факт исключал возможность рентгеноструктурных исследований полученного вещества на монокристалле. В настоящей работе на ростовых образцах (001)_T и (010) проведены поляризационнооптические исследования, измерены угол вращения оптической индикатрисы и двулучепреломление по методу компенсатора Берека с точностью ±0.0001. Эксперименты выполнены с помощью микроскопа "Axioskop-40" и температурной камеры "Linkam LTS 350" в интервале 100–400 К.

3. Экспериментальные результаты

Наблюдения K_2 NbOF₅ · H₂O с помощью поляризационного микроскопа показали, что в зависимости от влажности воздуха это вещество при комнатной температуре может существовать в трех состояниях (*A*, *B*, *C*) (рис. 1), переходя из одного в другое при изменении концентрации паров воды в окружающем пространстве. Можно наблюдать переходный фронт, двигающийся от краев к центру (рис. 2, *a*, *b*). При медленно протекающих процессах кристаллические пластинки остаются прозрачными. Эти три состояния различаются величиной оптической анизотропии в пластинках (001)_{*T*}:

Рис. 2. Сосуществование областей A, B, C в образцах K_2 NbOF₅ · H₂O при комнатной температуре. *а* — образец исследуется в зимний период (отопительный сезон, RH \approx 20%), *b* — кристалл во влажной атмосфере летом (RH \approx 90%). Стрелками указаны положения погасания.

Рис. 3. Температурные зависимости двулучепреломления $\Delta n_c(T)(I)$ и угла поворота оптической индикатрисы $\varphi_c(T)(2)$ в кристалле K₂NbOF₅ · H₂O в состоянии *А*. На вставке — появляющаяся в процессе охлаждения в средней части образца полосчатая двойниковая структура с границами вдоль [110]_T. Кривая 3 — поведение $\Delta n_c(T)$ в состоянии *В*.

 $A - \Delta n_c \approx 0.01, B - \Delta n_c = 0.02, C - \Delta n_c = 0,$ а также расположением осей оптических индикатрис в них. При относительной влажности воздуха 90–100% реализуется вариант A: сильное двулучепреломление Δn_c , поворот оптической индикатрисы на $\varphi_c = 43^\circ$ от грани роста $[110]_T$. При RH = 20–90% в кристалл K₂NbOF₅ · H₂O существует в наиболее устойчивой форме (сотояние B) со слабым двулучепреломлением Δn_c и "прямым" погасанием пластинки (001) вдоль грани роста ($\varphi_c = 0$). Очевидно, что состояние C — это тетрагональный кристалл K₂NbOF₅ [2]. Потеря кристаллической воды возможна даже при комнатной температуре при влажности воздуха ниже 20%.

Температурные исследования положения погасания пластинки (001)_Т в состоянии А показали, что величина угла φ_c зависит от температуры (рис. 3, кривая 2). В интервале 100-300 К его изменение незначительно $(\varphi_c = 45 - 42^\circ)$, однако при дальнейшем повышении температуры наблюдается резкое уменьшение угла до нуля вблизи $T_2^{\uparrow} = 313$ К. Из-за наличия больших изменений угла $\varphi_c(T)$ в процессе измерения двулучепреломления $\Delta n_c(T)$ производилась дополнительная ориентация образца в каждой температурной точке для совмещения с координатами оптической индикатрисы. Результаты температурных измерений $\Delta n_c(T)$ кристалла в состоянии A приведены на рис. 3 (кривая 1). Оптическая анизотропия при низких температурах *T* ≈ 100 K достигает максимального значения $\Delta n_c \approx 0.016$. В процессе нагревания двулучепреломление такого образца плавно понижается и вблизи $T \approx 312 \,\mathrm{K}$ достигает $\Delta n_c \approx 0.006$, затем при $T_{2}^{\top} = 313 \, \text{K}$ происходит скачкообразное уменьшение до значения $\Delta n_c = 0.002$. При дальнейшем нагревании двулучепреломление Δn_c не изменяется вплоть до температуры 360 К, затем оно плавно уменьшается, и при $T_1 \approx 370$ К оптическая анизотропия исчезает: $\Delta n_c = 0$. Кристалл становится оптически одноосным.

Если не нагревать образец выше T_1 , то в процессах охлаждения аномалии $\Delta n_c(T)$ и $\varphi_c(T)$ вновь наблюдаются, но со смещением на $\delta T = 5 \, \text{K} \, (T_2^{\downarrow} = 308 \, \text{K})$. При этом в области температур $T < T_2^{\downarrow}$ в поле зрения поляризационного микроскопа появляется яркая полосчатая двойниковая картина с границами вдоль $[110]_T$ (рис. 3, вставка), свидетельствующая о том, что в кристалле произошло понижение сингонии вследствие сегнетоэластического фазового перехода. Оптические индикатрисы в соседних двойниках вблизи 300 К развернуты на очень большой угол $2\phi_c \approx 86^\circ$. Такая картина чаще наблюдается лишь в средней части образца. На краях пластинки сохраняется "прямое" погасание вдоль $[110]_T$. При повторных процессах нагрева-охлаждения через Т₂ область образца с двойниками постепенно сужается и может исчезнуть полностью.

В отличие от кристалла A в пластинке $(001)_T$ в состоянии B "прямое" погасание ($\varphi_c = 0$) наблюдается в области температур 90-370 К. В таких образцах двулучепреломление мало и не изменяется в интервале температур 150-350 К (рис. 4, кривая 2). Ниже 150 К в зависимости $\Delta n_c(T)$ наблюдается небольшая аномалия неизвестной природы, а вблизи $T_1 \approx 370 \,\mathrm{K}$ двулучепреломление уменьшается до нуля, кристалл теряет кристаллическую воду и становится тетрагональным. Для сравнения оптической анизотропии двух состояний кристалла $K_2NbOF_5 \cdot H_2O$ зависимость $\Delta n_c(T)$ для фазы *В* также показана на рис. 3 (линия 3). Видно, что выше $T_2^{\uparrow} = 313 \,\mathrm{K}$ температурное поведение двулучепреломления в пластинке (001) г одинаково для состояний А и В. Различие образцов типа А и В имеет место только при температурах ниже $T_2^{\downarrow} = 308 \, \text{K}$. Двулучепреломление кристаллов в состоянии А резко возрастает в результате фазового перехода T_2^{\downarrow} (рис. 3, кривая 2), тогда как оптическая анизотропия образцов в состоянии В изменяется слабо (рис. 3, кривая 3).

Образцы роста среза (010) как в состоянии A, так и в состоянии B имеют полосчатую двойниковую структуру с разворотами индикатрис в соседних областях на небольшой угол $2\varphi_b \approx 5^\circ$ (рис. 4, вставка). Температурная зависимость угла погасания $\varphi_b(T)$ представлена на рис. 4 (кривая 1). Он имеет примерно одинаковую величину в исследованном диапазоне температур и обращается в нуль при $T > T_1$.

4. Обсуждение результатов

Описанные выше экспериментальные результаты указывают на то, что при комнатной температуре кристалл $K_2NbOF_5 \cdot H_2O$ может иметь различную симметрию в состояниях *A*, *B* и *C*. Существование поворота оптической индикатрисы в двух ортогональных плоскостях

Рис. 4. Температурное поведение угла разориентации в двойниках $\varphi_b(T)$ (*I*) и температурная зависимость двулучепреломления Δn_c (*2*) в пластинках (001)_{*T*} (состояние *B*). На вставке — наблюдающаяся двойниковая картина в срезе (010) кристаллов K₂NbOF₅ · H₂O в состояниях *A*, *B*.

 $\varphi_c = 43^{\circ}$ и $\varphi_b \approx 2.5^{\circ}$ в образце K₂NbOF₅ · H₂O (состояние A) при максимальной влажности атмосферы доказывает принадлежность этого кристалла к триклинному классу симметрии $P\bar{1}$. При нагревании такого образца выше $T_2^{\uparrow} = 313$ К угол φ_c резко уменьшается до нуля, а угол $\varphi_b \approx 2.5^{\circ}$ сохраняется. Кристалл становится моноклинным.

Кристалл K₂NbOF₅ · H₂O в состоянии *В* при комнатной температуре принадлежит к моноклинному классу симметрии, так как наблюдается только $\varphi_b \approx 2.5^\circ$. При этом в пластинке $(001)_T$ оси оптической индикатрисы расположены по огранке $[110]_T$ и $[1\overline{10}]_T$, поэтому для образцов типа *В* нами выбрана базоцентрированная группа симметрии *C*2/*m* в отличие от предложенной в [5] *P*2₁/*c*. Исследования двулучепреломления кристаллов $\Delta n_c(T)$ и углов $\varphi_c(T), \varphi_b(T)$ (рис. 3, 4) показали, что при температурах выше T_2^{\uparrow} образцы в состояниях *А* и *В* имеют одинаковые оптические характеристики и симметрию.

В процессе охлаждения при $T_2^{\downarrow} = 308$ К кристаллы K₂NbOF₅ · H₂O в состоянии *A* испытывают обратимый фазовый переход первого рода, сопровождающийся двойникованием, появлением сдвиговой деформации x_6 и вращением оптической индикатрисы на угол $\varphi_c \approx \pm 43^\circ$. В результате этого перехода теряются элементы симметрии группы C2/m: ось второго порядка и зеркальная плоскость. Происходит сегнетоэластический фазовый переход ($P\bar{1} \leftrightarrow C2/m$).

Подобная ситуация наблюдалась в K₂WO₂F₄ · H₂O [8], где в отличие от K₂NbOF₅ · H₂O изменение симметрии в кристалле в состоянии *A* происходит при более низких температурах: $T_2 \approx 270$ К. Фазовый переход $P\bar{1} \leftrightarrow C2/m$ назван собственным сегнетоэластическим, так как аномалии оптических констант ниже T_2 описываются поведением появившейся компоненты деформации: $\delta n_c(T) \propto \varphi_c(T) \propto \eta(T) \propto x_6(T)$, где δn_c — аномальная часть двулучепреломления, η — параметр перехода, *x*₆ — компонента сдвиговой деформации. Несмотря на то что в K₂NbOF₅ · H₂O в состоянии A при T_2^{\downarrow} происходит идентичное изменение симметрии, мы полагаем, что в данном случае имеет место "несобственный" сегнетоэластический переход, когда отсутствует линейная связь между параметром перехода η и компонентой деформации x₆. Этот вывод следует из нескольких наблюдений. Во-первых, отсутствует взаимосвязь между температурными зависимостями деформации оптической индикатрисы $\delta n_c(T)$ и ее поворота $\varphi_c(T)$ в низкотемпературной области (рис. 3, кривые 1 и 2). Во-вторых, фазовый переход при Т₂ является переходом первого рода, сопровождающимся скачкообразным изменением оптических характеристик, движением фазового фронта по образцу и температурным гистерезисом $\delta T = 5$ K.

Образцы K₂NbOF₅ · H₂O в состоянии *B* не испытывают такого перехода и сохраняют моноклинную симметрию вплоть до температуры жидкого азота. Природа аномалии двулучепреломления $\Delta n_c(T)$ вблизи 150 К не установлена.

5. Заключение

Проведенные исследования показали, что кристалл $K_2NbOF_5 \cdot H_2O$ при комнатной температуре в зависимости от влажности атмосферы может существовать в трех состояниях, различающихся симметрией: $A - P\bar{1}$, B - C2/m, C - P4/nmm (безводный образец). Наиболее устойчивым состоянием является B, так как оно реализуется при нормальной влажности (RH = 20-90%). Исходя из поляризационно-оптических наблюдений симметрией $K_2NbOF_5 \cdot H_2O$ в состоянии B нами выбрана группа C2/m, а не $P2_1/c$, предложенная в [5].

Кристалл K₂NbOF₅ · H₂O в состоянии *A* испытывает последовательность обратимых и необратимых фазовых превращений в области температур 100-600 К. Изменение симметрии $PI \leftrightarrow C2/m$ происходит при фазовом переходе первого рода $T_2^{\downarrow} = 308$ К, $T_2^{\uparrow} = 313$ К. Переход является несобственным сегнетоэластическим, сопровождается появлением сдвиговой деформации x_6 . В состоянии *B* не обнаружено изменения симметрии. Необратимый переход между моноклинной и тетрагональной фазами кристаллов типа *A* и *B* происходит при $T_1 \approx 370$ К, сопровождается потерей кристаллической воды. Структурная вода легко восстанавливается из атмосферы в течение суток.

Различие кристаллов в состояниях A и B объясняем подобно [8] возможным наличием молекул воды в межслоевых пространствах образцов типа A, удерживаемых водородными связами. В пользу этого предположения свидетельствуют эксперименты по наблюдению за двойникованием при повторных проходах через T_2 (рис. 3, вставка). После пребывания при относительно высоких температурах 320-340 K область образца с сегнетоэластическими двойниками в состоянии A постепенно сужается из-за потери "межслоевой" воды на краях, а область образца в состоянии *B* разрастается.

Согласно [8], в кристалле K₂WO₂F₄ · H₂O состояние A — наиболее устойчивое, хотя масса "межслоевой" воды невелика и составляет не более 0.1% от общей массы вещества. Предполагается, что замерзание такой воды при $T_2 \approx 270$ К приводит к упорядочению молекул кристаллической воды в одном из двух положений и понижению симметрии при сегнетоэластическом переходе $P\bar{1} \leftrightarrow C2/m$. В [8] показано, что кристаллическая вода также удерживается в решетке водородными связями между молекулами воды и всеми лигандами. Эти связи достаточно сильны в K₂WO₂F₄ · H₂O, поэтому кристалличрат существует при RH = 0–100% и температурах ниже $T_1 \approx 380$ К.

В K₂NbOF₅· H₂O состояние *А* является неустойчивым. Оно существует только при максимальной (90–100%) относительной влажности атмосферы. Упорядочение молекул H₂O при фазовом переходе происходит при более высокой температуре $T_2^{\downarrow} = 308$ K, чем в вольфрамовом соединении. Более того, область существования самого кристаллогидрата ограничена степенью влажности RH = 20–100%. Дегидратация может произойти даже при комнатной температуре в достаточно сухой атмосфере. Отсюда можно сделать вывод, что водородные связи, удерживающие как кристаллическую, так и "межслоевую" воду в K₂NbOF₅· H₂O, гораздо слабее, чем в K₂WO₂F₄· H₂O.

Таким образом, изученный слоистый кристалл $K_2NbOF_5 \cdot H_2O$, как и $K_2WO_2F_4 \cdot H_2O$, весьма чувствителен к концентрации паров воды в воздухе. Молекулы воды, проникая в межслоевые пространства, изменяют свойства вещества, не меняя кристаллической структуры. Наличие такой "межслоевой" воды характерно для некоторых минералов слоистой структуры (монтмориллонит, слюда).

Список литературы

- [1] A. Agulyansky. The chemistry of tantalium and niobium fluoride compounds. Elsevier (2004). 396 p.
- [2] Г.З. Пинскер, В.Г. Кузнецов. Кристаллография 13, 74 (1968).
- [3] Z.H. Jie, A. Garcia, F. Guillen, J.-P. Chaminade, C. Fouassier. Eur. J. Solid State Inorg. Chem. 30, 773 (1993).
- [4] Г.З. Пинскер. Кристаллография 11, 741 (1966).
- [5] D. Grandjean, R. Wiess. Bull. Soc. Chim. 8, 3040 (1967).
- [6] D. Grandjean, R. Weiss. Bull. Soc. Chim. 8, 3049 (1967).
- [7] D. Grandjean, R. Weiss. Bull. Soc. Chim. 8, 3054 (1967).
- [8] С.В. Мельникова, А.Д. Васильев, А.Г. Кочарова. ФТТ **53**, 2312 (2011).