Аналитическое решение системы магнитогидродинамических уравнений в квазиодномерном приближении для режимов с монотонным изменением скорости течения по длине канала

© Е.Г. Шейкин

01

Санкт-Петербургский государственный университет, 198904 Санкт-Петербург, Россия e-mail: egsh@pochta.ru

(Поступило в Редакцию 15 сентября 2010 г. В окончательной редакции 29 ноября 2010 г.)

Получено аналитическое решение системы магнитогидродинамических (МГД) уравнений в квазиодномерном приближении для режимов течения с монотонным изменением скорости по длине МГД канала. Рассмотрена задача оптимального выбора параметров МГД генератора при заданном отношении площадей выходного и входного сечений МГД канала с использованием полученного аналитического решения.

Введение

В настоящее время в литературе большое внимание уделяется изучению магнитогидродинамического (МГД) воздействия на поток с целью управления характеристиками высокоскоростных летательных аппаратов [1-23]. Много работ посвящено изучению МГД воздействия на поток в тракте прямоточного воздушно-реактивного двигателя. В частности, рассматривается схема двигателя с МГД байпасом, в которой МГД генератор, расположенный перед входом в камеру сгорания, преобразует часть энтальпии потока в электроэнергию, которая возвращается в поток в канале МГД ускорителя, расположенного за камерой сгорания [1,5-9,13,14,19,21]. При анализе таких сложных газодинамических систем, включающих в себя МГД системы, для описания течений в МГД каналах часто используется квазиодномерное приближение [1,5-8,13,14,19,21]. При этом для расчета параметров МГД течения используются как численное решение системы МГД уравнений [6,8,9,14,21], так и известные аналитические решения. Так, в работах [1,5,7,19] параметры МГД течения рассчитывались с использованием аналитического решения, полученного в работе [24] для фарадеевского МГД канала и обобщенного в работе [5] для расчета параметров как фарадеевского, так и холловского МГД каналов.

Отметим, что использование данного аналитического решения позволило сформулировать требования к параметрам МГД систем, при которых использование МГД байпаса позволяет повысить удельный импульс прямоточного воздушно-реактивного двигателя [1,5,7]. К недостаткам аналитического решения системы МГД уравнений, полученного в [24], следует отнести то, что параметр, определяющий режим МГД течения, не связан явым образом с профилем МГД канала, а вводится как коэффициент пропорциональности между градиентом давления и силой Лоренца, действующей на поток. Это обстоятельство затрудняет применение данного аналитического решения для анализа сложных газодинамических систем, включающих в себя МГД системы, при наличии геометрических ограничений, накладываемых на профиль МГД канала. Целью данной работы является получение аналитического решения системы МГД уравнений в более общей форме, учитывающей ограничения на геометрию МГД канала, в частности, на отношение площадей выходного и входного сечений канала.

Решение системы МГД уравнений в квазиодномерном приближении для произвольного закона изменения профиля канала

Рассмотрим течение невязкого нетеплопроводного газа. Квазиодномерная модель МГД течения в безындукционном приближении описывается следующей системой уравнений [25]:

$$\rho v F = \text{const},$$

$$\rho v \frac{dv}{dx} + \frac{dp}{dx} = (\mathbf{j} \times \mathbf{B})_x,$$

$$\rho v \frac{d}{dx} \left(\frac{v^2}{2} + c_p T\right) = \mathbf{j} \cdot \mathbf{E},$$

$$p = \rho RT,$$
(1)

где ρ — плотность, v — скорость потока, F — площадь поперечного сечения МГД канала, p — давление. T температура, R — газовая постоянная, \mathbf{j} — плотность тока, \mathbf{B} — вектор магнитной индукции, \mathbf{E} — напряженность электрического поля, x — текущая координата, c_p — удельная теплоемкость при постоянном давлении. В данном случае рассматривается приближение с постоянной теплоемкостью c_p . Решение, учитывающее изменение теплоемкости потока в МГД канале, будет получено в последнем параграфе статьи.

Будем рассматривать приближение фарадеевского МГД канала с секционированными электродами, для

которого [25]:

$$(\mathbf{j} \times \mathbf{B})_x = -(1-k)\sigma B^2 v,$$

 $\mathbf{j} \cdot \mathbf{E} = -k(1-k)\sigma B^2 v^2,$

где k = E/vB — коэффициент нагрузки (0 < k < 1 отвечает МГД генератору, k > 1 отвечает МГД ускорителю), σ — удельная проводимость потока. Обобщение результатов, полученных для фарадеевского МГД канала, на случай холловского МГД канала будет сделано в последнем параграфе статьи.

Для упрощения системы уравнений (1) введем новую переменную Z следующим соотношением: $Z = \frac{p}{\rho v}$. Про-изводную dZ/dx представим в следующем виде:

$$\frac{dZ}{dx} = \frac{1}{\rho v}\frac{dp}{dx} + p\frac{d}{dx}\left(\frac{1}{\rho v}\right) = \frac{1}{\rho v}\frac{dp}{dx} + \frac{p}{G}\frac{dF}{dx}$$

где параметр *G* обозначает массовый расход газа через МГД канал ($\rho v F = G$). Используя полученное соотношение, выразим производную dp/dx через dZ/dx и подставим ее во второе уравнение системы (1). С учетом того что для фарадеевского МГД канала ($\mathbf{j} \times \mathbf{B}$)_x = $\mathbf{j} \cdot \mathbf{E}/(kv)$, получим:

$$\rho v \left(\frac{dv}{dx} + \frac{dZ}{dx} - \frac{p}{G} \frac{dF}{dx} \right) = -\frac{q_g}{kv}, \tag{2}$$

где $q_g = -\mathbf{j} \cdot \mathbf{E}$. Учитывая, что $p = \rho v Z$, приведем уравнение (2) к следующему виду:

$$\rho v \left(\frac{dv}{dx} + \frac{dZ}{dx} - \frac{Z}{F} \frac{dF}{dx} \right) = -\frac{q_g}{kv}.$$
 (3)

Третье уравнение системы уравнений (1) может быть записано следующим образом:

$$\rho v \frac{d}{dx} \left(\frac{v^2}{2} + \frac{\gamma}{\gamma - 1} v Z \right) = -q_g. \tag{4}$$

При получении уравнения (4) было учтено, что

$$c_p T = \frac{\gamma}{\gamma - 1} RT = \frac{\gamma}{\gamma - 1} \frac{p}{\rho} = \frac{\gamma}{\gamma - 1} vZ,$$

где γ — показатель адиабаты. В результате с использованием новой переменной *Z*, система МГД уравнений (1) приводится к следующему виду:

$$\frac{G}{F}\left(\frac{dv}{dx} + \frac{dZ}{dx} - \frac{Z}{F}\frac{dF}{dx}\right) = -\frac{q_g}{kv},$$
$$\frac{G}{F}\frac{d}{dx}\left(\frac{v^2}{2} + \frac{\gamma}{\gamma - 1}vZ\right) = -q_g.$$
(5)

Выразив q_g из первого уравнения системы (5) и подставив затем во второе уравнение системы (5), получаем следующее уравнение:

$$\frac{d}{dx}\left(\frac{v^2}{2} + \frac{\gamma}{\gamma - 1}vZ\right) = kv\left(\frac{dv}{dx} + \frac{dZ}{dx} - \frac{Z}{F}\frac{dF}{dx}\right).$$
 (6)

После несложных преобразований уравнение (6) можно привести к следующему виду:

$$(1-k)v\frac{dv}{dx} + \left(\frac{\gamma}{\gamma-1} - k\right)v\frac{dZ}{dx} + \frac{\gamma}{\gamma-1}Z\frac{dv}{dx} + kvZ\frac{d\ln(F)}{dx} = 0.$$
(7)

Ограничимся рассмотрением течений с монотонно изменяющейся скоростью по длине МГД канала. В этом случае скорость v можно использовать в качестве независимой переменной и рассматривать Z и F как функции переменной v. В результате из уравнения (7) получаем следующее уравнение относительно функции Z(v):

$$\frac{dZ(v)}{dv} + Z(v)\frac{\gamma + (\gamma - 1)kv\psi(v)}{(\gamma - (\gamma - 1)k)v} = \frac{(\gamma - 1)(k - 1)}{\gamma - (\gamma - 1)k}, \quad (8)$$

где $\psi(v) = d \ln(F(v))/dv$. Таким образом, с помощью введения новой переменной $Z = \frac{p}{\rho v}$ систему уравнений (1) удалось свести к линейному неоднородному дифференциальному уравнению первого порядка относительно функции Z(v). Решение уравнения (8) с граничным условием $Z(v_0) = Z_0$ может быть представлено в следующем виде:

$$Z(v) = Z_0 \exp(-\Phi(v_0, v)) + \frac{(\gamma - 1)(k - 1)}{\gamma - (\gamma - 1)k} \int_{v_0}^{v} \exp(-\Phi(v', v)) dv', \quad (9)$$

где

$$\Phi(v_a, v_b) = \int_{v_a}^{v_b} \frac{\gamma + (\gamma - 1)kv''\psi(v'')}{(\gamma - (\gamma - 1)k)v''}dv''$$

С учетом определенной ранее зависимости $\psi(v)$ выражение для функции Φ может быть представлено в следующем виде:

$$\Phi(v_a, v_b) = \frac{\gamma}{\gamma - (\gamma - 1)k} \ln\left(\frac{v_b}{v_a}\right) + \frac{(\gamma - 1)k}{\gamma - (\gamma - 1)k} \ln\left(\frac{F(v_b)}{F(v_a)}\right).$$
(10)

Полученное решение (9), (10) с использованием уравнения состояния $p = \rho RT$ и закона сохранения массы $\rho vF = G = \text{const}$ позволяет определить параметры, характеризующие МГД течение в следующей форме:

$$\frac{T}{T_0} = \frac{v}{v_0} \frac{Z(v)}{Z_0}, \ \frac{\rho}{\rho_0} = \frac{v_0}{v} \frac{F_0}{F(v)}, \ \frac{p}{p_0} = \frac{F_0}{F(v)} \frac{Z(v)}{Z_0}, \ (11)$$

где нижний индекс 0 отвечает значению параметра на входе в МГД канал.

Число Маха в рассматриваемом приближении с постоянной теплоемкостью может быть определено с использованием соотношения

$$\frac{M}{M_0} = \sqrt{\frac{v}{v_0} \frac{Z_0}{Z(v)}}.$$

Журнал технической физики, 2011, том 81, вып. 8

Мощность W_g , вырабатываемую МГД генератором, определим, используя закон сохранения энергии, следующим образом, $W_g = G(v_0^2/2 + c_pT_0 - v^2/2 - c_pT)$. Отметим, что при данном определении положительные значения W_g отвечают режиму МГД генератора, а отрицательные — режиму МГД ускорителя. Введем коэффициент преобразования энергии следующим соотношением:

$$\eta_g = rac{W_g}{G(v_0^2/2 + c_p T_0)} = 1 - rac{v^2/2 + c_p T}{v_0^2/2 + c_p T_0}.$$

Используя (11), нетрудно привести выражение для коэффициента преобразования энергии в МГД канале к следующему виду:

$$\eta_g(v) = 1 - \frac{2\gamma Z(v)/v + \gamma - 1}{2/M_0^2 + \gamma - 1} \left(\frac{v}{v_0}\right)^2.$$
 (12)

Таким образом, полученное решение (9), (10) и выражения (11), (12) позволяют определить параметры МГД течения и энергетические характеристики МГД генератора при произвольно заданной зависимости площади поперечного сечения МГД канала F(v).

Решение системы МГД уравнений в квазиодномерном приближении для частных случаев задания профиля МГД канала

Проанализировав полученное решение (9), (10), нетрудно заметить, что для некоторых случаев зависимости площади поперечного сечения МГД канала от скорости интеграл в уравнении (9) берется в явном виде и решение выражается через элементарные функции. В частности, это справедливо в том случае, когда *F* является степенной функцией скорости: $F(v)/F_0 = (v/v_0)^{\xi}$. Подставив это выражение в уравнения (9), (10), получим выражение для функции *Z* в следующем виде:

$$Z(v) = (Z_0 + v_0 C) \left(\frac{v}{v_0}\right)^{-D} - vC,$$
 (13)

где

$$C = \frac{(\gamma - 1)(1 - k)}{2\gamma + (\xi - 1)(\gamma - 1)k},$$
$$D = \frac{\gamma + (\gamma - 1)k\xi}{\gamma - (\gamma - 1)k}.$$

Для частного режима МГД течения с постоянным сечением МГД канала ($\xi = 0$), коэффициенты *C* и *D* в уравнении (13) принимают следующие значения:

$$C = \frac{(\gamma - 1)(1 - k)}{2\gamma - (\gamma - 1)k},$$
$$D = \frac{\gamma}{\gamma - (\gamma - 1)k}.$$

3* Журнал технической физики, 2011, том 81, вып. 8

Нетрудно заметить, что функция Z будет выражаться через элементарные функции и в том случае, когда зависимость площади поперечного сечения МГД канала задается с помощью следующего ряда:

$$f(v) = 1 + \sum_{j=1}^{N} a_j ((v/v_0)^j - 1),$$

$$F(v)/F_0 = (f(v))^{1/A},$$
(14)

где

$$A = \frac{(\gamma - 1)k}{\gamma - (\gamma - 1)k},$$

 $N \ge 1$. Подставив выражение (14) в уравнения (9), (10), после несложных математических преобразований получаем выражение для функции Z в следующем виде:

$$Z(v) = [Z_0 - v_0 Q \theta(v_0)] \frac{(v/v_0)^{-\beta}}{f(v)} + v \frac{Q \theta(v)}{f(v)}, \quad (15)$$

где

$$\beta = \frac{\gamma}{\gamma - (\gamma - 1)k}, \quad Q = \frac{(\gamma - 1)(k - 1)}{\gamma - (\gamma - 1)k},$$
$$\theta(v) = \frac{1}{\beta + 1} \left(1 - \sum_{j=1}^{N} a_j \left(1 - \frac{\beta + 1}{\beta + j + 1} \left(\frac{v}{v_0} \right)^j \right) \right).$$

В данной работе ограничимся анализом решения полученного для МГД канала с профилем сечения, задаваемым выражением: $F(v)/F_0 = (v/v_0)^{\xi}$. Будем рассматривать торможение сверхзвукового потока в постоянном или расширяющемся МГД канале. Очевидно,

Рис. 1. Зависимость $F(v)/F_0$ от относительной скорости потока для разных значений параметра ξ , указанных у кривых, при $M_0 = 3$, $\gamma = 1.4$, k = 0.5.

Рис. 2. Зависимость p/p_0 от относительной скорости потока для разных значений параметра ξ , указанных у кривых, при $M_0 = 3$, $\gamma = 1.4$, k = 0.5.

что этот режим отвечает значениям параметра $\xi \leq 0$. Зависимости площади поперечного сечения МГД канала от относительной скорости потока представлены на рис. 1 для трех значений параметра ξ . Из рис. 1 видно, что уменьшение параметра ξ , при заданной степени торможения потока v/v_0 , отвечает увеличению площади поперечного сечения МГД канала.

На рис. 2,3 показаны зависимости давления и температуры от относительной скорости потока в МГД канале при разных значениях параметра ξ . Согласно приведенным результатам, МГД торможение потока в рассмотренных режимах сопровождается повышением давления и температуры. Уменьшение параметра ξ приводит к уменьшению давления и температуры в МГД канале при заданной степени торможения потока v/v_0 .

Для того чтобы определить профиль МГД канала F(x) и пространственное распределение параметров в МГД канале, отвечающие полученному решению, используем второе уравнение системы уравнений (5), представив его в следующем виде:

$$\frac{G}{F(v)}\frac{d}{dv}\left(\frac{v^2}{2} + \frac{\gamma}{\gamma - 1}vZ(v)\right)\frac{dv}{dx} = -q_g.$$
 (16)

Очевидно, что уравнение (16) позволяет определить зависимость x(v), если в него подставить решение для функции Z(v) в форме (9). Более простую форму записи для x(v) получим, выразив Z(v) через функцию $\eta_g(v)$, определенную уравнением (12). В этом случае после несложных математических преобразований

1.5

 $^{0}_{L/L}$ 1.3

Рис. 3. Зависимость T/T_0 от относительной скорости потока для разных значений параметра ξ при $M_0 = 3$, $\gamma = 1.4$, k = 0.5. Сплошная кривая — $\xi = 0$, пунктир — 0.5, штрихпунктир — 1.

уравнений (16) приводится к следующему виду:

$$\frac{v_0^2}{2} \left(1 + \frac{2}{(\gamma - 1)M_0^2} \right) \frac{d\eta_g}{dv} \frac{dv}{dx} = \frac{k(1 - k)\sigma(v)B^2v^2F(v)}{G}.$$
(17)
Здесь использовано выражение $q_g = k(1 - k)\sigma B^2v^2$, справедливое для фарадеевского МГЛ канада Проволи-

справедливое для фарадеевского МГД канала. Проводимость в общем случае может зависеть от параметров течения, что, в нашем приближении, отвечает зависимости от скорости потока, которая явным образом обозначена в уравнении (17). Величина магнитной индукции предполагается постоянной. В этом случае решение уравнения (17) с граничным условием $x(v_0) = 0$ может быть представлено в виде:

$$x = \frac{Gv_0^2 \left(2 + (\gamma - 1)M_0^2\right)}{2k(1-k)B^2(\gamma - 1)M_0^2} \int_{v_0}^{v} \frac{d\eta_g/dv'}{\sigma(v')v'^2 F(v')} dv'.$$
 (18)

Для представления результатов расчета будем использовать безразмерный параметр МГД взаимодействия *S*, определяемый соотношением: $S = \sigma_0 B^2 x / \rho_0 v_0$. Несложные математические преобразования позволяют привести уравнение (18) к следующему виду:

$$S = \frac{v_0^2 \left(2 + (\gamma - 1)M_0^2\right)}{2k(1 - k)(\gamma - 1)M_0^2} \int_{v_0}^{v} \frac{d\eta_g/dv'}{\left(\sigma(v')/\sigma_0\right)v'^2 \left(F(v')/F_0\right)} dv'.$$
(19)

Уравнение (19) определяет параметр МГД взаимодействия S как функцию скорости МГД течения при произвольных зависимостях F(v) и $\sigma(v)$. Если проводимость потока задается как функция параметров течения,

Рис. 4. Зависимость параметра МГД взаимодействия от относительной скорости потока для разных значений параметра ξ при $M_0 = 3$, $\gamma = 1.4$, k = 0.5. Сплошная кривая — $\xi = 0$, пунктир — 0.5, штрихпунктир — 1.

Рис. 5. Зависимость F/F_0 от параметра МГД взаимодействия для разных значений параметра ξ , указанных у кривых, при $M_0 = 3$, $\gamma = 1.4$, k = 0.5.

например температуры и давления, то использование уравнений (9)-(11) позволяет элементарным образом учесть эту зависимость при расчете параметра МГД взаимодействия по формуле (19).

На рис. 4 представлена зависимость параметра МГД взаимодействия S от относительной скорости МГД течения при трех значениях параметра ξ . Результаты расчетов получены для постоянной проводимости: $\sigma(v) = \sigma_0$. Из рис. 4 следует, что уменьшение параметра ξ приводит к тому, что заданное торможение потока в канале

Рис. 6. Зависимость p/p_0 от параметра МГД взаимодействия для разных значений параметра ξ , указанных у кривых, при $M_0 = 3$, $\gamma = 1.4$, k = 0.5.

Рис. 7. Зависимость числа Маха от параметра МГД взаимодействия для разных значений параметра ξ при $M_0 = 3$, $\gamma = 1.4$, k = 0.5. Сплошная кривая — $\xi = 0$, пунктир — 0.5, штрихпунктир — 1.

Рис. 8. Зависимость коэффициента преобразования энергии от параметра МГД взаимодействия для разных значений параметра ξ при $M_0 = 3$, $\gamma = 1.4$, k = 0.5. Сплошная кривая — $\xi = 0$, пунктир — 0.5, штрихпунктир — 1.

достигается при больших значениях параметра МГД взаимодействия. Зависимости площади поперечного сечения МГД канала от параметра МГД взаимодействия показаны на рис. 5 для трех значений параметра ξ . На рис. 6,7 демонстрируются зависимости давления и числа Маха от параметра *S* при разных значениях параметра ξ . Согласно результатам, представленным на рис. 6, уменьшение параметра ξ при фиксированном значении параметра МГД взаимодействия параметра К уменьшение.

Число Маха, согласно рис. 7, монотонно уменьшается с увеличением параметра МГД взаимодействия. Уменьшение параметра ξ при фиксированном значении параметра МГД взаимодействия приводит к увеличению числа Маха. На рис. 8 показаны зависимости коэффициента преобразования энергии от параметра МГД взаимодействия. Согласно рис. 8, уменьшение параметра ξ позволяет добиться больших значений η_g при заданном значении параметра МГД взаимодействия.

Продемонстрируем возможности использования полученного решения для нахождения оптимальной конфигурации МГД генератора, рассмотрев модельную задачу в следующей постановке. Определим параметры МГД генератора, который обеспечивает заданный коэффициент преобразования энергии η_0 , при минимальном значении параметра МГД взаимодействия *S*. Степень ракрытия МГД канала F_1/F_0 считается заданной величиной, здесь F_1 — площадь выходного поперечного сечения МГД канала. Скорость потока на выходе МГД канала обозначим как v_1 , при этом очевидно, что $F(v_1) = F_1$.

Используя соотношение $F_1/F_0 = (v_1/v_0)^{\xi}$, выразим параметр ξ через относительную скорость потока на выходе МГД канала и степень раскрытия МГД канала: $\xi = \ln(F_1F_0)/\ln(v_1/v_0)$. Подставим определенный таким образом параметр ξ в уравнения (12), (13). Так как нас интересует электроэнергия, вырабатываемая на полной длине МГД генератора, то в данных уравнениях в качестве аргумента v также подставляем скорость потока на выходе МГД канала v_1 . В результате получаем следующее уравнение для определения параметров МГД генератора, при которых обеспечивается коэффициент преобразования энергии равный η_0 :

$$1 - \frac{(v_1/v_0)^2}{2/M_0^2 + \gamma - 1} \left[2\gamma \left(\left(\frac{1}{\gamma M_0^2} + \Psi \right) \times \left(\frac{v_1}{v_0} \right)^{-P} - \Psi \right) + \gamma - 1 \right] - \eta_0 = 0, \quad (20)$$

где

$$\Psi = \frac{(\gamma - 1)(1 - k)}{2\gamma + (\gamma - 1)k\left(\frac{\ln(F_1/F_0)}{\ln(\nu_1/\nu_0)} - 1\right)}, \ P = \frac{1}{\Psi} \frac{(\gamma - 1)(1 - k)}{(\gamma - (\gamma - 1)k)}.$$

Нетрудно заметить, что при заданных параметрах M_0 , γ , F_1/F_0 и η_0 уравнение (20) определяет зависимость между коэффициентом нагрузки k и относительной скоростью потока на выходе МГД канала v_1/v_0 .

На рис. 9 приведена зависимость относительной скорости v_1/v_0 от коэффициента нагрузки, полученная из решения уравнения (20) для МГД канала постоянного сечения. Согласно полученным результатам, уменьшение коэффициента нагрузки при фиксированном значении коэффициента преобразования энергии η_0 сопровождается уменьшением скорости потока на выходе

Рис. 9. Относительная скорость на выходе МГД генератора, отвечающая коэффициенту преобразования энергии $\eta_0 = 0.05$, $M_0 = 3$, $\gamma = 1.4$, $F_1/F_0 = 1$.

Журнал технической физики, 2011, том 81, вып. 8

Рис. 10. Параметр МГД взаимодействия, при котором обеспечивается значение коэффициента преобразования энергии $\eta_0 = 0.05$ для разных значений F_1/F_0 , указанных у кривых, при $M_0 = 3$, $\gamma = 1.4$.

канала. Результаты, представленные на рис. 10, показывают зависимости параметра МГД взаимодействия, отвечающие заданному значению η_0 , для каналов, характеризующихся разными степенями раскрытия F_1/F_0 . Из представленных результатов видно, что оптимальный коэффициент нагрузки k_{opt} , отвечающий минимальному

Рис. 11. Оптимальный коэффициент нагрузки в зависимости от коэффициента преобразования энергии при $M_0 = 3$, $\gamma = 1.4$, $F_1/F_0 = 1.25$.

значению S, превышает значение 0.5. Параметр МГД взаимодействия при фиксированном значении коэффициента нагрузки уменьшается с увеличением F_1/F_0 . Согласно рис. 11, оптимальное значение коэффициента нагрузки зависит от коэффициента преобразования энергии η_0 . При малых значениях η_0 величина k_{opt} близка к 0.5. Возрастание η_0 приводит к увеличению оптимального значения коэффициента нагрузки.

Отметим, что использование более сложной функциональной зависимости для F(v), например в форме (14), позволяет искать конфигурацию МГД генератора, которая обеспечит заданный коэффициент преобразования энтальпии потока в электроэнергию η_0 при меньшем значении параметра МГД взаимодействия *S*, чем в рассмотренной модельной задаче.

Решение системы МГД уравнений, учитывающее изменение теплоемкости потока в МГД канале. Обобщение решения полученного для фарадеевского МГД канала на случай холловского МГД канала

Получим решение системы МГД уравнений для случая, когда теплоемкость c_p непостоянна, а изменяется в МГД канале. В этом случае второе уравнение системы уравнений (1) записывается следующим образом:

$$\rho v \frac{d}{dx} \left(\frac{v^2}{2} + h \right) = -q_g, \qquad (21)$$

где энтальпия h определяется выражением

$$h=h_0+\int\limits_{T_0}^T c_p dT'.$$

По аналогии с алгоритмом решения системы МГД уравнений, предложенного в случае постоянной теплоемкости, будем полагать, что h, c_p и T являются функциями скорости. Запишем уравнение (21) в другой форме, учитывая следующую цепочку преобразований:

$$\frac{d}{dx}\left(\frac{v^2}{2}+h\right) = \frac{d}{dv}\left(\frac{v^2}{2}+h\right)\frac{dv}{dx} = \left(v+c_p(v)\frac{dT}{dv}\right)\frac{dv}{dx}.$$

В результате уравнение (21) приводится к следующему виду:

$$\rho v \left(v + c_p(v) \frac{dT}{dv} \right) \frac{dv}{dx} = -q_g.$$
⁽²²⁾

Учитывая, что

$$T = -\frac{p}{R\rho} = \frac{\rho v Z}{R\rho} = \frac{v Z}{R},$$

получим dT/dv = (Z + v dZ/dv)/R. Подставив это выражение в уравнение (22), получаем следующее уравнение:

$$\rho v \left(v + \frac{\gamma(v)}{\gamma(v) - 1} \left(Z + v \frac{dZ}{dv} \right) \right) \frac{dv}{dx} = -q_g.$$
(23)

Журнал технической физики, 2011, том 81, вып. 8

Аналогичным образом уравнение (3) приводится к следующему виду:

$$\rho v \left(1 + \frac{dZ}{dv} - \frac{Z}{F} \frac{dF}{dv} \right) \frac{dv}{dx} = -\frac{q_g}{kv}.$$
 (24)

Из системы уравнений (23), (24) нетрудно получить новое уравнение для функции Z(v). При этом оказывается, что единственное отличие нового уравнения от уравнения (8) состоит в том, что в новом уравнении показатель адиабаты γ зависит от v. Нетрудно показать, что решение данного более общего уравнения имеет следующий вид:

$$Z(v) = Z_0 \exp\left(-\Phi'(v_0, v)\right) + \int_{v_0}^{v} \frac{(\gamma(v') - 1)(k - 1)}{\gamma(v') - (\gamma(v') - 1)k} \exp\left(-\Phi'(v', v)\right) dv', \quad (25)$$

где

$$\Phi'(v_a, v_b) = \int_{v_a}^{v_b} \frac{\gamma(v'') + (\gamma(v'') - 1)kv''\psi(v'')}{(\gamma(v'') - (\gamma(v'') - 1)k)v''}dv''.$$

....

Таким образом, получено решение системы МГД уравнений для случая, когда теплоемкость потока изменяется в МГД канале. Очевидно, что при постоянном значении показателя адиабаты решение (25) совпадает с решением (9).

Результаты, полученные в данной статье для фарадеевского МГД канала, несложно обобщить на случай холловского МГД канала. Холловский МГД генератор, согласно [25], характеризуется значениями выходной мощности $\mathbf{j} \cdot \mathbf{E} = -k_H(1 - k_H)\sigma B^2 v^2 \beta^2 / (1 + \beta^2)$ и силой Лоренца, действующей на поток $(\mathbf{j} \times \mathbf{B})_x = -(1 + k_H \beta^2)\sigma B^2 v / (1 + \beta^2)$, которые отличаются от соответствующих характеристик для фарадеевского МГД генератора. Здесь β — параметр Холла, k_H — коэффициент нагрузки холловского МГНД генератора. Нетрудно заметить, что для холловского МГД канала справедливо следующее соотношение:

$$(\mathbf{j} \times \mathbf{B})_x = \frac{(\mathbf{j} \cdot \mathbf{E})(1 + k_H \beta^2)}{k_H (1 - k_H) \beta^2 v}$$

Аналогичное соотношение для фарадеевского МГД канала в виде $(\mathbf{j} \times \mathbf{B})_x = \mathbf{j} \cdot \mathbf{E}/(kv)$ использовалось при получении уравнения (3) и соответственно системы уравнений (5). Повторив алгоритм получения системы уравнений (5), несложно показать, что эта система уравнений для холловского МГД канала будет иметь такой же вид, как и для фарадеевского, если вместо коэффициента нагрузки k, будет использоваться параметр $K = k_H(1 - k_H)\beta^2/(1 + k_H\beta^2)$.

Таким образом, решение (9)-(15), (25), полученное для фарадеевского МГД канала, можно использовать и для холловского, если вместо параметра к подставить параметр К. Это также справедливо и для уравнения (20), используемого для поиска оптимальных параметров. Чтобы рассчитать параметр МГД взаимодействия для холловского МГД канала, используя уравнение (19), следует вместо члена k(1 - k), стоящего в знаменателе (19), подставить член $k_H(1-k_H)\beta^2/(1+\beta^2)$. Необходимость данного изменения становится очевидной, если проследить вывод уравнения (19) начиная с уравнения (16). Таким образом, с использованием модификаций приведенных в данном параграфе, полученное в статье решение системы МГД уравнений может быть использовано для расчета характеристик течения как в фарадеевском, так и в холловском МГД каналах.

Заключение

Для режимов МГД течения с монотонным изменением скорости потока по длине канала получено аналитическое решение системы МГД уравнений в квазиодномерном приближении. Полученное решение позволяет элементарным образом учесть заданную степень раскрытия МГД канала, в частности, при решении задачи оптимального выбора параметров МГД генератора. Таким образом, данное решение удобно использовать для анализа сложных газодинамических систем, включающих в себя МГД системы, при наличии геометричеких ограничений, накладываемых на профиль МГД канала. Полученное решение может быть использовано для расчета характеристик течения как в фарадеевском, так и в холловском МГД каналах.

Список литературы

- [1] Фрайштадт В.Л., Куранов А.Л., Шейкин Е.Г. // ЖТФ. 1998. Т. 68. Вып. 11. С. 43–47.
- [2] Kopchenov V.I., Vatazhin A.B., Gouskov O.V. // AIAA Paper 99-4971. 9th Int. Space Planes and Hypersonic Systems and Technologies Conf. Norfolk, 1999.
- [3] Головачев Ю.П., Сущих С.Ю. // ЖТФ. 2000. Т. 70. Вып. 2. С. 28–33.
- [4] Macheret S.O., Shneider M.N., Miles R.B. // AIAA Paper 2001-0492. 39th AIAA Aerospace Sci. Meeting and Exhibit. Reno, 2001.
- [5] Kuranov A.L., Kuchinsky V.V., Sheikin E.G. // AIAA Paper 2001-2881. 32nd AIAA Plasmadynamics and Lasers Conf. and 4th Weakly Ionized Gases Workshop. Anaheim, 2001.
- [6] Park C., Mehta U.B., Bogdanoff D.W. // J. Propul. Power. 2001. Vol. 17. N 5. P. 1049–1057.
- [7] Kuranov A.L., Sheikin E.G. // J. Spacecraft Rockets. 2003. Vol. 40. N 2. P. 174–182.
- [8] Park C., Mehta U.B., Bogdanoff D.W. // J. Propul. Power. 2003. Vol. 19. N 4. P. 529–537.
- [9] Gaitonde D. // AIAA Paper 2003-0172. 41st Aerospace Sci. Meeting and Exhibit. Reno, 2003.

- [10] Macheret S.O., Shneider M.N., Miles R.B. // AIAA Paper 2003-3763. 34th AIAA Plasmadynamics and Lasers Conference. Orlando, 2003.
- [11] Битюрин В.А., Ватажин А.Б., Гуськов О.В., Копченов В.И. // ТВТ. 2004. Т. 42. № 5. С. 745–752.
- [12] Taylor T., Riggins D.W. // AIAA Paper 2004-0859. 42nd Aerospace Sci. Meeting and Exhibit. Reno, 2004.
- [13] Sheikin E.G. // AIAA Paper 2005-1336. 43rd Aerospace Sci. Meeting and Exhibit. Reno, 2005.
- [14] Miles R.B., Macheret S.O., Shneider M.N., Steeves C., Murray R.C., Smith T., Zaidi S.H. // AIAA Paper 2005-0561. 43th Aerospace Sci. Meeting and Exhibit. Reno, 2005.
- [15] Nishibara M., Jiang N., Rich J.W., Lempert W.R., Adamovich I.V. // Phys. Fluids. 2005. Vol. 17. P. 106 102.
- [16] Васильева Р.В., Ерофеев А.В., Лапушкина Т.А., Поняев С.А., Бобашев С.В., Ван-Ви Д. // ЖТФ. 2005. Т. 75. Вып. 9. С. 27–33.
- [17] Adamovich I., Nishibara M. // AIAA Paper 2006-1004. 44th Aerospace Sci. Meeting and Exhibit. Reno, 2006.
- [18] Bityurin V.A., Bocharov A.N. // Fluid Dynamics. 2006. Vol. 41. N 5. P. 843–856.
- [19] Tang J., Yu D., Bao W. // AIAA Paper 2006-8101. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conf. Canberra, 2006.
- [20] Sheikin E.G. // AIAA Paper 2007-1379. 45th Aerospace Sci. Meeting and Exhibit. Reno, 2007.
- [21] *Lee C.H., Lu H., //* AIAA Paper 2007-644. 45th Aerospace Sci. Meeting and Exhibit. Reno, 2007.
- [22] Subbarao K., Goss J.D. // Int. J. Aerospace Engineering. 2009.
 P. 793 647.
- [23] Бобашев С.В., Головачев Ю.П., Курбатов Г.А., Менде Н.П., Сахаров В.А., Чернышев А.С., Шмидт А.А. // ЖТФ. 2009. Т. 79. Вып. 1. С. 36–44.
- [24] Шейкин Е.Г. // ЖТФ. 1992. Т. 62. Вып. 12. С. 1–8.
- [25] Бреев В.В., Губарев А.В., Панченко В.П. Сверхзвуковые МГД-генераторы. М.: Энергоатомиздат, 1988. 240 с.