05

Магнитокалорические свойства манганитов $La_{0.7}Ca_{0.3}MnO_3$ с изотопическим замещением ¹⁶O \rightarrow ¹⁸O

© А.М. Алиев¹, А.Г. Гамзатов¹, И.К. Камилов¹, А.Р. Кауль², В.С. Калитка², Н.А. Бабушкина³

¹ Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия ³ РНЦ "Курчатовский институт", Москва, Россия E-mail: gamzatov_adler@mail.ru

(Поступила в Редакцию 19 ноября 2012 г.)

Приведены результаты исследования влияния изотопического замещения кислорода ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ на теплоемкость и магнитокалорические свойства манганита $La_{0.7}Ca_{0.3}MnO_3$. Прямые измерения магнитокалорического эффекта показали, что в $La_{0.7}Ca_{0.3}MnO_3$ он достигает значительной величины, но при этом температурная ширина эффекта довольно мала. Изотопическое замещение ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ сдвигает максимум эффекта в сторону низких температур, практически не меняя его значение. Прямым методом измерен магнитокалорический эффект в сэндвич-структуре $La_{0.7}Ca_{0.3}Mn{}^{16}\text{O}_3 + La_{0.7}Ca_{0.3}Mn{}^{18}\text{O}_3$. Показано, что изготовление сэндвича из материалов с близко расположенными температурами максимумов магнитокалорического эффекта позволяет увеличить эффективность магнитного охлаждения (RCP) по сравнению с исходными материалами.

Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов № 11-02-01124-а, 12-02-96506-р-юг-а, 12-02-31171-мол_а и при финансовой поддержке Министерства образования и науки Российской Федерации по ГК № 16.552.11.7092 и по ГК № 16.523.11.3008, а также при финансовой поддержке программы ОФН РАН "Сильно коррелированные электроны в твердых телах и структурах".

Магнитокалорический эффект (МКЭ) в области фазовых переходов второго рода обычно наблюдается в широкой области температур выше и ниже точки перехода, но при этом величина эффекта для большинства веществ, за исключением Gd, недостаточна для практического применения в магнитном охлаждении. Материалы, в которых происходят связанные магнитоструктурные фазовые переходы первого рода, считаются более перспективными в технологии магнитного охлаждения [1-3]. Из-за скачкообразного изменения параметров решетки в области таких переходов наблюдается резкое изменение намагниченности. Из соотношения Максвелла вытекает, что в области таких переходов величина МКЭ может достигать огромных значений. В дополнение к этому, вклад в общий магнитокалорический эффект может дать изменение энтропии, связанное с самим структурным переходом. Но при этом температурная ширина области, где величина МКЭ достигает существенных значений, довольно мала. Кроме того, эффективность этих материалов в качестве рабочего тела магнитных холодильников может уменьшиться также изза характерных для фазовых переходов первого рода температурных гистерезисов. К материалам, обладающими большими значениями МКЭ, относятся и перовскитные манганиты [4-8]. Одним из таких перспективных с прикладной точки зрения материалов является состав La_{0.7}Ca_{0.3}MnO₃. Для этого состава фазовый переход

наблюдаются вблизи комнатных температур, а значения МКЭ достигают существенных значений [9–12].

О типе фазового перехода в La_{0.7}Ca_{0.3}MnO₃ в литературе имеются противоречивые данные: часть авторов относят этот переход к переходам первого рода, некоторые — к переходам второго рода [13]. Известно, что косвенные методы оценки МКЭ (посредством измерения намагниченности или теплоемкости) в области фазовых переходов первого рода часто дают неправильные, чаще всего завышенные, значения МКЭ. Поэтому для однозначного определения магнитокалорических свойств этих материалов необходимы прямые измерения МКЭ.

В настоящей работе исследовано влияние изотопического замещения ${}^{16}\text{O} \to {}^{18}\text{O}$ на теплоемкость и магнитокалорический эффект поликристаллических образцов La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃. Метод замещения кислорода ¹⁶О на ¹⁸О подробно описан в работе Бабушкиной и др. [14]. Образцы для исследований представляли собой пластинки размерами $\sim 3 \times 3 \times 0.3 \,\mathrm{mm^3}$. Прямые измерения ΔT проводились как классическим методом, когда регистрируется изменение температуры образца при изменении внешнего магнитного поля, так и модуляционным методом [15]. В последнем случае к образцу прикладывается переменное магнитное поле, которое благодаря магнитокалорическому эффекту индуцирует периодическое изменение температуры образца. Это изменение температуры посредством дифференциальной термопары, один спай которой приклеен

Рис. 1. Температурная зависимость теплоемкости в магнитном поле H = 0 и H = 18 kOe для La_{0.7}Ca_{0.3}Mn¹⁶O₃ (*a*) и для La_{0.7}Ca_{0.3}Mn¹⁸O₃ (*b*).

к исследуемому образцу, регистрируется синхронным детектором. Частота переменного магнитного поля в эксперименте составляла 0.3 Hz. Переменное магнитное поле амплитудой до 4kOe генерировалось с помощью электромагнита и блока питания с внешним управлением. Управляющее переменное напряжение на блок питания подавался с выхода синхронного усилителя (Lock-in) SR 830. Переменное магнитное поле 18 kOe создавалось источником постоянного магнитного поля регулируемой напряженности производства фирмы АМТ&С LLC. Для сравнения с данными прямых измерений из данных по теплоемкости в поле и без поля было вычислено изотермическое изменение магнитной энтропии ΔS_m . Теплоемкость измерялась методом *ac*калориметрии. Теплоемкость и МКЭ измерялись на одних тех же образцах, при одном и том же монтаже.

На рис. 1, *a*, *b* приведены температурные зависимости теплоемкости $La_{0.7}Ca_{0.3}Mn^{16}O_3$ и $La_{0.7}Ca_{0.3}Mn^{18}O_3$ без поля и в магнитном поле 18 kOe, на которых хорошо проявляются аномалии, обусловленные переходом парамагнетик-ферромагнетик. Максимумы аномалий в нулевом поле наблюдаются при температурах $T_C = 257.3$ и 249.1 К для $La_{0.7}Ca_{0.3}Mn^{16}O_3$ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. Внешнее магнитное поле $H = 18 \, \text{kOe}$ существенно подавляет аномалии и сдвигает температуры их максимумов до 270.3 и 259.7 К соответственно. Величины аномалий теплоемкости в нулевом поле достигают существенных значений, а температурные ширины переходов довольно малы. Такое поведение теплоемкости характерно для фазовых переходов первого рода, что подтверждается и результатами большинства других исследований [10,16,17]. Энтропии переходов для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ равны 2.31 и 2.36 J/mol K соответственно, т.е. фактически равны друг другу в пределах ошибки эксперимента. Как видно, влияние изотопического замещения ${}^{16}\mathrm{O} \rightarrow {}^{18}\mathrm{O}$ на теплоемкость La_{0.7}Ca_{0.3}MnO₃ заключается только в уменьшении критической температуры T_C на ~ 8 К.

На рис. 2, *a*, *b* приведены результаты прямых измерений адиабатического изменения температуры ΔT . Максимальная величина эффекта при $\Delta H = 1$ kOe для обоих образцов примерно одинаковая и состав-

Рис. 2. Температурная зависимость адиабатического изменения температуры ΔT . a — при $\Delta H = 1$ и 3.5 kOe; b — при $\Delta H = 18$ kOe.

ляет $\Delta T \approx 0.19 \,\mathrm{K}$ при $T = 257.6 \,\mathrm{K}$ и 247.5 K для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно (рис. 2, *a*). При $\Delta H = 3.5$ kOe величина МКЭ существенно больше и составляет $\Delta T \approx 0.78 \,\mathrm{K}$ и $0.87 \,\mathrm{K}$ для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. Температуры максимумов эффекта при этом увеличиваются примерно на 1 К. Эти результаты показывают, что влияние изотопического замещения ${}^{16}\mathrm{O} \to {}^{18}\mathrm{O}$ на магнитокалорические свойства La_{0.7}Ca_{0.3}MnO₃, как и в случае теплоемкости, заключается только в смещении температуры аномалии, в данном случае — МКЭ, в сторону низких температур. Существенной разницы ни в величине, ни в характере поведения $\Delta T(T)$ не наблюдается. Необходимо отметить, что значение МКЭ для La_{0.7}Ca_{0.3}Mn¹⁸O₃ в слабых полях довольно значительное и при H = 3.5 kOe всего лишь в 1.5 раза меньше значения ΔT в гадолинии при таком же изменении магнитного поля.

Значения ΔT при изменении магнитного поля $\Delta H = 18$ kOe существенно больше (рис. 2, b), максимальные значения составляют $\Delta T = 2.41 \, \mathrm{K}$ и 2.60 K для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. Температуры максимумов эффекта при этом существенно сдвигаются в сторону высоких температур: *T*_{max} = 263.7 и 254.3 К для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. Значения МКЭ, полученные в данной работе, являются одними из самых больших для манганитов. В литературе есть довольно много результатов, близких или даже превышающих эти значения, но почти все они получены или косвенными методами, или экстраполяцией слабополевых данных [9]. Важное для использования в технологии магнитного охлаждения свойство — симметрия кривой МКЭ выше и ниже температуры максимума эффекта. Для исследованных образцов такая симметрия почти идеальная как в слабых, так и в средних магнитных полях. Но на фоне таких преимуществ этих материалов нужно отметить, что ширина полумаксимума эффекта очень маленькая и составляет около 15 К для обоих образцов. Соответственно, небольшим будет и величина эффективности магнитного охлаждения RCP.

На рис. 3 приведены результаты вычисления изменения магнитной энтропии из данных ПО теплоемкости с помощью формулы $\Delta S_m =$ $=\int_{T_1}^{T_2} (C_P(T, H_0 - C_P(T, H_1)/T)_{P,H}) dT$. Поведение ΔS_m аналогично поведению ΔT . Максимальные значения изменения магнитной энтропии равны $\Delta S_m = 5.91$ и 6.05 J/kg K при температурах $T_{\text{max}} = 261$ и 253.2 K для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. Для сравнения на этом же рисунке приведены кривые $\Delta S_m(T)$, вычисленные из данных по теплоемкости $C_p(H)$ и ΔT в поле 18 kOe с помощью формулы. Как видно, полученные разными методами значения ΔS_m довольно хорошо согласуются, за исключением сдвига температур максимумов эффекта. Максимумы ΔS_m наблюдаются в точке пересечения кривых теплоемкости в поле и без

Рис. 3. Температурные зависимости изменения магнитной энтропии ΔS при $\Delta H = 18$ kOe для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃.

поля. Из рис. 2 и 3 следует, что максимумы ΔT сдвинуты в сторону более высоких температур по сравнению с максимумами ΔS_m (по данным C_p в поле и без поля). Обычно максимум МКЭ слабо зависит от магнитного поля. В данном случае же мы видим, что в поле 18 kOe сдвиг температуры максимума эффекта относительно T_{C} (за которую приближенно можно взять температуру максимума теплоемкости в нулевом магнитном поле) составляет около 6К для обоих образцов. Этот сдвиг температур может быть следствием того, что при измерении МКЭ модуляционным методом используется переменное магнитное поле синусоидальной формы $H = H_{\text{max}} \sin(\omega t)$. Можно считать, что на образец действует некоторое эффективное поле, создаваемое переменным магнитным полем. В данном случае это поле равно $H_{\rm eff} = \frac{H_{\rm max}}{\sqrt{2}} = 13$ kOe. Это поле поддерживает магнитоупорядоченное состояние до более высоких температур и соответственно сдвигает температуры максимумов аномалий, в том числе и МКЭ. Так как в реальных магнитных холодильниках рабочее тело будет вращаться в магнитном поле, т.е. фактически подвергаться воздействию переменного магнитного поля, при конструировании холодильников необходимо будет учитывать такой сдвиг температуры максимума МКЭ.

Хотя значения ΔT и ΔS_m в средних магнитных полях 18 kOe довольно велики, с точки зрения практического применения в технологии магнитного охлаждения эти материалы нельзя считать перспективными, так как температурная ширина полумаксимума эффекта довольно мала (около 15 K), соответственно мало и значение RCP. В поле 18 kOe значения RCP равны 61 и 70 J/kg для La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ соответственно. По сравнению с классическими магнитокалорическими материалами эти значения значительно меньше. Следует также отметить, что на величину МКЭ для керамических образцов сильно влияют условия синтеза, чем и объяс-

Рис. 4. Температурная зависимость адиабатического изменения температуры ΔT для структуры La_{0.7}Ca_{0.3}Mn¹⁶O₃ + +La_{0.7}Ca_{0.3}Mn¹⁸O₃ в магнитном поле $\Delta H = 18$ kOe.

няется такой разброс в максимальной величине МКЭ у разных авторов [9–12,18,19]. Но можно повысить магнитокалорическую эффективность этих материалов, изготовив сэндвичи из $La_{0.7}Ca_{0.3}Mn^{16}O_3$ и $La_{0.7}Ca_{0.3}Mn^{18}O_3$. Магнитокалорические свойства этих материалов почти идентичны, за исключением температур максимумов эффекта, но эти температуры тоже довольно близки друг к другу и расположены чуть ниже комнатных.

Для прямого измерения адиабатического изменения температуры ΔT из образцов La_{0.7}Ca_{0.3}Mn¹⁶O₃ и La_{0.7}Ca_{0.3}Mn¹⁸O₃ был изготовлен сэндвич. Образцы одинаковых размеров были склеены друг с другом клеем БФ-2, а спай хромельконстантановой дифференциальной термопары помещался между образцами. В остальном схема эксперимента аналогична прямым измерениям МКЭ модуляционным методом. На рис. 4 приведена экспериментальная кривая ΔT для полученного сэндвича. Массы исследуемых образцов были одинаковыми. Видно, что максимальные значения ΔT для сэндвича меньше, чем для отдельных образцов La_{0.7}Ca_{0.3}Mn¹⁶O₃ или $La_{0,7}Ca_{0,3}Mn^{18}O_3$, но при этом ширина эффекта увеличивается. Наши оценки показывают, что эффективность магнитного охлаждения RCP, определяемая как произведение максимума МКЭ на ширину в полумаксимуме, для такой сэндвич-структуры на 20% больше, чем для отдельно взятых манганитов La_{0.7}Ca_{0.3}Mn¹⁶O₃ или $La_{0.7}Ca_{0.3}Mn^{18}O_3$.

Таким образом, использование сэндвичей из материалов с близкими магнитокалорическими свойствами повышает RCP примерно на 20%. Этот способ является одним из методов повышения эффективности магнитных холодильников на базе уже существующих материалов, наряду с повышением частоты процессов намагничивания-размагничивания рабочего тела.

В заключение нужно отметить, что прямые измерения МКЭ показали, что его величина в La_{0.7}Ca_{0.3}MnO₃

значительна, но при этом температурная ширина довольно мала. Изотопическое замещение ${}^{16}O \rightarrow {}^{18}O$ сдвигает температуру максимума эффекта в сторону низких температур, практически не меняя значение МКЭ. Изготовление сэндвича из материалов с близко расположенными температурами максимумов МКЭ позволяет увеличить RCP по сравнению с исходными материалами.

Список литературы

- V.K. Pecharsky, K.A. Gschneidner. Phys. Rev. Lett. 78, 4494 (1997).
- [2] V. Franco, J.S. Bliazquez, B. Ingale, A. Conde. Annu. Rev. Mater. Res. 42, 305 (2012).
- [3] K.G. Sandeman. Scripta Materialia 67, 566 (2012).
- [4] M.-H. Phan, S.-C. Yu. J. Magn. Magn. Mater. 308, 325 (2007).
 [5] A.M. Aliev, A.G. Gamzatov, A.B. Batdalov, A.S. Mankevich,
- I.E. Korsakov, Physica B **406**, 885 (2011).
- [6] A.M. Aliev, A.G. Gamzatov, A.B. Batdalov, V.S. Kalitka, A.R. Kaul. J. Alloys Comp. 509, 165 (2011).
- [7] И.К. Камилов, А.Г. Гамзатов, А.Б. Батдалов, А.С. Манкевич, Е.И. Корсаков. ФТТ 52, 735 (2010).
- [8] I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, A.A. Aliverdiev, Sh.B. Abdulvagidov, O.V. Melnikov, O.Y. Gorbenko, A.R. Kaul. J. Phys. D 40, 4413 (2007).
- [9] A.N. Ulyanov, J.S. Kim, G.M. Shin, Y.M. Kang, S.I. Yoo1. J. Phys. D 40, 123 (2007).
- [10] M.-H. Phan, S.-C. Yu, N.H. Hur, Y.-H. Jeong. J. Appl. Phys. 96, 1154 (2004).
- [11] Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du. J. Appl. Phys. 90, 5689 (2001).
- [12] W. Tang, W. Lu, X. Luo, B. Wanga, X. Zhu, W. Song, Z. Yang, Y. Sun. J. Magn. Magn. Mater. **322**, 2360 (2010).
- [13] J.A. Souza, Yi-Kuo Yu, J.J. Neumeier, H. Terashita, R.F. Jardim. Phys. Rev. Lett. 94, 207 209 (2005).
- [14] N.A. Babushkina, L.M. Belova, V.I. Ozhogin, O.Yu. Gorbenko, A.R. Kaul, A.A. Bosak, D.I. Khomskii, K.I. Kugel, J. Appl. Phys. 83, 11 (1998).
- [15] А.М. Алиев, А.Б. Батдалов, В.С. Калитка. Письма в ЖЭТФ 90, 736 (2009).
- [16] P. Lin, S.H. Chun, M.B. Slamon, Y. Tomioka, Y. Tokura. J. Appl. Phys. 87, 5825 (2000).
- [17] S. Hyun Park, Y.-H. Jeong, K.-B. Lee, S.J. Kwon. Phys. Rev. B 56, 67 (1997).
- [18] M. PekaŁa, M. Drozd, J.F. Fagnard, P. Vanderbemden, M. Ausloos. Appl. Phys. A 90, 237 (2008).
- [19] R. Szymczak, R. Kolano, A. Kolano-Burian, J. Pietosa, H. Szymczak. J. Magn. Magn. Mater. **322**, 1589 (2010).