03

Электронная структура галоидов меди Cul и CuCl: сравнительное исследование методами рентгеновской фотоэлектронной и абсорбционной спектроскопии

© А.В. Генералов, А.С. Виноградов

Научно-исследовательский институт физики им. В.А. Фока Санкт-Петербургского государственного университета, Санкт-Петербург, Россия

E-mail: asvinograd@gmail.com

(Поступила в Редакцию 22 ноября 2012 г.)

Энергетические распределения занятых и свободных электронных состояний для галоидов меди CuCl и CuI исследованы методами рентгеновской фотоэмиссионной и абсорбционной спектроскопии с высоким энергетическим разрешением с использованием оборудования Российско-Германского канала вывода и монохроматизации синхротронного излучения электронного накопителя БЭССИ II. В результате квазимолекулярного анализа полученных экспериментальных спектров выявлено принципиальное подобие энергетической структуры валентной зоны и зоны проводимости CuX (X = Cl, I), обусловленное одинаковым атомным строением исследованных соединений. Различия в энергетических положениях отдельных подзон в валентной зоне и зоне проводимости CuX и их интенсивностях в спектрах связываются с разной степенью гибридизации валентных Cu3d, 4s- и X(n + 1)s, np-состояний, а также с разными размерами структурных единиц — квазимолекул CuCl₄ и CuI₄ — исследованных кристаллов.

Работа выполнена в рамках двухсторонней программы "Российско-Германская лаборатория БЭССИ" при поддержке РФФИ (гранты № 12-02-00999 и 12-02-31415).

1. Введение

Галоиды меди CuX (X = Cl, Br, I), как и щелочные галоиды, принадлежат к классу бинарных соединений А1В7. Они представляют собой широкозонные полупроводники ($E_{\rm gap} \sim 3 \, {\rm eV}$), которые при обычных условиях кристаллизуются в структурном типе сфалерита: катионы меди Cu⁺ находятся в тетраэдрическом окружении анионов X^- , и наоборот. В этом состоит их структурное отличие от щелочных галоидов, для которых характерна октаэдрическая координация ионов (структуры типа NaCl). Этот факт, а также некоторые другие особенности непосредственно связаны с меньшей ионностью соединений CuX, что обусловлено заметным ковалентным вкладом в химическое связывание между атомами меди и галогена [1]. В чисто ионном приближении валентные зоны этих полупроводников определяются валентными электронными состояниями катионов меди Cu⁺ (3 d^{10}) и анионов X^- (ns^2np^6 , n = 3, 4, 5). Наличие вклада ковалентной составляющей в химическом Си-Х связывании обычно приписывают сильному ковалентному смешиванию (гибридизации) валентных электронных состояний *Xnp* и Cu3*d*.

Современный интерес к исследованию галоидов меди прежде всего обусловлен широкой областью их применений, включающей использование в производстве интегральных схем [2] и новых эффективных солнечных батарей [3]. С другой стороны, при взаимодействии с органическими лигандами галоиды меди CuX обнаруживают возможность образования сложных упорядоченных полимерных структур — так называемых супрамолекулярных цепей и координационных сетей [4–8]. Такие цепи часто могут рассматриваться как искаженные одномерные части исходных объемных трехмерных структур галоидов меди, в которых органические лиганды присоединяются атомом меди. Кроме того, недавно появились сообщения о получении и исследовании новых композитных материалов типа CuX@SWCNT — одностенных углеродных нанотрубок, внутрь которых инкапсулированы одномерные кристаллы галоидов CuX [9–13]. Исследование таких систем представляет собой фундаментальную проблему физики низкоразмерных систем. В связи с этим очевиден интерес к электронной структуре исходных галоидов меди.

Электронная структура галоидов меди ранее исследовалась различными спектроскопическими методами: оптического поглощения [1,14], двухфотонного поглощения [15], рентгеновской и ультрафиолетовой фотоэмиссии [16,17], в том числе с резонансным возбуждением [18] и с угловым разрешением [19,20], вторичноэлектронной эмиссии с угловым разрешением [21], рефлектометрии в ультрафиолетовом диапазоне [22], рентгеновского поглощения [11–12,23–26], изохромат тормозного излучения [27]. Однако большинство этих исследований выполнено более 30 лет назад и, как правило, в различных экспериментальных условиях и с энергетическим разрешением, которого недостаточно для сравнительного анализа современных экспериментальных данных, получаемых для новых материалов.

Основной целью настоящей работы было исследование электронной структуры иодида и хлорида меди современными рентгеноспектральными методами NEXAFS- и XPS-спектроскопии с высоким энергетическим разрешением с использованием синхротроннго излучения (СИ). Вследствие чувствительности к локальному химическому состоянию и симметрии окружения поглощающего атома рентгеновская абсорбционная спектроскопия (NEXAFS — Near-edge X-ray absorption fine structure spectroscopy) [28,29] в комбинации с рентгеновской фотоэлектронной спектроскопией остовных уровней и валентной зоны (XPS — X-ray photoelectron spectroscopy, PES — photoelectron spectroscopy) [30] является одним из современных экспериментальных методов получения уникальной информации о химическом связывании, локальной атомной и электронной структуре в различных полиатомных системах, включая такие новые материалы, как нанокомпозиты на основе углеродных нанотрубок и соединений переходных металлов [10-13].

2. Экспериментальная часть

Все измерения были выполнены на Российско-Германском канале вывода и монохроматизации СИ электронного накопителя БЭССИ II (Berliner Elektronenspeicherring für Synchrotronstrahlung, BESSY II, Berlin) [31]. Исследуемые образцы представляли собой тонкие (20-25 nm) слои СuI или CuCl, которые приготовлялись *in situ* в препарационной камере путем термического распыления соответствующих порошков из эффузионной ячейки Кнудсена на чистую поверхность пластинки из нержавеющей стали. При этом давление паров не превышало $8 \cdot 10^{-9}$ mbar в случае CuI и $5 \cdot 10^{-8}$ mbar в случае CuCl. Скорость напыления мониторировалась при помощи кварцевого генератора и составляла приблизительно 1 nm/min.

Чистота и стехиометрия полученных слоев контролировались с помощью фотоэмиссионных спектров (обзорных и остовных уровней). Рентгеновские фотоэлектронные спектры для уровней Cu2*p*, I3*d* (CuI), Cl2*p* (CuCl) и валентных зон исследуемых веществ были измерены в режиме регистрации нормальной интегральной фотоэмиссии [30,32] с помощью полусферического анализатора Phoibos 150 (Specs). Полное аппаратурное энергетическое разрешение (монохроматора и анализатора) в спектрах остовных уровней, измеренных с использованием возбуждающих квантов с энергией 1100 eV, составляло \sim 500 meV. Спектры валентной фотоэмиссии были измерены в широком диапазоне энергий возбуждающих квантов (от 60 до 400 eV), в котором полное аппаратурное разрешение изменялось от 150 до 300 meV.

Ближняя тонкая структура рентгеновских Cu2*p*-, I3*d*и Cl2*p*-спектров поглощения для исследуемых соединений измерялась путем регистрации полного электронного выхода внешнего рентгеновского фотоэффекта [33,34] в режиме измерения тока утечки с образца при изменении энергии фотонов, падающих на образец [28,29]. Спектры поглощения нормировались на падающий фотонный поток с помощью сигнала полного электронного выхода с золотой сетки, установленной на выходе канала вывода СИ. Энергетическое разрешение ΔE монохроматора в области $\text{Cl}2p_{3/2,1/2}$ -, $\text{I3}d_{5/2}$ - и $\text{Cu}2p_{3/2}$ -краев поглощения (~ 200, ~ 620 и ~ 930 eV) составляло соответственно ~ 30, ~ 170 и ~ 300 meV. Энергия фотонов в области Cu2p-, I3d-, Cl2p-краев поглощения калибровалась с помощью фотоэмиссионных спектров остовных $\text{Au}4f_{7/2,5/2}$ -уровней, которые регистрировались от золотой пластинки, закрепленной на держателе манипулятора вместе с исследуемым образцом. Точность данной процедуры калибровки оценивается величиной порядка 0.1-0.2 eV.

Все измерения производились в сверхвысоком вакууме при давлении остаточных газов в измерительной камере не выше $2 \cdot 10^{-10}$ mbar. В процессе измерений заметных эффектов зарядки образцов, облучаемых интенсивным пучком монохроматизированного СИ ультрамягкого рентгеновского диапазона, не наблюдалось.

3. Результаты и обсуждение

На рис. 1 Сu2*p*-, I3*d*- и Cl2*p*-фотоэлектронные спектры, измеренные для слоев CuI и CuCl при энергии квантов hv = 1100 eV, представлены в шкале энергии связи относительно уровня Ферми анализатора. Все спектры остовной фотоэмиссии состоят из двух линий — низкоэнергетического (Cu2*p*_{3/2}, I3*d*_{5/2}, Cl2*p*_{3/2}) и высокоэнергетического (Cu2*p*_{1/2}, I3*d*_{3/2}, Cl2*p*_{1/2}) компонентов, обусловленных спин-дублетным расщеплением соответствующего уровня, величина которого в спектрах на рис. 1 (19.9 eV — Cu2*p*_{1/2,3/2}, 11.5 eV — I3*d*_{3/2,5/2}, 1.66 eV — Cl2*p*_{1/2,3/2}) хорошо согласуется с литературными данными (20.1 eV — Cu2*p*_{1/2,3/2}, 11.9 eV — I3*d*_{3/2,5/2}, 1.6 eV — Cl2*p*_{1/2,3/2}) [35].

Спин-дублетные компоненты Cu2p-спектров остовной фотоэмиссии имеют простую форму, и для их аппроксимации достаточно одного симметричного фойгтовского профиля (комбинации лоренцевского и гауссова спектральных контуров). Это свидетельствует в пользу однофазности исследованных образцов CuI и CuCl. В свою очередь отсутствие сателлитов у Cu2p_{1/2}- и Си2*p*_{3/2}-фотоэлектронных линий в Си2*p*-спектрах галоидов меди означает доминирование одновалентных атомов меди в исследованных образцах, поскольку остовные 2*p*_{1/2,3/2}-линии атомов меди в степени окисления +2 сопровождаются высокоэнергетической сателлитной структурой [16]. На однофазность напыленных слоев CuI и CuCl указывают и обзорные фотоэлектронные спектры, измеренные для тонких слоев при энергии квантов 1100 eV (не показаны): в этих спектрах наблюдаются линии и полосы, связанные только с атомами меди, хлора и иода, и отсутствуют заметные сигналы от атомов кислорода и углерода, появление которых в образцах возможно в процессе напыления. Наконец, следует заметить, что измеренные относитель-

Рис. 1. Си2*p*-, Сl2*p*- и I3*d*-фотоэлектронные спектры галоидов (XPS) меди CuCl и CuI, измеренные при энергии возбуждающих квантов *hv* = 1100 eV. Энергия связи определена относительно уровня Ферми анализатора.

ные интенсивности линий остовной фотоэмиссии атомов меди и галогенов хорошо согласуются с отношением теоретических сечений фотоионизации соответствующих электронных оболочек этих атомов при энергии возбуждающих квантов 1100 eV [36], свидетельствуя тем самым о сохранении стехиометрии в напыленных тонких слоях CuCl и CuI.

В табл. 1 приведены параметры измеренных фотоэлектронных спин-дублетов: энергии связи Cu2*p*_{1/2.3/2}-, $I3d_{3/2,5/2}$ - и Cl2 $p_{1/2,3/2}$ -уровней относительно уровня Ферми анализатора и вершины валентной зоны VBM (valence band maximum), а также ширины на половине высоты (full-width at half maximum — FWHM) соответствующих фотоэлектронных линий. Положение вершины валентной зоны было получено путем линейной экстраполяции [37] низкоэнергетического крыла спектрального распределения интенсивности валентной фотоэмиссии (рис. 2). С учетом величины работы вы-

Таблица 1. Энергия связи Cu2*p*_{1/2,3/2}-, I3*d*_{3/2,5/2}- и Cl2*p*_{1/2,3/2}-уровней CuI и CuCl, а также ширины FWHM их фотоэлектронных линий

Соединение	Остовный уровень	Энергия связи относительно уровня Ферми анализатора, eV	Энергия связи уровня относительно вершины валентной зоны, eV	Ширина фотоэлектронной линии на половине высоты (FWHM), eV
CuI	$\begin{array}{c} {\rm Cu}2p_{3/2}\\ {\rm Cu}2p_{1/2}\\ {\rm I}3d_{5/2}\\ {\rm I}3d_{3/2} \end{array}$	932.30 952.07 619.43 630.92	931.70 951.47 618.83 630.32	1.21 1.57 1.13 1.17
CuCl	Cu $2p_{3/2}$ Cu $2p_{1/2}$ Cl $2p_{3/2}$ Cl $2p_{1/2}$	931.94 951.68 198.58 200.24	931.04 950.78 197.68 198.34	1.30 1.76 1.08 0.9

Рис. 2. Рентгеновские фотоэлектронные спектры валентной зоны (VB PES) галоидов меди CuI и CuCl, полученные с использованием энергий возбуждающих квантов в диапазоне 60–400 eV. Энергии связи определены относительно уровня Ферми анализатора. Вертикальной пунктирной линией показано положение вершины валентной зоны VBM, полученное линейной экстраполяцией спектрального хода интенсивности фотоэмиссии для *hv*=400 eV.

хода для CuI и CuCl (6.0 и 6.8 eV) [17] энергия связи Cu2 $p_{3/2}$ -уровня относительно уровня вакуума составляет 937.7 и 937.84 eV для CuI и CuCl соответственно. Большее значение энергии связи 2*p*-электронов атома меди в CuCl указывает на больший положительный заряд атома меди в хлориде и, следовательно, более ионный характер этого соединения по сравнению с CuI, что вполне согласуется с более высокой электроотрицательностью атомов хлора.

Величина FWHM для лоренцевского компонента $Cu2p_{3/2}$ -линии, полученная в результате в упомянутой выше фойгтовской аппроксимации формы линии, составляет порядка 0.8 eV для обоих галоидов меди при полной ширине FWHM линии 1.21 eV (CuI) и 1.30 eV (CuCl). Она хорошо согласуется с данными работы [38], в которой с помощью рентгеновской эмиссионной спектроскопии было получено время жизни $L_3(2p_{3/2})$ -вакансии в металлической меди, равное 0.7–0.8 eV. Из табл. 1 видно, что ширина $Cu2p_{1/2}$ -линии значительно (на ~ 0.36 eV в случае CuI и на ~ 0.46 eV в случае CuCl) превышает ширину $Cu2p_{3/2}$ -линии. Данный факт связывается с уменьшением времени жизни L_2 -вакансии по сравнению со временем жизни L_3 -вакансии атома

меди вследствие дополнительного костер-крониговского канала распада вакансии $2p_{1/2} \rightarrow 2p_{3/2}$ [39].

Рентгеновские фотоэлектронные спектры валентных зон галоидов меди CuI и CuCl, измеренные в широком диапазоне энергий возбуждающих квантов от 60 до $\sim 400 \, \text{eV}$, приведены на рис. 2 в шкале энергий связи относительно уровня Ферми анализатора. Для спектров обоих галоидов меди характерна сходная структура из четырех полос А-D валентной фотоэмиссии: наиболее интенсивная и узкая полоса В с низкоэнергетическим плечом А и малоинтенсивная полоса С, имеющая плечо D с высокоэнергетической стороны. Для удобства последующего сравнения спектры валентной фотоэмисии на рис. 2 нормированы на интенсивность полосы В. Все спектры были записаны в режиме нормальной интегральной фотоэмиссии и поэтому отражают энергетическое распределение полной плотности электронных состояний в валентной зоне, которое искажено различиями сечений фотоинизации электронных состояний атомов, формирующих валентную зону, и полным аппаратурным разрешением.

В чисто ионном описании электронной структуры СиХ атомы меди и галоида имеют валентные электронные конфигурации $Cu^+ 3d^{10} 4s^0$ и $X^- np^6$ (n = 3)и 5 для CuCl и CuI соответственно): единственный 4s-электрон атома меди переходит в *пр*-оболочку атома галоида. В этом случае заполненная Cu3d¹⁰-оболочка формирует состояния вблизи вершины валентной зоны, а *пр*⁶-оболочка атома галогена определяет состояния, располагающиеся при больших энергиях связи в нижней части валентной зоны. Для дальнейшего важно, что ns-состояния галогена имеют энергии связи, которые более чем на 10 eV превышают энергии связи пр-уровней. Поэтому они практически не участвуют в химическом связывании с атомами меди и, как следствие, формируют изолированную атомно-подобную ns-зону в области больших (~ 15 eV [1]) энергий связи (здесь не обсуждаются). В свою очередь Cu4s-состояния в чисто ионном приближении будут определять незанятые состояния вблизи дна зоны проводимости.

Влияние локальной тетраэдрической симметрии на электронную структуру кристаллов галоидов меди в ионном подходе можно учесть в рамках теории кристаллического поля. В этом случае пятикратно вырожденные 3d-состояния атома меди в тетраэдрическом окружении лигандов (анионов X^{-}) распадаются на два состояния, характеризуемые неприводимыми представлениями t2 (d_{xy}, d_{yz}, d_{xz}) (трехкратно вырожденное) и $e(d_{z^2}, d_{x^2-y^2})$ (двукратно вырожденнное) [40,41]. В зонном рассмотрении это соответствует расщеплению электронных состояний в наиболее симметричной Г-точке зоны Бриллюэна на Г₁₅- и Г₁₂-состояния соответственно. Поскольку 3dt₂-состояния имеют меньшую энергию связи, именно они формируют верхнюю подзону валентной зоны. Таким образом, в чисто ионном приближении валентная зона СиХ в Г-точке должна состоять из трех подзон, формируемых атомными валентными $Cu3dt_2$ -, Cu3de- и *Xnpt*₂-состояниями соответственно.

Выход за рамки ионного приближения, т.е. учет ковалентного химического связывания между атомами меди и галогенов при формировании особенностей электронного строения CuX, возможен в рамках квазимолекулярного подхода [42], согласно которому основные черты электронного спектра галоидов меди будут определяться электронным строением их структурной единицы — тетраэдрической квазимолекулы CuX₄. Электронные состояния этой структурной единицы описываются одноэлектронными молекулярными орбиталями (МО), которые формируются в результате ковалентного смешивания Cu4s- и Cu3d-орбиталей с комбинациями (групповыми орбиталями) пр-орбиталей атомов галогена, имеющими соответствующую симметрию. Наибольший вклад в связывание обеспечивают $\sigma(Cu-X)$ -связи, которые описываются МО, имеющими в случае тетраэдрической CuX4 квазимолекулы σa_1 - и σt_2 -симметрию [40]. Поскольку Cu4s-электрон практически полностью переходит на атомы галогена, обеспечивая таким образом ионную составляющую химического связывания атомов меди и галогена, его участие в обеспечении ковалентного связывания незначительно, и, как следствие, структура

валентной зоны CuX, как и при ионном подходе, будет определяться главным образом валентными Cu3d- и Хпр-состояниями. Вместе с тем ковалентное смешивание σt_2 -состояний атомов меди и галогена приведет к тому, что электронные состояния в верхней и нижней подзонах будут иметь гибридизированный Cu3dt₂ – Xnpt₂-характер. Другими словами, верхняя подзона (атомных Cu3dt2-состояний в ионном приближении) получит некоторую примесь Xnpt₂-состояний, а нижняя подзона (атомных *Xnpt*₂-состояний) — примесь 3dt2-состояний меди. Гибридизация электронных σt_2 состояний в валентной зоне будет сопровождаться, по всей видимости, определенным увеличением энергии связи для состояний в низшей валентной подзоне (связывающие МО) и уменьшением энергии связи для состояний в верхней подзоне (разрыхляющие состояния).

В свою очередь Cu3de-орбитали в принципе могут участвовать в формировании ковалентной π -связи с атомами галогенов за счет смешивания с π -комбинациями Xnp-орбиталей, имеющими e-симметрию [40,41]. Однако ввиду слабости этого взаимодействия формирующиеся МО будут характеризовать практически атомные (слабо гибридизированные) 3de-электронные состояния атомов меди в валентной подзоне, расположенной под верхней подзоной. Аналогично npe-орбитали атомов галогенов будут определять МО квазимолекулы CuX₄, которые участвуют в слабом π -связывании и потому остаются практически атомными Xnp-орбиталями.

Далее, среди π -комбинаций Xnp-орбиталей будут также присутствовать групповые орбитали t_1 -симметрии, которые в принципе не смешиваются с Cu3d-состояниями меди и потому совершенно не участвуют в ковалентном связывании атомов меди и галогена. Эти несвязывающие MO, как и упомянутые выше π -MOe-симметрии, будут формировать подзону электронных состояний, являющихся по существу чистыми np-состояниями атомов галогенов. Эта подзона будет располагаться между нижней гибридизированной t_2 -подзоной и подзоной Cu3deэлектронных состояний.

Таким образом, валентная зона в галоидах меди CuX состоит из следующих четырех подзон (по мере увеличения их энергии связи): верхняя валентная подзона с наименьшей энергией связи, образованная гибридизированными Cu3 dt_2 -Xnpt_2-состояниями с основным вкладом Cu3d-состояний, подзона атомноподобных Cu3de-состояний, подзона атомноподобных Xnpe-состояний и, наконец, самая глубокая валентная подзона из гибридизированных Cu3 dt_2 -Xnpt_2-состояний с основным вкладом Xnpe-состояний.

Это качественное рассмотрение хорошо согласуется с экспериментально наблюдаемым фактом подобия спектров валентной фотоэмиссии CuCl и CuI, которые состоят из четырех полос A-D (рис. 2). Учитывая малую ширину (по сравнению с другими подзонами) и значительную интенсивность спектра валентной фотоэмиссии в области полосы B, естественно связать ее с валентными Cu3de-состояниями, слабо смешанными

Рис. 3. *а*) Сравнение спектров валентной фотоэмиссии CuI и CuCl, измеренных при энергии возбуждающих квантов hv = 400 eV. Энергия связи определена относительно уровня Ферми анализатора. *b*) МО-схема электронной структуры галоидов меди CuX в квазимолекулярном CuX₄ приближении.

с валентными Хпр-состояниями лигандов. Данное предположение хорошо согласуется с отсутствием у этих состояний дисперсии, наблюдаемым в фотоэмиссионных экспериментах с угловым разрешением [19,20], и, следовательно, с атомноподобным характером электронных состояний в этой валентной подзоне. В этом случае полосу А в спектре валентной фотоэмиссии логично приписать верхней валентной подзоне с гибридизированными Cu3 dt_2 -X σnpt_2 -состояниями с основным вкладом Cu3d-состояний, полосу D — нижней подзоне с гибридизированными Cu3dt2-Xonpt2-состояниями с основным вкладом Хпр-состояний и, наконец, полосу С — подзоне с Xnnp-состояниями, слабо смешанными (e- и t2-симметрии) или совсем не смешанными (t₁-симметрии) с валентными Cu3d-состояниями атома меди. Схематическое представление электронной структуры галоидов меди в рамках квазимолекулярного СиХ₄ подхода и соответствующая интерпретация деталей валентной зоны в пренебрежении Cu3d*π*-Xnp*π*взаимодействием показаны на рис. 3, b.

Как было показано выше, валентная зона CuCl (CuI) в значительной степени определяется валентными 3d-состояниями атомов меди и Cl3p (I5p)-состояниями атомов галогена. Из рис. 2 хорошо видно, что при изменении энергии возбуждающих квантов от 60 до 400 eV относительные интенсивности полос A-D в спектрах валентной фотоэмиссии мало изменяются. Согласно теоретическим расчетам [36], сечения фотоионизации для Cu3d-, I5p- и Cl3p-оболочек в области энергий квантов ~ 60–400 eV уменьшаются более чем на порядок. Однако это уменьшение сечений практически не меняет

их соотношения в случае CuCl и приводит лишь к небольшому уменьшению их отношения в случае CuI, что и объясняет наблюдаемый экспериментальный факт. Поскольку в этой области энергий квантов сечение фотоионизации Cu3*d*-оболочки превышает сечения I5*p*и Cl3*p*-оболочек более чем в 10 раз, спектры на рис. 2 фактически отражают энергетическое распределение парциальной плотности Cu3*d*-состояний в подзонах *A*, *B* и *D* валентной зоны рассматриваемых галоидов меди.

На рис. 3, а сравниваются спектры CuI и CuCl, полученные при одной энергии возбуждающих квантов 400 eV и нормированные по интенсивности полосы В. Энергии связи полос A-D валентной зоны CuI и CuCl относительно энергетического положения ее вершины (valence-band maximum, VBM на рис. 2) приведены в табл. 2 вместе с результатами предыдущих измерений [17,19,20]. При сравнении видно, что энергетические положения валентных полос *А*–*D* в цитируемых работах находятся в хорошем согласии с нашими данными, полученными при разных энергиях возбуждающих квантов с существенно лучшим энергетическим разрешением и более высокой статистикой счета. Заметим, что полученные ранее спектры валентной фотоэмиссии [16,17] по спектральной форме и относительным интенсивностям полос А-D также неплохо согласуются со спектрами на рис. 2 и 3, а.

При сравнении фотоэмиссионных спектров галоидов меди (рис. 3, a) видно, что спектр CuI в сравнении со спектром CuCl характеризуется меньшей интенсивностью полосы A относительно полосы B (атомноподобных

Соединение	Лит. ссылка	Энергия связи максимума полосы относительно вершины валентной зоны, eV				
		Α	В	С	D	
CuI	Наст. раб. [17] [19]	~ 1.35 1.06, 1.03	2.35 2.46, 2.50 2.4	3.63 4.03, 3.85	5.15 5.30, 5.4	
CuCl	Наст. раб. [17] [20]	~ 1.1 0.83, 0.82	1.8 1.93 1.9	4.7 4.90, 4.87	~ 5.9 6.03, 6.2	

Таблица 2. Энергии связи полос *A*-*D* валентной зоны относительно вершин валентных зон CuI и CuCl, полученные в настоящей работе и в [17,19,20]

3d-состояний меди) и меньшей интенсивностью полосы D относительно полосы C (атомноподобных Хпр-состояний галогена). С учетом приведенной выше интерпретации валентных зон CuX данный факт свидетельствует об уменьшении в CuI по сравнению с CuCl плотности Cu3d-состояний в полосах А и D, которое обусловлено более сильной гибридизацией этих состояний в иодиде. В пользу этого утверждения свидетельствуют также следующие рассуждения. В рамках ионного подхода учет кристаллического поля лигандов при постоянных отрицательных зарядах на атомах лигандов приводит к величине расщепления $\Delta(t_2 - e)$ для 3*d*-состояний катиона меди, пропорциональной $\langle r_{{
m Cu}3d}^4 \rangle_{{
m Cu}X} R_{{
m Cu}-X}^{-5}$, где $\langle r_{{
m Cu}3d}^4 \rangle_{{
m Cu}X}$ отражает среднее значение оператора r^4 на Cu3d-орбиталях, которое связано со средним размером области локализации Cu3d-состояний, и R_{Cu-X} представляет межатомное расстояние от катиона до атомов лигандов — анионов галогенов [40,42]. В нашем случае эта величина должна аппроксимировать энергетическое расстояние между полосами А и В валентной зоны. Предполагая одинаковую область локализации Cu3d-состояний в обоих галоидах и одинаковый отрицательный заряд на анионах хлора и иода, получаем при использовании межатомных расстояний $R_{\text{Cu-I}} = 2.625 \text{ Å}$ и $R_{\text{Cu-Cl}} = 2.315 \text{ Å}$ [2,43] для отношения расщеплений $\Delta(t_2 - e)_{\rm CuCl}/\Delta(t_2 - e)_{\rm CuI}$ величину 1.875. Принимая во внимание большую электроотрицательность атомов хлора и, следовательно, больший отрицательный заряд на анионах хлора, можно сделать вывод, что эта величина в случае хлорида будет еще больше. Полученная оценка находится в противоречии с экспериментально наблюдаемой величиной $\Delta (t_2 - e)_{
m CuCl} / \Delta (t_2 - e)_{
m CuI} \approx 0.7 \, {
m eV} / 1 \, {
m eV} = 0.7.$ Для его устранения необходимо допустить, что пространственная область локализации 3*d*-состояний меди в иодиде примерно в $(1.875/0.7)^{0.25} \approx 1.28$ раза больше по сравнению с соответствующей областью в хлориде. Этот результат указывает на важность учета ковалентного Cu3d-Xnp-связывания при рассмотрении электронной структуры галоидов меди и находится в прекрасном согласии с приведенным выше выводом о меньшей плотности 3*d*-состояний на атоме меди в иодиде.

Отметим, что в рамках изложенной выше интерпретации экспериментально наблюдаемый факт меньшего энергетического расстояния между полосами *B* и *C* (главным образом, атомноподобных Cu3*d*- и *Xnp*-состояний) в спектре иодида по сравнению со спектром хлорида может быть связан с меньшим энергетическим разделением $\Delta E(\text{Cu3}d - \text{I5}p) \sim 1.9 \text{ eV}$ по сравнению с $\Delta E(\text{Cu3}d - \text{Cl3}p) \sim 3.5 \text{ eV}$ для свободных атомов меди, йода и хлора [44].

На рис. 4 представлены $CuL_{2,3}(2p_{1/2,3/2})$ -спектры поглощения CuI (1) и CuCl (2). Тонкая структура полученных спектров обусловлена дипольно-разрешенными переходами $2p_{3/2,1/2}$ -электронов меди в свободные элект-

Рис. 4. Рентгеновские Cu2*p*-спектры поглощения для CuI (1) и CuCl (2). Детали тонкой структуры спектра, соответствующие электронным переходам с Cu2 $p_{3/2}$ - и Cu2 $p_{1/2}$ -остовных уровней в одни и те же свободные электронные состояния, обозначаются символами без штриха и со штрихом соответственно. Положение дна зоны проводимости CBM для обоих галоидов показано штриховыми линиями.

Таблица З	. Полоз	жение Д	ΔE дета	алей	a-h	CuL_3 -	спектро)B
поглощения	CuIиC	uCl отно	сителы	но дна	зоны	прово	одимост	и
(в скобках	указано	абсолют	гное по	эложен	ние э	гих д	еталей	В
спектре)								

Деталь	Положение ΔE деталей спектра относительно дна зоны проводимости (абсолютное положение в спектре), eV		
	CuI	CuCl	
а	~ 0.1	-0.2	
b	(934.90) 1.50 (936.30)	(934.30) 1.87 (936.37)	
С	3.55	3.37	
d	4.65	5.67 (940 17)	
е	6.85 (041.65)	9.37	
f	9.55 (944.25)	(945.87) 11.87 (046.27)	
g	(944.33) 11.05	(946.57) 15.17 (040.67)	
h	(943.85) 14.45 (949.25)	(949.67)	

ронные состояния галоидов CuX, которые локализованы в области поглощающего атома меди и включают вклады Cu4s- и Cu3d-состояний. Кристаллическое поле в галоидах меди характеризуется группой симметрии тетраэдра T_d, поэтому к состояниям s- и d-симметрии атома меди могут примешиваться Си4*р*-состояния [40]. Рассматриваемые спектры состоят из низкоэнергетического $L_3(2p_{3/2})$ - и высокоэнергетического $L_2(2p_{1/2})$ -компонентов, наличие которых обусловлено спин-орбитальным расщеплением начального Cu2*p*-состояния ($\Delta E(2p_{1/2} - 2p_{3/2}) = 19.9 \,\mathrm{eV}$ [35]). Детали тонкой структуры спектра, соответствующие электронным переходам с Cu2p_{3/2}- и Cu2p_{1/2}-остовных уровней в одни и те же свободные электронные состояния зоны проводимости галоидов меди, обозначаются символами без штриха и со штрихом соответственно. В дальнейшем ограничимся рассмотрением только низкоэнергетических L3-компонентов, имеющих более четкую и интенсивную структуру. Тонкая структура в L2-спектре разрешена существенно хуже вследствие дополнительного Костер-Крониговского Оже-2*p*_{1/2}2*p*_{3/2}3*d*процесса распада для Си2*p*_{1/2}-вакансии [29].

Си L_3 -спектры поглощения CuI и CuCl демонстрируют богатую тонкую структуру с деталями a-h (a-g в случае CuCl). Обозначение деталей тонкой структуры выполнено с учетом результатов последующего сравнительного анализа спектров поглощения CuI и CuCl. Энергетические положения деталей тонкой структуры в спектрах поглощения приведены в табл. 3. Используя полученные ранее энергии связи Cu2 $p_{3/2}$ -уровней относительно вершины валентной зоны (табл. 1) и ширины запрещенных зон для CuCl (3.46 eV [24]) и CuI ($\sim 3.1 \text{ eV}$ [15]), можно определить положение дна зоны проводимости для обоих галоидов (оно показано на рис. 4 штриховыми линиями и помечено символом CBM (conduction band minimum)). Это позволяет указать энергетические положения деталей тонкой структуры также относительно дна зоны проводимости (табл. 3). Отметим, что детали тонкой структуры в спектре хлорида более контрастны и лучше разрешены вследствие большего энергетического расстояния между ними. Это особенно четко проявляется при сравнении низкоэнергетической полосы (пика и плеча) *а* в спектрах CuCl и CuI соответственно.

В квазимолекулярном CuX₄ подходе самые нижние свободные состояния галоидов меди описываются незанятой молекулярной орбиталью MO *а*₁-симметрии, основной вклад в которую вносят Cu4sa1- и Xnpa1-состояния (рис. 3, b). Данное свободное состояние в чисто ионном приближении описывается атомными Cu4sсостояними, поэтому даже при учете химического связывания атомов меди и галогена оно остается сильно локализованным на атоме меди. В зонном рассмотрении эти гибридизованные состояния соответствуют свободным электронным состояниям в точке Г₁ вблизи дна зоны проводимости. Выше по энергии должны располагаться свободные состояния, которые будут описываться МО *t*₂-симметрии, формируемой Cu4*p*,3*dt*₂-*Xnpt*₂ гибридизированными состояниями. Это состояние, как и предыдущее, будет в основном определяться состояниями атома меди. Однако в отличие от а₁-состояния МО t2-симметрии будет значительно более делокализованной, поскольку 4*p*-состояния в атоме меди являются чисто континуумными. При еще больших электронных энергиях в зоне проводимости можно ожидать появления структур, которые связаны с континуумными электронными состояними атомов меди и галогена, модифицированными дифракцией электронных волн в кристаллической структуре галоидов CuX.

Учитывая отмеченное выше, логично ожидать, что Cu2p_{3/2}-спектры поглощения CuCl и CuI, по крайней мере в своей начальной (низкоэнергетической) части, будут демонстрировать абсорбционные полосы, имеющие одинаковое происхождение. При сравнении спектров хлорида и иодида меди необходимо учитывать два следующих соображения. Прежде всего, это различные размеры структурных единиц (квазимолекул) CuI4 и CuCl₄: $R_{Cu-I} = 2.625$ Å и $R_{Cu-Cl} = 2.315$ Å [2,43], что при учете интерференционной природы структуры зоны проводимости объясняет наблюдаемую в эксперименте энергетическую "сжатость" полос а-е тонкой структуры спектра поглощения CuI по сравнению со спектром CuCl. Далее, атом хлора имеет существенно большую электроотрицательность по сравнению с атомом иода, что обусловливает больший перенос заряда с атома меди на атом хлора в CuCl в процессе химического связывания атомов меди и галогена и, как следствие, различный атомно-орбитальный состав занятых и свободных МО. Вполне вероятно, что именно в этом причина различия относительных интенсивностей абсорбционных полос a и b в спектрах CuI и CuCl. Таким образом, в рамках квазимолекулярного рассмотрения тонкой структуры $2p_{3/2}$ -спектров поглощения меди в галоидах естественно считать, что узкая низкоэнергетическая полоса (плечо) a связана с переходами Cu $2p_{3/2}$ -электронов на локализованную MO a_1 -симметрии, широкая полоса b-c-d отражает электронные переходы в более диффузную t_2 -MO и полосы e-h обусловлены континуумными состояниями атомов меди.

Сравним данные квазимолекулярной интерпретации с результатами анализа тонкой структуры CuL₃(2p_{3/2})спектра поглощения CuCl [24], выполненного ранее с использованием данных расчетов зонной структуры галоидов меди [27]. В результате полосы b и c были связаны с первыми пиками в спектрах парциальных плотностей незаполненных s- и d-состояний атомов меди. Далее, отчетливая узкая полоса d в спектре CuCl была приписана пику, доминирующему в спектре парциальной плотности свободных *d*-состояний атома меди и расположенному при энергии $\sim 4 \, \text{eV}$ выше дна зоны проводимости [27]. Рассматриваемые s- и d-состояния атома меди преобразуются в тетраэдрическом кристаллическом поле квазимолекулы CuCl₄ по неприводимым представлениям a_1 и $e + t_2$ группы тетраэдра T_d [40]. На основании этого можно говорить о качественном согласии результатов зонного и квазимолекулярного рассмотрения начальной области тонкой структуры CuL₃(2p_{3/2})-спектра поглощения CuCl. Вместе с тем в рамках квазимолекулярного подхода ожидается, что в состояния t2-симметрии могут вносить вклад также Cu4p-состояния (рис. 3, b). Свободные электронные состояния с Cu4p-вкладами наиболее четко проявляются в K(1s)-спектре поглощения благодаря дипольно-разрешенным электронным переходам Cu1s \rightarrow Cu4p. Исследование Cu1s-спектров поглощения галоидов меди [13] подтверждает наличие значительных вкладов Cu4p-состояний в свободные электронные состояния b-c-d в нижней части зоны проводимости СиХ. Таким образом, квазимолекулярное рассмотрение структуры Cu2p_{3/2}-спектра поглощения CuCl, которое указывает на участие Cu4p-состояний в формировании свободных электронных состояний в нижней части зоны проводимости, оказывается более информативным, нежели зонное.

Кроме того, принципиальное различие сравниваемых подходов состоит в различной интерпретации узкой абсорбционной полосы a при энергии квантов 934.3 eV. В работе [24] эта полоса ($\hbar\omega$ =934.1 eV) была приписана экситонному возбуждению, формируемому в результате кулоновского взаимодействия остовной дырки и фотоэлектрона. В квазимолекулярном рассмотрении она связывается с переходами Cu2p_{3/2}-электронов на локализованную МО a_1 -симметрии, которая описывает

А.В. Генералов, А.С. Виноградов

Рис. 5. Спектры валентной фотоэмиссии (hv = 400 eV) и рентгеновские спектры поглощения (XAS) CuCl (*a*) и CuI (*b*). Все спектры приведены к одной энергетической шкале, за нуль отсчета которой принято положение вершины соответствующей валентной зоны VBM. Вертикальными штриховыми линиями показаны положения дна зоны проводимости CBM.

свободные электронные состояния у дна зоны проводимости.

Дополнительная информация о свойствах занятых и свободных электронных состояний CuCl и CuI может быть получена при одновременном рассмотрении всех спектров, измеренных для каждого галоида. Спектры валентной фотоэмиссии, а также Cu2 $p_{3/2}$ -, Cl2 $p_{1/2,3/2}$ -и Cu2 $p_{3/2}$ -, I3 $d_{5/2}$ -спектры поглощения CuCl и CuI, совмещенные на одной энергетической шкале, за нуль которой принято положение вершины валентной зоны, показаны на рис. 5. Совмещение спектров было проведено с использованием энергий связи Cu2 $p_{3/2}$ -, Cl2 $p_{3/2}$ - и I3 $d_{5/2}$ -остовных уровней относительно вершины валентной зоны, пой зоны соответствующего галоида меди (табл. 1).

Начнем обсуждение со спектров хлорида. Вследствие спин-орбитального расщепления начального Cl2*p*-уровня (1.6 eV [35]) спектр поглощения хлора CuCl состоит из двух компонентов, которые соответствуют переходам $2p_{3/2}$ - и $2p_{1/2}$ -электронов в одни и те же свободные состояния. На рис. 5, *а* спин-дублетные полосы поглощения в Cl2 $p_{3/2}$ -спектре обозначены буквами a-d и их положения показаны левыми стрелками в парах, а положение аналогичных деталей $2p_{1/2}$ -спектра — правыми стрелками. Из сравнения Cu2 $p_{3/2}$ - и Cl2 $p_{3/2}$ -спектров поглощения, совмещенных в единой энергетической шкале, видно, что положения основных полос a-d в

обоих спектрах совпадают с очень хорошей точностью. В рамках квазимолекулярного подхода к интерпретации рентгеновских спектров поглощения атомов в твердых телах [42] данный факт указывает на гибридизированный характер соответствующих свободных электронных состояний, которые могут быть описаны с помощью МО квазимолекулы CuX₄ и состоят главным образом из атомных Cl3p, 4s, 3d- и Cu4s, 3d, 4p-орбиталей. Отметим, что общий ход спектров поглощения хлора и меди в области полос a-c похож, тогда как после полосы dинтенсивность поглощения в спектре хлора в отличие от спектра меди быстро увеличивается. Учитывая, что 3d-состояния полностью свободны в атоме хлора и находятся в континууме, данное увеличение интенсивности в области полос e-f естественно связать с переходами Сl2*p*-электронов в континуумные *єd*-состояния атома хлора.

Выше полоса *а* в Cu2p_{3/2}-спектре была связана с электронными переходами в квазимолекулярные состояния $(a_1$ -MO) у дна зоны проводимости CuCl, которые имеют в основном Cu4s-характер. Существование аналога этой полосы в 2*p*_{3/2}-спектре хлора указывает на наличие в *а*₁-МО вклада 4*sa*₁-состояний атомов хлора, которые могут смешиваться с Cu4sa₁- и Cl3pa₁-состояниями вблизи дна зоны проводимости CuCl. В свою очередь появление в Cl2 $p_{3/2}$ -спектре CuCl полос b, c и d, которые в 2р_{3/2}-спектре меди были связаны с электронными переходами на t2-MO с вкладами от атомных 3d- и 4p-состояний атомов меди, означает присутствие в этих МО заметных вкладов от континуумных 3d-состояний атомов хлора и соответственно сложный Cu3d, 4*pt*₂-Cl3*p*, 3*dt*₂-гибридизированный характер этих свободных электронных состояний.

Сравним теперь спектры поглощения CuI, представленные на рис. 5, *b*. По аналогии со спектрами поглощения хлорида меди низкоэнергетическую полосу *a*, проявляющуюся в Cu $2p_{3/2}$ -спектре в виде плеча, мы связываем с переходами $2p_{3/2}$ -электронов меди в a_1 -MO, которая формируется в случае иодида меди атомными Cu4s a_1 - и I5p, 6 sa_1 -состояниями.

Из сравнения Cu2p_{3/2}- и I3d_{5/2}-спектров поглощения CuI, совмещенных на единой энергетической шкале, видны отсутствие аналога полосы а в спектре иода и неплохая корреляция в положении деталей тонкой структуры *b*-*d* в обоих спектрах. В силу дипольных правил отбора для электронных переходов $(l \rightarrow l \pm 1)$ полосы b-f в $3d_{5/2}$ -спектре иода отражают переходы $3d_{5/2}$ электронов в свободные состояния зоны проводимости, которые имеют вклады от $n(\geq 5)p$ -состояний атомов иода, гибридизированных с валентными состояниями атомов меди. В свою очередь переходы в f-состояния формируют в I3d_{5/2}-спектре мощный континуумный резонанс в области энергий $E - E_{\text{VBM}} > 15 \text{ eV}$, не связанный с состояниями зоны проводимости кристалла CuI [12]. Тонкая структура 2p_{3/2}-спектра поглощения меди обусловлена переходами Cu2p_{3/2}-электронов в состояния зоны проводимости иодида меди, имеющие вклады Cu4s- и Cu3d-состояний. Как отмечалось ранее, благодаря локальной тетраэдрической симметрии в эти состояния могут примешиваться также Cu4p-состояния. Таким образом, хорошая корреляция положений абсорбционных полос b-d в сравниваемых спектрах указывает в рамках квазимолекулярного подхода на гибридизированный Cu3d, $4pt_2-I5p$, $6pt_2$ -характер состояний, ответственных за эти полосы. Отсутствие явного аналога полосы a в $3d_{5/2}$ -спектре иода может быть объяснено в этом случае тем, что электронные состояния a_1 -симметрии вблизи дна зоны проводимости имеют в основном гибридизированный Cu4s-I6s-характер и практически не содержат примеси p-состояний йода.

4. Заключение

Методами рентгеновской фотоэмиссионной и абсорбционной спектроскопии исследованы энергетические распределения и свойства занятых и свободных электронных состояний для галоидов меди CuCl и CuI. Все измерения были выполнены с высоким энергетическим разрешением с использованием монохроматизированного синхротронного излучения электронного накопителя БЭССИ II. В качестве образцов для исследования были использованы тонкие ($\sim 20-25$ nm) слои галоидов меди CuCl и CuI, приготовленные *in situ* в препарационной камере путем термического распыления порошков галоидов на чистую поверхность пластинки из нержавеющей стали.

Анализ Cu2*p*-, Cl2*p*- и I3*d*-спектров остовной фотоэмиссии демонстрирует однофазность и чистоту исследованных образцов CuI и CuCl. Для остовных Cu2*p*-, Cl2*p*- и I3*d*-уровней определены энергии связи относительно уровня Ферми анализатора и вершины валентной зоны, а также ширины на половине высоты FWHM соответствующих фотоэлектронных линий.

Полученные спектры валентной фотоэмиссии и поглощения CuCl и CuI проанализированы в рамках квазимолекулярного подхода с использованием качественной MO-схемы квазимолекулы CuX₄. В результате установлено, что валентные зоны галоидов меди имеют сходное строение и состоят из четырех подзон: верхняя и нижняя подзоны образованы электронными состояниями t_2 -симметрии с Cu3d-Xnp-гибридизированным характером, тогда как две другие являются по сути подзонами атомноподобных Cu3d- и Xnp-состояний. Обнаружено, что гибридизация валентных состояний атомов меди и галогена в CuI более сильная, чем в CuCl.

Результаты сравнительного анализа рентгеновских спектров поглощения меди и хлора для CuCl указывают на то, что свободные электронные состояния вблизи дна зоны проводимости в спектрах хлорида имеют преимущественно гибридизированный Cu4sa₁-Cl4sa₁-характер с примесью Cl3pa₁-состояний. В свою очередь полосы *b*-*d* в спектрах поглощения

хлорида связываются с дипольно-разрешенными переходами Cu2p- и Cl2p-электронов в гибридизованные Cu3d, $4pt_2$ -Cl3p, $3dt_2$ -состояния CuCl4-квазимолекулы. Аналогичный анализ Cu2 $p_{3/2}$ - и I3 $d_{5/2}$ -спектров поглощения иодида меди также свидетельствует о гибридизированном Cu4s-I6s-характере свободных электронных состояний у дна зоны проводимости CuI и указывает на важную роль ковалентного смешивания (гибридизации) Cu4p, $3dt_2$ - и I5p, $6pt_2$ -состояний b-d зоны проводимости.

Авторы выражают благодарность М.М. Бржезинской (БЭССИ) за помощь при проведении измерений.

Список литературы

- [1] A. Goldmann. Phys. Status Solidi B 81, 9 (1977).
- [2] N.T.M. Hai, S. Huemann, R. Hunger, W. Jaegermann, K. Wandelt, P. Broekmann. J. Phys. Chem. C 111, 14768 (2007).
- [3] A.R. Zainun, M.H. Mamat, U.M. Noor, M. Rusop. IOP Conf. Ser.: Mater. Sci. Eng. 17, 012 009 (2011).
- [4] I.D. Brown, J.D. Dunitz. Acta Cryst. 13, 28 (1960).
- [5] A. Camus, G. Nardin, L. Randaccio. Inorg. Chim. Acta 12, 23 (1975).
- [6] A.J. Blake, N.R. Brooks, N.R. Champness, L.R. Hanton, P. Hubberstey, M. Schröder. Pure Appl. Chem. 70, 2351 (1998).
- [7] A.J. Blake, N.R. Brooks, N.R. Champness, P.A. Cooke, M. Crew, A.M. Deveson, L.R. Hanton, P. Hubberstey, D. Fenske, M. Schröder. Cryst. Eng. 2, 181 (1999).
- [8] Q. Yu, L.-G. Zhu, H.-D. Bian, J.-H. Deng, X.-G. Bao, H. Liang. Inorg. Chem. Commun. 10, 437 (2007).
- [9] J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green. Chem. Commun. 13, 1319 (2002).
- [10] M.V. Chernysheva, A.A. Eliseev, A.V. Lukashin, Yu.D. Tretyakov, S.V. Savilov, N.A. Kiselev, O.M. Zhigalina, A.S. Kumskov, A.V. Krestinin, J.L. Hutchison. Physica E 37, 62 (2007).
- [11] A.V. Generalov, M.M. Brzhezinskaya, R. Püttner, A.S. Vinogradov, M.V. Chernysheva, A.A. Eliseev, N.A. Kiselev, A.V. Lukashin, Yu.D. Tretyakov. Fullerenes, nanotubes, and carbon nanostructures 18, 574 (2010).
- [12] А.В. Генералов, М.М. Бржезинская, А.С. Виноградов, R. Püttner, М.В. Чернышева, А.В. Лукашин, А.А. Елисеев. ФТТ 53, 598 (2011).
- [13] A.A. Eliseev, L.V. Yashina, N.I. Verbitskiy, M.M. Brzhezinskaya, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, B. Freitag, A.V. Generalov, A.S. Vinogradov, Y.V. Zubavichus, E. Kleimenov, M. Nachtegaal. Carbon 50, 4021 (2012).
- [14] M. Cardona. Phys. Rev. 129, 69 (1963).
- [15] J. Serrano, Ch. Schweitzer, C.T. Lin, K. Reimann, M. Cardona, D. Fröhlich. Phys. Rev. B 65, 125 110 (2002).
- [16] S. Kono, T. Ishii, T. Sagawa, T. Kobayashi. Phys. Rev. B 8, 795 (1973).
- [17] A. Goldmann, J. Tejeda, N.J. Shevchik, M. Cardona. Phys. Rev. B 10, 4388 (1974).
- [18] T. Ishii, M. Taniguchi, A. Kakizaki, K. Naito, H. Sugawara, I. Nagakura. Phys. Rev. B 33, 5664 (1986).

- А.В. Генералов, А.С. Виноградов
- [19] J.G. Gross, M. Fliyou, S. Lewonczuk, J. Ringeissen, R. Pinchaux. Phys. Rev. B 37, 3068 (1988).
- [20] D. Westphal, A. Goldmann. J. Phys. C 15, 6661 (1982).
- [21] A. Goldmann, D. Westphal. J. Phys. C 16, 1335 (1983).
- [22] S. Lewonczuk, J.G. Gross, M.A. Khan, J. Ringeissen. Phys. Status Solidi B 83, 161 (1977).
- [23] S. Hamza, M.A. Khan, S. Lewonczuk, J. Ringeissen, J. Petiau, Ph. Sainctavit. Solid State Commun. 75, 29 (1990).
- [24] S. Hamza, S. Lewonczuk, J. Ringeissen, E. Beaurepaire, M.A. Khan. Phys. Rev. B 51, 17506 (1995).
- [25] C. Bonnelle. J. Physique Radium (Paris) 28, C3-65 (1967).
- [26] A.S. Koster. Mol. Phys. 26, 625 (1973).
- [27] S. Lewonczuk, J. Ringeissen, E. Beaurepaire, M.A. Khan. Phys. Rev. B 49, 2344 (1994).
- [28] J. Stöhr. NEXAFS spectroscopy. Springer Ser. in Surface Science. Springer-Verlag, Berlin (1992). V. 25. 403 p.
- [29] J.G. Chen. Surf. Sci. Rep. 30, 1 (1997).
- [30] S. Hüfner. Photoelectron spectroscopy. Principles and applications. 2 nd ed. Springer, Berlin (1995). 507 p.
- [31] S.I. Fedoseenko, I.E. Iossifov, S.A. Gorovikov, J.-H. Schmidt, R. Follath, S.L. Molodtsov, V.K. Adamchuk, G. Kaindl. Nucl. Instrum. Meth. Phys. Res. A 470, 84 (2001).
- [32] А.М. Шикин. Взаимодействие фотонов и электронов с твердым телом. ВВМ, СПб. (2008). 294 с.
- [33] А.П. Лукирский, И.А. Брытов. ФТТ 6, 43 (1964).
- [34] W. Gudat, C. Kunz. Phys. Rev. Lett. 29, 169 (1972).
- [35] J.A. Bearden, A.F. Burr. Rev. Mod. Phys. 39, 125 (1967).
- [36] J.J. Yeh, I. Lindau. Atom. Data Nucl. Data Tabl. 32, 1 (1985).
 [37] A. Sandell, B. Sanyal, L.E. Walle, P. Uvdal, A. Borg.
- J. Electron Spectroscopy Rel. Phenom. **183**, 107 (2011).
- [38] D.M. Pease. Phys. Rev. B 44, 6708 (1991).
- [39] L.I. Yin, I. Adler, M.H. Chen, B. Crasemann. Phys. Rev. A 7, 897 (1973).
- [40] И.Б. Берсукер. Электронное строение и свойства координационных соединений. Введение в теорию. Изд. 2-е, перераб. и доп. Химия, Л. (1976). 352 с.
- [41] A. Viste, H.B. Gray. Inorg. Chem. 3, 1113 (1964).
- [42] A.S. Vinogradov, S.I. Fedoseenko, S.A. Krasnikov, A.B. Preobrajenski, V.N. Sivkov, D.V. Vyalikh, S.L. Molodtsov, V.K. Adamchuk, C. Laubschat, G. Kaindl. Phys. Rev. B 71, 045 127 (2005).
- [43] P.S. Guimarāes, N.J. Parada. J. Phys. C 17, 1695 (1984).
- [44] S.-H. Wei, A. Zunger. Phys. Rev. B 37, 8958 (1988).