07,14

Исследование ползучести и стеклования эластомеров методом микроиндентирования: эпоксидная смола и нанокомпозиты на ее основе

© В.Д. Нацик^{1,2}, Л.С. Фоменко¹, С.В. Лубенец¹

¹ Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, Харьков, Украина ² Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина E-mail: natsik@ilt, kharkov.ua

(Поступила в Редакцию 29 октября 2012 г.)

Разработаны экспериментальная процедура и теоретические основы применения метода микроиндентирования как одного из эффективных методов релаксационной спектрометрии твердотельных полимеров. Показано, что измерения температурной зависимости микротвердости полимеров в состоянии высокой эластичности и в области стеклования вместе с регистрацией длительной ползучести под индентором позволяют установить температуру стеклования и значения реологических параметров материала нерелаксированного и релаксированного модулей упругости, коэффициентов деформационной вязкости. Такие измерения дают информацию, достаточную для формулировки реологической модели изучаемого материала. Дополнение результатов этих измерений представлениями о термически активированном движении молекулярных сегментов как микроскопическом механизме структурной релаксации в полимерах позволяет получить эмпирические оценки для значений энергии активации и частот колебаний сегментов. Метод реализован в экспериментах по микроиндентированию эпоксидной смолы и ее композитов с добавлением углеродных нанотрубок в температурном интервале 230–300 К. Зарегистрировано стеклование этих полимеров вблизи 260 К, измерены значения нерелаксированного и релаксированного модулей Юнга, выявлены два термически активированных релаксационных процесса, определяющие стеклование, а также кратковременную и длительную ползучесть этих материалов (*α*- и *α*'-процессы).

Работа выполнена при частичной финансовой поддержке целевой комплексной программы научных исследований "Наноструктурные системы, материалы, нанотехнологии" НАН Украины (проект № 4/12 Nano).

1. Введение

Исследование механических свойств твердотельных полимеров не только позволяет установить закономерности деформации и получить реологические характеристики материала, но и дает информацию о микроскопических механизмах, которые определяют реакцию полимера на внешние тепловые и силовые воздействия в различных физических состояниях — стеклообразном, высокоэластическом и вязкотекучем.

Эластомеры, изучению одного из которых посвящена настоящая работа, это класс полимеров с особыми механическими свойствами. В определенном температурном диапазоне они обладают высокой эластичностью, т. е. способностью к большим обратимым деформациям. При понижении температуры эластомеры превращаются в стеклообразные твердые тела, а при повышении температуры некоторые из них, в частности линейные полимеры, приобретают свойства жидкости с большой вязкостью.

При изучении механических свойств эластомеров, которые классифицируются как вязкоупругие твердые тела [1–3], первостепенное значение придается определению температуры стеклования и особенностям перехода из высокоэластического в стеклообразное состояние, а также измерениям реологических характеристик (релаксированного и нерелаксированного модулей упругости, набора коэффициентов вязкости или времен релаксации). Более глубокое изучение структуры и физико-механических свойств эластомеров различными физическими методами направлено на получение информации о конформационной динамике молекулярных цепей, т.е. о динамике и кинетике движения молекулярных сегментов — участков молекулы нанометровых размеров, способных перемещаться как единое целое относительно других участков. В настоящее время представление о термически активированном перемещении (релаксации) молекулярных сегментов является основой микроскопической интерпретации закономерностей больших обратимых деформаций эластомеров при температурах порядка и выше температуры стеклования, а также кинетики стеклования и аномалий температурных зависимостей термодинамических характеристик этих материалов в области стеклования.

Совокупность физических методов, которые используются для установления связи макроскопических физикомеханических характеристик твердотельных полимеров с динамическими и релаксационными процессами в подсистемах молекулярных сегментов, получила общее название "релаксационная спектрометрия" [4]. К этим методам можно отнести: макроскопические механические испытания образцов в режиме активной деформации с постоянной скоростью нагружения, релаксацию напряжений после остановки машины, ползучесть под действием постоянной нагрузки [1,3,4]; регистрацию термомеханической кривой [3,4]; регистрацию температурночастотных зависимостей динамических модулей упругости и внутреннего трения методами физической акустики [3-6]; частотно-температурную спектроскопию диэлектрической восприимчивости электрофизическими методами [4,7,8]; регистрацию температурных зависимостей теплоемкости и теплового расширения [3,7]. Одна из целей данного исследования — показать, что совокупность методов релаксационной спектрометрии эластомеров можно дополнить еще одним достаточно эффективным методом, а именно — измерениями температурной зависимости микротвердости полимера в области стекла и в переходной зоне к высокоэластическому состоянию.

Микроиндентирование — один из основных методов физического материаловедения, который эффективно используется для технического контроля и изучения физических механизмов пластической деформации и разрушения кристаллических твердых тел. Он имеет свои особенности, достоинства и недостатки по сравнению с другими методами механических испытаний кристаллических материалов и успешно их дополняет [9-11]. Следует отметить, что как постановка задачи в настоящей работе, так и ее успешное решение в значительной степени связано с результатами выполненных ранее теоретических исследований [12-15], в которых классическая контактная задача Герца о деформации идеально упругой среды под индентором была обобщена на случай индентирования вязкоупругого материала с реологическими свойствами эластомера.

Мы покажем, что метод микроиндентирования позволяет определить температуру стеклования эластомера, изучить кратковременную и длительную ползучесть такого материала в некотором температурном интервале выше температуры стеклования, получить эмпирические оценки для нерелаксированных и релаксированных значений модуля Юнга и установить температурные зависимости коэффициентов деформационной вязкости. Эти экспериментальные результаты дают возможность сформулировать реологическую модель эластомера и описать его в рамках феноменологической теории вязкоупругости. Если эту теорию дополнить представлениями о термически активированной релаксации молекулярных сегментов как микроскопическом механизме деформационной вязкости материала, то интерпретация результатов микроиндентирования на основе этих представлений позволяет получить эмпирические оценки энергии активации и периода колебаний молекулярных сегментов изучаемого эластомера и таким образом связать высокую эластичность и кинетику стеклования с конформационной динамикой макромолекул.

В качестве конкретного объекта экспериментального изучения нами выбрана эпоксидная смола и композиты на ее основе с добавлением углеродных нанотрубок [16]. Макромеханические испытания этих материалов, а также первые попытки их индентирования показали [16,17], что в области комнатных температур они имеют хорошо выраженные свойства эластомера. В настоящей работе детально изучена температурная зависимость микротвердости этих материалов, зарегистрирован переход из состояния с высокой эластичностью в состояние стекла в области умеренно низких температур, а также изучены особенности их ползучести под индентором в состоянии, близком к высокоэластическому. Анализ экспериментальных данных позволил установить термоактивированный характер молекулярных процессов, определяющих ползучесть и стеклование, получить эмпирические оценки энергии активации и частотного фактора, подобрать реологическую модель, которая адекватно описывает поведение этих материалов при изменениях времени нагружения и температуры.

2. Материал и методика эксперимента

Объектами исследования были аморфные полимеры: эпоксидная смола D.E.R. 736 и нанокомпозиты на ее основе с одностенными и многостенными углеродными нанотрубками. Методика приготовления образцов описана в [16]. Под чистой эпоксидной смолой как базовым полимером для приготовления композитов надо понимать смолу с добавлением сополимера и отвердителя, подвергнутую соответствующей термомеханической обработке, т. е. это сшитый полимер (подробности см. в [16]). В [17] было показано, что качественные закономерности микропластической деформации под индентором чистой эпоксидной смолы и ее композитов одинаковые, поэтому в данной работе детально изучены только два из них — СЕ (эпоксидная смола + сополимер) и ССЅ (эпоксидная смола + сополимер + одностенные углеродные нанотрубки).

Теоретическая структура цепи эпоксидной смолы D.E.R. 736 записывается в виде [18]:

Динамика мономеров (в квадратных скобках) с боковыми "привесками" CH₃ предположительно определяет сегментальную подвижность всей макромолекулы как в высокоэластическом состоянии, так и процесс перехода к состоянию стекла.

В физическом материаловедении разработано и активно используется три типа микро(нано)механических испытаний материалов — стандартный метод микроиндентирования [9–11], инструментальное микроиндентирование [19], наноиндентирование [12,20]. Для исследований вязкоупругих свойств полимерных материалов при комнатной температуре используется метод наноиндентирования с записью диаграммы нагружения, разгрузки и ползучести (см., например, [20-24]). Стандартный метод микроиндентирования, разработанный для измерений в условиях окружающей среды, применим только для полимеров, у которых температура стеклования выше комнатной. Температура стеклования эластомеров, изученных в данной работе, ниже комнатной. Поэтому эксперименты по индентированию в интервале температур 227-300 К проводили на твердомере ПМТ-3 с установленной на его столик теплоизолированной камерой, в которой образец охлаждался парами азота. Объектив микроскопа экранировали от охлаждаемой камеры тонким покровным стеклом. Это позволило проводить индентирование поверхности образца, наблюдение и измерение размеров отпечатков при одной и той же температуре.

Для определения микротвердости при комнатных температурах на поверхность образца напыляли тонкую металлическую пленку (Al или In) или покрывали поверхность пирамиды индентора смазкой Рамзая, что позволяло видеть след и измерять размер отпечатка, сформированного при индентировании и исчезавшего после снятия нагрузки [17]. Более детально особенности использования метода индентирования для изучения эластомеров описаны в [17].

Чтобы выявить и локализовать область стеклования полимера и получить информацию о кинетике стеклования, измерения микротвердости в интервале температур 227–300 К проводили при кратковременном приложении нагрузки на индентор. Нагрузка на индентор составляла 0.05 N, время нагружения варьировали в пределах 10–60 s. Микротвердость рассчитывали по формуле

$$H_V = 1.854 \, \frac{P}{d^2},$$
 (1)

где *Р* — нагрузка на индентор, *d* — длина диагонали остаточного отпечатка индентора.

При более высоких температурах T > 280 К индентирование проводили в режиме умеренно длительной ползучести; результаты этих экспериментов позволили сформулировать адекватную реологическую модель полимера в состоянии, близком к высокоэластическому, и получить эмпирические оценки ее параметров. Кинетика ползучести эластомера исследована в интервале температур 279–289 К при нагрузке P = 0.15 N и временах нагружения 10–600 s. В качестве измеряемой характеристики процесса ползучести рассматривалась временна́я зависимость квадрата диагонали отпечатка $d^2(t)$.

3. Результаты экспериментов

3.1. Влияние температуры на микротвердость. Общий вид температурных зависимостей микротвердости $H_V(T)$ был одинаков для всех исследованных материалов. Типичная зависимость $H_V(T)$ показана на рис. 1. Видно, что микротвердость чрезвычайно сильно изменяется в небольшом интервале температур 10-15 К и слабо зависит от температуры за пределами этого интервала. В данном конкретном случае микротвердость полимера СЕ при охлаждении в интервале температур 265-250 К увеличилась примерно на порядок, а общее изменение микротвердости при охлаждении от 287 К до 227 К было 25-кратным — от 10 до 250 MPa. Из рис. 1 также видно, что на качественном уровне рассмотрения этот эффект является обратимым: при нагревании микротвердость столь же резко уменьшилась, а отношение значений H_V на краях изученного интервала температур было даже более значительным (порядка 60).

Отметим, что зарегистрированные в экспериментах значения микротвердости H_V имеют довольно большой статистический разброс, который естественно считать следствием неоднородности структуры поверхности материала на длине порядка линейного размера отпечатка. Точки на рис. 1 — рис. 4 являются результатом усреднения измерений на интервале $\Delta T \approx 1-2$ К.

Приведенная зависимость $H_V(T)$ отражает процесс перехода полимера из высокоэластического состояния в состояние стекла: переход проявляется в резком

Рис. 1. Температурная зависимость микротвердости образца СЕ в первом цикле: охлаждение (1), нагревание (2). Скорость охлаждения и нагревания $\hat{T} = 0.5$ K/min, нагрузка на индентор P = 0.05 N, время нагружения $\Delta t = 10$ s. T_g — температура стеклования. На вставке в большем масштабе показаны высокотемпературные участки зависимостей $H_V(T)$, полученные при охлаждении и нагревании. Стрелками показано направление изменения температуры.

возрастании микротвердости образца при понижении температуры. Температурная зависимость микротвердости может быть удовлетворительно аппроксимирована ступенеподобной (сигмоидальной) кривой. Координата середины ступеньки на кривой $H_V(T)$, полученной при охлаждении образца, условно рассматривалась нами как температура стеклования T'_g. Аналогичная зависимость $H_V(T)$ наблюдается и при отогреве образцов, т.е. этот переход является обратимым: при нагревании координату середины ступеньки на зависимости $H_V(T)$ можно назвать температурой размягчения T''_g. При медленном изменении температуры со скоростью $\dot{T} \leq 0.5$ K/min значения температур стеклования и размягчения совпадают: $T'_{g} = T''_{g} = T_{g}$. Однако при термоциклировании на краях изученного температурного интервала имеет место заметный гистерезис зависимости $H_V(T)$ (см. вставку на рис. 1).

Регистрация динамического модуля Юнга E(T) вулканизированных композитов на основе эпоксидной смолы [5,6,25] (в том числе и содержащих одностенные [5] или многостенные [25] углеродные нанотрубки) приводит к зависимостям E(T), которые по форме не отличаются от кривой $H_V(T)$ на рис. 1.

3.2. В лияние термоциклирования. Многократное повторение циклов охлаждение-нагревание на одном и том же образце показало, что термоциклирование не влияет на общий вид температурной зависимости микротвердости (рис. 2). Однако от цикла к циклу наблюдались некоторые количественные изменения, в частности температура стеклования *T_g* испытывала неси-

Рис. 2. Температурные зависимости микротвердости образца CE, полученные в разных циклах охлаждение-нагревание (значения H_V при охлаждении и нагревании показаны одинаковыми значками). Цифрами указаны номера циклов. Нагрузка на индентор P = 0.05 N, время нагружения $\Delta t = 10$ s, скорость охлаждения и нагревания образца $\dot{T} = 0.5$ K/min. На вставке приведены значения температуры стеклования для различных циклов охлаждение-нагревание.

стематические колебания (см. вставку на рис. 2). При этом в пределах одного цикла значения температур стеклования и размягчения практически совпадали, если скорость изменения температуры была достаточно малой. Разброс значений T_g в разных циклах может быть связан с нарушением равновесной структуры материала после деформации и/или охлаждений в предыдущих циклах измерений. Об изменении внутренней структуры образца в результате его охлаждения свидетельствуют различные значения микротвердости, полученные на этапе охлаждения и последующего нагревания в области температур $T > T_g$ (вставка на рис. 1).

3.3. Смещение кривой $H_V(T)$ при изменениях длительности нагружения. Выше было показано, что в экспериментах по микроиндентированию эпоксидной смолы и композитов на ее основе, выполненных в достаточно широком температурном интервале, на зависимости $H_V(T)$ можно выделить температуру T_g , характеризующую переход эластомер-стекло. При этом оказалось, что координата середины ступеньки на кривой $H_V(T)$, т.е. величина T_g , существенно зависит от длительности нагружения Δt .

Описанное в конце предыдущего раздела наблюдение требовало соблюдения определенных предосторожностей при исследовании влияния длительности нагружения на смещение сигмоидальной кривой $H_V(T)$. Для получения зависимости $T_g(\Delta t)$ все измерения проводили в одном цикле охлаждение-нагревание. Последовательность измерений состояла в следующем: при фиксированной температуре наносили серию отпечатков при выбранных временах нагружения $\Delta t = 10, 30, 60$ s. После измерения длин диагоналей отпечатков температуру понижали и процесс индентирования повторяли. Таким способом были получены температурные зависимости микротвердости $H_V(T)$ при разных значениях Δt в интервале температур от 300 до 227 К. Результаты измерений для одного из образцов эластомера СЕ показаны на рис. 3, из которого видно, что температура стеклования *T_g* монотонно уменьшается при увеличении времени выдержки индентора под нагрузкой Δt .

Зависимость $T_g(\Delta t)$ указывает на то, что T_g следует рассматривать не как термодинамическую, а как кинетическую характеристику стеклования. Регистрация в экспериментах зависимости микротвердости $H_V(T)$ и зависимости $T_g(\Delta t)$ может давать определенную информацию о тепловом движении молекулярных сегментов, ответственных за эффект стеклования.

Все особенности температурной зависимости микротвердости эластомера СЕ были зарегистрированы также при изучении эластомера ССЅ (СЕ + одностенные нанотрубки). Отметим только, что статистический разброс результатов измерений в этом случае был несколько меньше, особенно на стадии нагревания.

Для того чтобы минимизировать влияние на эти зависимости систематических погрешностей, возникающих при измерениях микротвердости, целесообразно

Рис. 3. Температурная зависимость микротвердости образца СЕ при различных значениях длительности нагружения Δt : 1 - 10 s, 2 - 30 s, 3 - 60 s. Нагрузка на индентор P = 0.05 N. Зависимости $H_V(T)$ для всех времен нагружения получены на стадии охлаждения образца.

Рис. 4. Температурная зависимость параметра δ для композита CCS в цикле охлаждение (1)-нагревание (2). Нагрузка на индентор P = 0.05 N, время нагружения $\Delta t = 10$ s. На вставке в большем масштабе показан низкотемпературный участок зависимости $\delta(T)$, полученной при нагревании.

представить $H_V(T)$ в виде безразмерной нормированной функции

$$\delta T = \frac{H_V^{(\min)}}{H_V(T)},\tag{2}$$

где $H_V^{(min)} = H_V(T \gg T_g)$ — атермический предел микротвердости со стороны высоких температур. На рис. 4 показана зависимость $\delta(T)$, полученная в результате микроиндентирования эластомера ССЅ. Увеличение гистерезиса на зависимости $\delta(T)$ является следствием

нормировки микротвердости на ее высокотемпературный предел, где гистерезис выражен наиболее ярко (см. вставку на рис. 1).

3.4. Ползучесть эластомера под индентором. Зависимость размера отпечатка индентора или значения микротвердости $H_V(\Delta t)_T$ от длительности нагружения Δt при постоянной температуре T свидетельствует о процессе ползучести материала под действием постоянной сосредоточенной силы P. Явление ползучести при индентировании ранее изучали в различных кристаллических твердых телах, например в полупроводнике Ge [26], в сплаве Al-Mg [27].

Мы провели систематическое исследование кинетики ползучести при индентировании нанокомпозита ССS в интервале температур 279–289 К, т.е. в состоянии, близком к высокоэластическому. Регистрировали изменение во времени диагонали отпечатка d при постоянной нагрузке на индентор P. При описании этих экспериментов мы будем обозначать длительность индентирования символом t, она варьировалась дискретными порциями в интервале $10 \text{ s} \le t \le 600 \text{ s}$. В различных экспериментах нагрузка на индентор принимала значения 0.05-0.4 N.

На рис. 5 показаны зависимости $d^2(t)$ при двух значениях температуры. Эти зависимости качественно аналогичны кривым ползучести при макромеханических испытаниях эластомеров в области перехода от высокоэластического состояния к стеклообразному [3]. Полная деформация ползучести пропорциональна нагрузке и возрастает со временем по экспоненциальному закону с некоторым характерным временем $\tau_1^*(T)$. Такая ползучесть интерпретируется как следствие протекания в полимере под нагрузкой некоторого молекулярного релаксационного процесса с одним временем релаксации. Принимая во внимание отмеченную выше аналогию, мы попытались аппроксимировать экспериментальные

Рис. 5. Зависимость квадрата диагонали отпечатка, возникшего под действием нагрузки P = 0.15 N, от времени ее приложения для композита CCS при двух температурах: T = 280 K (*I*) и T = 288 K (*2*).

данные на рис. 5 зависимостью

$$d^{2}(t) = P \left[A_{0} - A_{1} \exp\left(-t/\tau_{1}^{*}\right) \right], \qquad (3)$$

где A_0 , A_1 и τ_1^* — параметры аппроксимации. На рис. 5 пунктиром показаны графики функции (3) при значениях параметров, которые обеспечивают их минимальное среднеквадратичное отклонение от полного набора экспериментальных точек на интервале 0 < t < 600 s. Графики получены путем стандартной компьютерной процедуры аппроксимации (пакет OriginPro 7.5). Очевидно, что в количественном отношении аппроксимацию (3) нельзя признать удовлетворительной: при t < 100 s почти все точки оказываются ниже, а при t > 100 s выше графика.

Очень часто более продуктивной является интерпретация различных свойств реального полимера, в том числе и ползучести, которая базируется на предположении о протекании в нем конформационных молекулярных процессов с некоторым спектром времен релаксации τ_1^* , τ_2^* , τ_3^* , В нашем случае вполне удовлетворительной аналитической аппроксимацией точек на рис. 5 оказалась функция

$$d^{2}(t) = P\left[A_{0} - A_{1}\exp\left(-\frac{t}{\tau_{1}^{*}}\right) - A_{2}\exp\left(-\frac{t}{\tau_{2}^{*}}\right)\right], \quad (4)$$

которая описывает вклад в ползучесть эластомера под индентором двух релаксационных процессов с различными временами τ_1^* , τ_2^* и различными относительными вкладами в полную деформацию A_1 , A_2 . При значениях параметров A_0 , A_1 , A_2 и τ_1^* , τ_2^* , которые соответствуют критерию минимального среднеквадратичного отклонения, графики функции (4) — сплошные линии на рис. 5 — вполне удовлетворительно согласуются с экспериментальными точками.

В нашем исследовании экспериментальная регистрация ползучести эластомера под индентором и ее компьютерный анализ на основе аппроксимации (4) были проверены при двенадцати различных значениях температуры из интервала 279–290 К: для каждого отдельного значения температуры найдены значения параметров A_0 , A_1 , A_2 и τ_1^* , τ_2^* . При нескольких значениях температуры проверена также пропорциональность d^2 величине нагрузки *P*. В конечном итоге установлены следующие закономерности.

— При значениях нагрузки на индентор в пределах интервала 0.05 < P < 0.4 N размер отпечатка $d^2 \propto P$, пропорциональность иногда нарушается только при малых нагрузках.

— После быстрого приложения нагрузки наблюдается "мгновенная" деформация и нестационарная затухающая ползучесть, которая достаточно хорошо описывается выражением (4). Это означает, что деформация эластомера под индентором является следствием суперпозиции не менее двух релаксационных процессов с различными временами релаксации $\tau_2^* >> \tau_1^*$.

Рис. 6. Температурная зависимость (в координатах Аррениуса) двух времен релаксации $\tau_1^*(T)$ и $\tau_2^*(T)$, определяющих ползучесть под индентором композита CCS. Нагрузка на индентор P = 0.15 N.

— При увеличении температуры значения параметров τ_1^* , τ_2^* имеют ярко выраженную тенденцию к уменьшению на фоне большого статистического разброса (рис. 6). Из рисунка видно, что для температурных зависимостей средних значений $\tau_1^*(T)$ и $\tau_2^*(T)$ можно использовать аналитическую аппроксимацию, соответствующую закону Аррениуса для термически активированной релаксации

$$\ln \tau_i^*(T) = \ln \tau_{0i}^* + \frac{U_i}{kT}, \quad i = 1, \ 2.$$
 (5)

Здесь τ_{0i}^* и U_i — параметры аппроксимации, не зависящие от температуры. Эти аппроксимации, вообще говоря, можно использовать для получения значений параметров τ_{0i}^* и U_i , однако слишком большой статистический разброс точек и сравнительно небольшой интервал температур на рис. 6 не позволяют рассматривать эти оценки как надежно полученные количественные характеристики релаксационных процессов в эластомере.

— Значения коэффициентов A_0 , A_1 , A_2 также имеют статистический разброс, но заметной температурной зависимости для них не выявлено. Их средние значения при P = 0.15 N равны

$$\overline{A}_0 = 3.57 \cdot 10^{-7} \, \frac{\mathrm{m}^2}{\mathrm{N}}, \quad \overline{A}_1 = 1.55 \cdot 10^{-7} \, \frac{\mathrm{m}^2}{\mathrm{N}},$$
$$\overline{A}_2 = 2 \cdot 10^{-7} \, \frac{\mathrm{m}^2}{\mathrm{N}}, \tag{6}$$

— Специально следует отметить, что с точностью до статистического разброса результатов измерений скорость ползучести стремилась к нулю при $t \sim 500-600$ s, т. е. заметных проявлений вязкого течения эластомера в области температур 280–290 К не наблюдалось.

В заключение данного раздела отметим также, что присутствие в эластомере CCS сравнительно небольшого количества нанотрубок заметно не повлияло на его микромеханические свойства. Поэтому результаты раздела 3.4, как и результаты разделов 3.1–3.3, дают информацию о закономерностях деформации под индентором фактически одного материала — эластомера СЕ.

4. Реологические свойства изучаемых материалов

В данном разделе предложено феноменологическое описание экспериментальных результатов, приведенных в разделе 3. Они обсуждаются в рамках реологических моделей, которые часто используют для описания вязкоупругого поведения полимерных материалов при различных видах механических испытаний.

4.1. Определяющие реологические уравнения. В нашей предыдущей работе [17] было показано, что как изучаемые нанокомпозиты на основе эпоксидной смолы, так и чистая эпоксидная смола являются аморфными материалами. При достаточно низких температурах (намного ниже температуры стеклования T_g) их можно рассматривать как изотропные упругие твердые тела, механические свойства которых в линейном приближении (малые деформации) характеризуются двумя независимыми компонентами тензора модулей упругости: например, модулем Юнга Е и коэффициентом Пуассона v. При деформации растяжения изотропных упругих стержней выполняется закон Гука, в соответствии с которым мгновенные локальные значения относительных деформаций продольного растяжения $\varepsilon_l(x, t)$ и поперечного сжатия $\varepsilon_t(x, t)$ (x — координата вдоль оси стержня) связаны с деформирующим напряжением $\sigma(x, t)$ в поперечном сечении стержня соотношениями

$$\sigma(x,t) = E\varepsilon_l(x,t),\tag{7}$$

$$\varepsilon_t(x,t) = -\nu \varepsilon_l(x,t). \tag{8}$$

Многочисленные эксперименты показали, что для большинства эластомеров в высокоэластическом состоянии и в области стеклования коэффициент Пуассона имеет величину $v \approx 0.5$ и практически не зависит от температуры. Однако связь между σ и ε_l для вязкоупругих эластомеров определяется более сложными реологическими уравнениями, чем (7). Такие уравнения должны учитывать как несинхронность изменений деформации $\varepsilon_l(x, t)$ и напряжения $\sigma(x, t)$ (эффекты последействия), так и внутреннее трение (диссипацию механической энергии) в вязкоупругих материалах. В линейной механике сплошной однородной вязкоупругой среды [28,29] роль обобщенного закона Гука играет интегральное соотношение

$$\sigma(x,t) = E_0 \varepsilon_l(x,t) + \int_{-\infty}^t \Lambda(t-t') \varepsilon_l(x,t') dt', \qquad (9)$$

где E_0 — нерелаксированный модуль упругости, а ядро интегрального оператора описывает деформационную вязкость материала. При описании деформации

Рис. 7. Реологическая модель Алфрея, соответствующая уравнениям деформирования (9а).

эластомеров оказалось целесообразным вместо общего соотношения (9) использовать некоторые конкретные и сравнительно простые реологические модели.

В качестве достаточно универсальной реологической модели изотропного эластомера обычно рассматривается стандартное линейное тело [2,28], для которого уравнение, определяющее связь между ε_l и σ , содержит три параметра: два из них E_1 и E_2 имеют размерность модуля упругости, а роль третьего параметра играет коэффициент деформационной вязкости η или соответствующее ей время релаксации т. Ползучесть такого эластомера при макромеханических испытаниях [2,28] или индентировании [15] описывается простым экспоненциальным законом (3) с единственным временем релаксации. Изучаемые нами эластомеры имеют более сложные реологические свойства, чем стандартное линейное тело. В частности, их ползучесть (4) определяется суперпозицией двух релаксационных процессов с различными временами релаксации т₁ и т₂; это означает, что неупругие свойства эластомера характеризуются двумя коэффициентами деформационной вязкости η_1 и η_2 (например, различная вязкость при деформациях растяжения и сдвига). Наиболее простую реологическую модель материала с такими свойствами предложил Алфрей [2]. Ее механическая схема показана на рис. 7: модель представляет собой последовательное соединение элемента Гука с модулем упругости Е0 и двух элементов Кельвина-Фойгта с различными модулями упругости E_1, E_2 и коэффициентами вязкости $\eta_1 = \tau_1 E_1, \eta_2 = \tau_2 E_2$. Стандартное линейное тело соответствует двум верхним элементам на рис. 7. Для материала с реологическими свойствами модели Алфрея вместо закона Гука (7) следует использовать самосогласованную систему уравнений, каждое из которых описывает деформирование одного элемента модели под действием одинакового для всех элементов напряжения σ

$$\begin{cases} \sigma = E_0 \varepsilon_0, \\ \sigma = E_1 \left(\varepsilon_1 + \tau_1 \frac{\partial}{\partial t} \varepsilon_1 \right), \\ \sigma = E_2 \left(\varepsilon_2 + \tau_1 \frac{\partial}{\partial t} \varepsilon_2 \right), \\ \varepsilon_l = \varepsilon_0 + \varepsilon_1 + \varepsilon_2. \end{cases}$$
(9a)

Данная система уравнений является одним из конкретных представлений общего соотношения (9): ядро интегрального оператора $\Lambda(t - t')$ в (9) можно найти, исключая из системы уравнений (9а) деформации отдельных частей модели ε_0 , ε_1 и ε_2 .

Физический смысл параметров модели легко установить, используя уравнения (9) для описания деформации ползучести стержня под действием однородного постоянного напряжения $\sigma(x, t) \equiv \sigma = \text{const}$, приложенного в момент времени t = 0. Решение системы уравнений (9a) с начальным условием $\varepsilon_i(x, 0) = E_0^{-1}\sigma$ имеет вид соотношения Гука (7) с эффективным модулем Юнга $E^*(\tau_1, \tau_2; t)$, который зависит от времени t и параметров модели

$$\varepsilon_l(x,t) = \frac{\sigma}{E^*(\tau_1,\tau_2;t)},$$

$$\frac{1}{E^*} = \frac{1}{E_0} + \sum_{i=1,2} \frac{1}{E_i} \left(1 - e^{-t/\tau_i}\right).$$
(10)

Из (10) следует, что упругая деформация материала в момент быстрого нагружения $\varepsilon_l(t \to 0) = E_0^{-1} \sigma$ и после затухания ползучести $\varepsilon_l(t \to \infty) = E_\infty^{-1} \sigma$ подчиняется закону Гука с двумя значениями модуля упругости — нерелаксированным E_0 и релаксированным

$$E_{\infty} = \frac{E_0 E_1 E_2}{E_0 (E_1 + E_2) + E_1 E_2},$$

а модули E_1 и E_2 определяют вклад в полную деформацию релаксационных процессов с соответствующими временами релаксации τ_1 и τ_2 .

Отметим, что показанную на рис. 7 модель можно использовать не только для описания вязкоупругой деформации. Если выполнить предельный переход $E_2 \rightarrow 0$, но оставить конечным коэффициент вязкости η_2 , то в формуле (10) возникает слагаемое, которое описывает вязкое течение материала

$$\frac{1}{E^*} = \frac{1}{E_0} + \frac{1}{E_1} \left(1 - e^{-t/\tau_1} \right) + \frac{t}{\eta_2}.$$
 (10a)

4.2. Ползучесть эластомера под индентором. Воспользуемся результатами теоретических исследований [14,15], в которых классическая контактная задача Герца для идеально упругих материалов обобщена на случай внедрения жесткого индентора в вязкоупругий материал. В частности, в работе [15] описана микроползучесть под коническим индентором вязкоупругого материала, реологические свойства которого заданы соотношениями (8) и (9а) при $E_2 \rightarrow 0$, но конечном значении η_2 . Учет в формулах работы [15] упругих свойств второго звена на рис. 7 не представляет особых сложностей и приводит к очевидным следствиям, которые видны при сравнении формул (10) и (10а).

При анализе ползучести вязкоупругого материала под индентором следует учитывать две специфические особенности этого процесса. Во-первых, в окрестности индентора реализуется неоднородное напряженное состояние и возникают как деформации растяжения-сжатия, так и деформации сдвига. Поэтому микроползучесть под индентором зависит не только от параметров системы уравнений (9a) E_0, E_1, E_2 и τ_1 и τ_2 , но и от коэффициента Пуассона v. Во-вторых, при постоянной нагрузке на индентор Р деформация сопровождается постепенным уменьшением напряжения в области контакта вследствие увеличения поверхности раздела между индентором и материалом. Корректный учет этих особенностей при решении контактной задачи [15] приводит к следующему выражению для зависимости от времени глубины проникновения *h* жесткого конического индентора в материал с реологическими свойствами (8) и (9а)

$$h^{2}(t,\tau) = P \frac{(1-\nu^{2})\pi\cot\vartheta}{2E^{*}(\tau_{1}^{*},\tau_{2}^{*};t)}, \quad \tau_{i}^{*} = (1-\nu^{2})\tau_{i}.$$
(11)

Здесь P — нагрузка на индентор, ϑ — угол раствора индентора, а $E^*(\tau_1^*, \tau_2^*; t)$ — эффективный модуль Юнга материала, который определяется формулой (10) с заменой в ней τ_i на τ_i^* . Отметим, что выражение (11) формально совпадает с решением классической задачи Герца, если в ней E^* заменить на модуль Юнга E идеально упругого материала.

Для пирамиды Виккерса $\vartheta = 68^{\circ}$, а диагональ отпечатка d = 7h, поэтому зависимости от времени $d = d(\tau_1^*, \tau_2^*; t)$ и микротвердости $H_V = H_V(\tau_1^*, \tau_2^*; t)$ описываются формулами

$$d^{2} = P \frac{31.1(1-\nu^{2})}{E^{*}(\tau_{1}^{*}, \tau_{2}^{*}; t)}, \quad H_{V} = \frac{0.06}{1-\nu^{2}} E^{*}(\tau_{1}^{*}, \tau_{2}^{*}; t).$$
(12)

Легко видеть, что зависимость от времени квадрата диагонали отпечатка $d^2(t)$, определяемая формулами (10)-(12), соответствует формуле (4), которая использована в разделе 3.4 для аппроксимации результатов экспериментальных измерений диагонали отпечатка при индентировании композита ССЅ в состоянии, близком к высокоэластическому (рис. 5). Параметры аппроксимации (4) связаны с параметрами реологической модели (8) и (9а) соотношениями

$$\tau_i = \frac{\tau_i^*}{1 - \nu^2}, \qquad E_i = \frac{31.1(1 - \nu^2)}{A_i}, \qquad i = 1, 2; \quad (13)$$

$$E_{\infty} = \frac{31.1(1-\nu^2)}{A_0}, \qquad E_0 = \frac{31.1(1-\nu^2)}{A_0-A_1-A_2}.$$
 (14)

Эти соотношения позволяют получать значения параметров реологической модели (рис. 7) для конкретного эластомера, используя значения A_0 , A_1 , A_2 , τ_1^* и τ_2^* найденные при анализе кривых ползучести под индентором.

Деформационная вязкость и стеклование эластомера как следствие термически активированного движения молекул

Полученные в предыдущем разделе формулы (10)-(12) описывают зависимость деформации ползучести эластомера от времени, они являются следствием учета в реологических уравнениях (9а) эффектов последействия и вязкости, которые характеризуются параметрами τ_1 и τ_2 . Но для аналитического описания влияния на ползучесть и микротвердость температуры Т и длительности индентирования Δt , а также эффекта стеклования эластомера необходимо указать явный вид зависимости от температуры всех параметров рассматриваемой реологической модели. Это можно сделать, если процессы механической релаксации и эффект деформационной вязкости в полимере проанализировать на основе представлений о термически активированном движении молекул.

5.1. Закон Аррениуса для скорости механической релаксации. Совокупность экспериментальных результатов, перечисленных в разделе 3, допускает последовательное и непротиворечивое качественное описание на основе реологической модели (8)–(9а), если ее дополнить двумя предположениями:

— модули упругости E_0 , E_1 , E_2 и ν не имеют существенной температурной зависимости в интересующей нас области температур порядка и выше температуры стеклования T_g ;

— параметры τ_1 , τ_2 , которые характеризуют скорость релаксации и деформационную вязкость материала, имеют экспоненциально сильную температурную зависимость.

При описании свойств эластомеров на молекулярном уровне такие предположения соответствуют представлениям, согласно которым как ползучесть эластомера под индентором, так и переход его в состояние стекла обусловлены термически активированным движением сегментов молекул [3,4]. Это означает, что времена релаксации τ_1 , τ_2 должны иметь характерную зависимость от температуры, соответствующую закону Аррениуса для скорости протекания термически активированных процессов

$$\tau_i(T) = \tau_{0i} \exp\left[\frac{U_i}{kT}\right], \qquad i = 1, \ 2. \tag{15}$$

Обычно предполагается, что период попыток τ_{0i} и энергия активации U_i не имеют существенной зависимости от температуры, хотя в ряде случаев количественное описание эксперимента не удается получить, не отказываясь от этого предположения [8].

Совместное использование формул (10), (12) и (15) позволяет получить теоретическое описание всех термомеханических свойств эластомера, изученных методом микроиндентирования (см. раздел 3), а также проверить адекватность рассматриваемой реологической модели наблюдаемым в экспериментах закономерностям и получить эмпирические оценки для параметров модели.

Рассмотрим прежде всего вопрос о влиянии температуры на ползучесть эластомера под индентором в высокоэластическом состоянии при $T > T_g$. Формулы (10), (12) и (15) описывают ползучесть как суперпозицию двух релаксационных процессов с эффективными временами релаксации $\tau_i^* = (1 - \nu^2)\tau_i(T)$, которые экспоненциально зависят от температуры. Эти формулы полностью согласуются с наблюдаемыми в экспериментах закономерностями ползучести, в разделе 3.4 мы их представили аналитическими аппроксимациями (4) и (5).

Формулы (10), (12) и (15) дают также аналитическое описание основных особенностей температурных зависимостей микротвердости эластомера, зарегистрированных в экспериментах (разделы 3.1–3.3). Обсудим две главные особенности: резкий рост микротвердости в узком температурном интервале при понижении температуры, который обусловлен эффектом стеклования, и асимптотическую атермичность микротвердости при достаточно высоких и низких температурах.

5.2. Аналитическое описание влияния температуры и длительности нагружения на микротвердость эластомера. Так как времена релаксации $\tau_i^*(T)$ имеют монотонную экспоненциально резкую зависимость от температуры, то из формул (10) и (12) следует, что при фиксированном значении времени индентирования $t = \Delta t$ график температурной зависимости микротвердости $H_V(T;\Delta t) \equiv$ $\equiv H_V[\tau_1(T), \tau_2(T); \Delta t]$ имеет вид ступенеподобной кривой, которая зарегистрирована в экспериментах (рис. 1). Следует только учитывать, что при измерениях микротвердости всегда выполнялось условие $\Delta t \ll \tau_2^*$, поэтому результаты измерений дают информацию только о релаксационном процессе с меньшим временем релаксации $\tau_1^*(T) = (1 - \nu^2)\tau_1(T)$. В этом случае температурная зависимость микротвердости описывается формулой

$$H_V(T;\Delta t) \approx \frac{0.06E_1}{1-\nu^2} \left\{ 1 + \frac{E_1}{E_0} - \exp\left[-\frac{\Delta t}{(1-\nu^2)\tau_1(T)}\right] \right\}_{(16)}^{-1}.$$

Температуру стеклования T_g мы определи как координату середины ступеньки на рис. 1; соответствующее этой температуре значение времени релаксации обозначим как $\tau_{1g} = \tau_1(T_g)$. Из формулы (16) видно, что в предельных случаях $\tau_{1g} \gg \Delta t$ ($T \ll T_g$ — состояние стекла) и $\tau_{1g} \ll \Delta t$ ($T \gg T_g$ — состояние эластичности) выполняются асимптотические соотношения

$$H_V(T;\Delta t) = \begin{cases} H_V^{(\max)} = \frac{0.06}{1-\nu^2} E_0, & T \ll T_g; \\ H_V^{(\min)} = \frac{0.06}{1-\nu^2} \frac{E_0 E_1}{E_0 + E_1}, & T \gg T_g. \end{cases}$$
(17)

Выход H_V на предельные значения, не зависящие от температуры, отчетливо виден на рис. 1–3. Результаты измерений приводят к соотношению между предельными значениями микротвердости $H_V^{(min)} \ll H_V^{(max)}$,

следовательно, модули упругости реологической модели изучаемого эластомера также должны удовлетворять неравенству $E_1 \ll E_0$.

Формулы (16) и (17) позволяют установить зависимость температуры стеклования $T_g(\Delta t)$ от длительности индентирования при измерениях микротвердости. В неявном виде эта зависимость определяется соотношением:

$$H_V(T_g, \Delta t) = \frac{1}{2} \left(H_V^{(\max)} - H_V^{(\min)} \right).$$
 (18)

Для изучаемого эластомера $E_1 \ll E_0$ и вблизи температуры стеклования $\Delta t \ll (1 - \nu^2)\tau_1(T_g)$. Если ограничиться основным приближением по малым параметрам, то из (16)-(18) легко получить явный вид зависимости $T_g(\Delta t)$:

$$\frac{1}{T_g} = \frac{k}{U_1} \ln \left[\frac{E_0 \Delta t}{2(1-\nu^2)E_1 \tau_{01}} \right].$$
 (19)

Эта формула описывает логарифмически слабое уменьшение T_g с увеличением Δt , что качественно согласуется с результатами эксперимента, показанными на рис. 3.

Эмпирическую оценку для U_1 может обеспечить анализ результатов регистрации температурной зависимости $H_V(T, \Delta t)$ при одном значении Δt , но в достаточно широком интервале температур в окрестности T_g (рис. 1). При этом некоторые систематические неточности при измерениях микротвердости можно устранить, если анализировать температурную зависимость нормированной микротвердости $\delta(T, \Delta t)$ (2), показанную на рис. 4. Для рассматриваемой нами реологической модели эта величина описывается формулой

$$\delta(T, \Delta t) = 1 - \frac{E_0}{E_0 + E_1} \exp\left[-\frac{\Delta t}{(1 - \nu^2)\tau_1(T)}\right].$$
 (20)

Формула (20) хорошо согласуется с экспериментальными данными, которые показаны на рис. 4: в области достаточно высоких температур $T \gg T_g$ получаем значения $\delta \rightarrow 1$, а при низких температурах $T \ll T_g$ — значения $\delta \rightarrow \delta_{\min}$, где

$$\delta_{\min} = \frac{E_1}{E_0 + E_1}.\tag{21}$$

Формула (20) и показанные на рис. 4 результаты эксперимента дают возможность найти температурную зависимость времени релаксации $\tau_1(T)$ для молекулярного процесса, который определяет эффект стеклования. Легко показать, что формулы (20) и (21) эквивалентны соотношению

$$\tau_1(T) = \frac{\Delta t}{1 - \nu^2} \left[\ln \frac{1 - \delta_{\min}}{1 - \delta(T; \Delta t)} \right]^{-1}.$$
 (22)

Подстановка в (22) $\Delta t = 10$ s, $1 - v^2 = 0.75$ и взятых из рис. 4 значений δ приводит к значениям τ_1 , которые показаны на рис. 8 в координатах Аррениуса.

 $\begin{bmatrix} 8 \\ 6 \\ 2 \\ 0 \\ 3.4 \\ 3.6 \\ 3.8 \\ 1000/T, K^{-1} \end{bmatrix}$

Рис. 8. Температурная зависимость (в координатах Аррениуса) времени релаксации процесса, определяющего стеклование и размягчение композита ССЅ. Стрелками показано направление изменения температуры при термоциклировании. Нагрузка на индентор P = 0.05 N, время нагружения $\Delta t = 10$ s.

Из рис. 8 видно, что в области стеклования зависимость $\tau_1(T)$ имеет экспоненциально резкий характер, но не соответствует простому закону Аррениуса (5) или (15), если предполагать температурную независимость энергии активации U₁. Этот результат нельзя считать неожиданным с точки зрения общефизических представлений об эффекте стеклования. Стеклование эластомера является довольно сложным самосогласованным структурно-динамическим переходом, при котором экспоненциально сильное изменение сегментальной подвижности полимерных молекул сопровождается заметным изменением ряда термодинамических и структурных характеристик полимера, в частности, коэффициента теплового расширения и плотности [4]. Поэтому естественно предполагать, что при переходе через температуру стеклования происходит также некоторое изменение межмолекулярных взаимодействий и энергетических барьеров, ограничивающих движение молекулярных сегментов. При анализе таких самосогласованных изменений как структуры полимера, так и интенсивности теплового движения молекулярных сегментов можно использовать закон Аррениуса (15), но считать энергию активации некоторой функцией температуры $U_1 = U_1(T)$ [8].

Получить эмпирические оценки для энергии активации при различных значениях температуры можно на основе формулы (15) и экспериментальных значений $\tau_i = \tau_{ie}(T)$ (рис. 6 и 8)

$$\tilde{U}_i(T) = kT \ln \left[\frac{\tau_{ie}(T)}{\tau_{0i}}\right], \qquad i = 1, \ 2.$$
(23)

Но для реализации этой процедуры необходимо иметь значения предэкспоненциального фактора (периода попыток) τ_{0i} , полученные из независимых экспериментов

или из корректных оценок в рамках микроскопической теории полимеров. Из теории следует, что параметр τ_{0i} имеет величину порядка периода гармонических колебаний кинетической единицы релаксационного процесса (атома, атомной группы, молекулярного сегмента), упруго связанной со своим окружением [4].

Подводя итоги выполненного в данном разделе анализа, отметим следующее. Изучение ползучести эластомера методом микроиндентирования выявило два релаксационных процесса с характерными временами $\tau_1(T) \ll \tau_2(T)$. Меньшее из них $\tau_1(T)$ определяет также кинетику эффекта стеклования; в наших экспериментах этот эффект проявляется как резкий ступенеподобный рост микротвердости при понижении температуры. Температурные зависимости $\tau_1(T)$ и $\tau_2(T)$, полученные при анализе экспериментальных данных, на качественном уровне рассмотрения подобны закону Аррениуса для скорости протекания термически активированных молекулярных процессов. Согласно установившейся в физике полимеров терминологии (классификации) [4] эти процессы можно связать с а-релаксацией, которая обусловлена тепловым движением сравнительно небольших (нанометровых) сегментов макромолекул в неупорядоченном (аморфном) полимере. При этом более быстрый α -процесс с временем релаксации $\tau_1(T)$ наблюдается в любом эластомере, а более медленный α' -процесс с временем релаксации $\tau_2(T) > \tau_1(T)$ наблюдается только в полимерах с активными добавками, роль которых в нашем случае, по-видимому, играют звенья сополимера. Можно также предположить, что α' -процесс обязан более заторможенному движению сегментов в микрообластях ближнего порядка, которые в изученных эластомерах имеют размеры $\sim 2.5 - 2.8$ nm [17].

5.3. Эмпирические оценки для параметров реологической модели эластомера ССS. В результате анализа экспериментальных наблюдений получены температурные зависимости $\tau_1(T) \equiv \tau_{\alpha}(T)$ и $\tau_2(T) \equiv \tau_{\alpha'}(T)$, показанные на рис. 6. Большой статистический разброс экспериментальных данных не позволяет проверить количественное соответствие этих зависимостей закону Аррениуса (15). Более корректные значения энергии активации $U_1 = U_{\alpha}$ и $U_2 = U_{\alpha'}$ можно получить из соотношения (23). Необходимые для этого параметры $\tau_{01} = \tau_{0\alpha}$ и $\tau_{02} = \tau_{0\alpha'}$ и способы их получения достаточно хорошо известны в физике полимеров [4]: $\tau_{0\alpha} \approx \tau_{0\alpha'} \approx 5 \cdot 10^{-12}$ s.

В разделе 4.1 мы рассмотрели реологическую модель, которая содержит четыре модуля упругости v, E_0 , E_1 и E_2 и два кинетических параметра $\tau_1 = \tau_{\alpha}$, $\tau_2 = \tau_{\alpha'}$. Эта модель хорошо описывает основные закономерности нестационарной ползучести под индентором эластомера ССЅ в состоянии высокой эластичности (температурный интервал 280–290 К). Зарегистрированный методом микроиндентирования переход эластомера в состояние стекла при понижении температуры до 227 К также находит адекватное описание в рамках этой модели, если

Рис. 9. Температурная зависимость энергии активации процессов α и α' , определенная в разных типах экспериментов: l — данные рис. 6, 2 — данные рис. 8. Значения энергии активации рассчитаны согласно формуле (23) в предположении, что величина предэкспоненциального множителя равна $\tau_0 = 5 \cdot 10^{-12} \,\mathrm{s}^{-1}$.

ее дополнить законом Аррениуса (15) для температурной зависимости времен релаксации $\tau_i(T)$ ($i = \alpha, \alpha'$).

Таким образом, в качестве полного набора параметров модели следует рассматривать четыре модуля упругости v, E_0 , E_1 и E_2 и четыре молекулярнокинетических параметра τ_{0i} и U_i $(i = \alpha, \alpha')$. Три из них имеют стандартные для эластомеров значения: $v \approx 0.5$, $\tau_{0\alpha} \approx \tau_{0\alpha'} \approx 5 \cdot 10^{-12}$ s. Эмпирические оценки для остальных параметров можно получить путем сопоставления экспериментальных данных (разделы 3.1-3.4) и результатов теории (разделы 4.2 и 5.2). Следует отметить, что вследствие статистического разброса результатов измерений и гистерезисных эффектов при термоциклировании речь может идти только о средних значениях параметров.

Значения модулей упругости Е1, Е2 и релаксированного модуля E_{∞} (табл. 1) находим подстановкой в формулы (13)-(14) коэффициентов A_0, A_1, A_2 (6), полученных при анализе кривых ползучести в разделе 3.4. Значение нерелаксированного модуля E_0 определяется разностью $A_0 - (A_1 + A_2)$, поэтому оценку E_0 с помощью формулы (14) нельзя признать надежной из-за большой дисперсии коэффициентов А. Более корректную оценку для Е0 обеспечивают результаты измерений микротвердости эластомера в состоянии стекла (рис. 4) и формула (21): подставляя в эту формулу $\delta_{\min} \approx 0.04$ и уже найденное значение Е₁, получим приведенное в табл. 1 значение Е₀. С точностью до статистического разброса результатов измерений можно считать, что все модули упругости не зависят от температуры в интервале 227-290 К.

Таблица 1. Значения модулей упругости в реологической модели эластомера СЕ: ν — коэффициент Пуассона; E_0 и E_{∞} — нерелаксированный и релаксированный модули Юнга; E_1 и E_2 — модули, характеризующие вклад в деформацию α -и α' -процессов

ν	E_0 , Pa	E_{∞} , Pa	E_1 , Pa	E_2 , Pa
0.5	$4 \cdot 10^{9}$	$6 \cdot 10^7$	$14\cdot 10^7$	$11 \cdot 10^7$

Таблица 2. Значения молекулярно-кинетических параметров реологической модели эластомера СЕ: $\tau_{0\alpha}$ — период попыток для α - и α' -процессов; U_{α} и $U_{\alpha'}$ — энергия активации для α - и α' -процессов в состоянии эластичности; ΔU_{α} — скачок энергии активации для α -процесса при стекловании эластомера; T_{gt} и $2\Delta T_g$ — термодинамическая температура стеклования и пирина интервала стеклования

$ au_{0lpha}, { m s}$	$U_{\alpha'}, \mathrm{eV}$	U_{α}, eV	$\Delta U_{\alpha}, \mathrm{eV}$	T_{gt}, \mathbf{K}	$2\Delta T_g, \mathbf{K}$
$5\cdot 10^{-12}$	0.77	0.69	0.05	261	6

Значения энергии активации U_{α} и $U_{\alpha'}$ двух релаксационных процессов, которые определяют термомеханические свойства эластомера, находим подстановкой в формулу (23) значений времен релаксации $au_1 = au_{lpha}(T)$ и $\tau_2 = \tau_{\alpha'}(T)$ из рис. 6 и 8. Результаты этой процедуры показаны на рис. 9, а основные значения параметров приведены в табл. 2. Данные, полученные при изучении ползучести эластомера в состоянии, близком к высокоэластическому (280-290 К), приводят к не зависящим от температуры значениям $U_{\alpha'} > U_{\alpha}$. Изучение микротвердости в области более низких температур позволяют заключить, что эффект стеклования эластомера является следствием термически активированного апроцесса с энергией активации $U_{\alpha}(T)$, которая имеет заметную температурную зависимость. Достаточно хорошей аналитической аппроксимацией для этой зависимости является сигмоидальная функция Больцмана

$$\tilde{U}_{\alpha}(T) = U_{\alpha} + \Delta U_{\alpha} \left[1 + \exp\left(\frac{T - T_{gt}}{\Delta T_g}\right) \right]^{-1}.$$
 (24)

Значения параметров аппроксимации (24) приведены в табл. 2.

Отметим, что гистерезис микромеханических свойств эластомера при термоциклировании приводит только к небольшому рассогласованию значений U_{α} и не влияет на величину остальных параметров аппроксимации (24): ΔU_{α} , ΔT_g , T_{gt} . Кроме того, обращает на себя внимание совпадение значений U_{α} , полученных на основе результатов изучения микромеханических свойств в различных температурных интервалах в режиме охлаждения.

Размытую ступеньку на зависимости $U_{\alpha}(T)$ можно интерпретировать как следствие некоторых структурных изменений в эластомере (например, изменение

плотности упаковки молекулярных цепей), обусловленных экспоненциально резким изменением интенсивности теплового движения молекулярных сегментов в окрестности температуры Tgt. Поэтому Tgt естественно считать истинной (термодинамической) температурой стеклования, а 2 ΔT_g — шириной интервала стеклования. Можно ожидать, что именно в окрестности этой температуры будут локализованы аномалии, наблюдаемые при изучении стеклования эластомеров квазистатическими методами тепловой калориметрии или дилатометрии [4]. В общем случае T_{gt} не совпадает с "кинетической" температурой стеклования $T_g(\Delta t)$, которая обсуждалась в разделе 3.3 и определена формулой (19) в разделе 5.2. Особенности термомеханических характеристик эластомера, наблюдаемые при переходе через температуру T_g , являются следствием "резонансного" взаимодействия термически активированного молекулярного процесса с тем или другим переменным во времени внешним воздействием (нагрузкой) на образец. Поэтому T_g зависит как от параметров эластомера, так и от параметров эксперимента (длительности нагрузки или частоты ее изменения), тогда как T_{gt} определяется только его структурой и характером межмолекулярных взаимодействий.

Авторы выражают благодарность V.Koutsos и Q. Li (Edinburg, UK) за предоставленные образцы эпоксидной смолы и нанокомпозитов на ее основе.

Список литературы

- [1] Дж. Ферри. Вязкоупругие свойства полимеров. ИЛ, М. (1963). 535 с.
- [2] Т. Алфрей, Е.Ф. Гарни. Динамика вязкоупругого поведения. В кн.: Реология / Под ред. Ф. Эйриха; пер. с англ. под ред. Ю.Н. Работнова и П.А. Ребиндера. ИЛ, М. (1962). С. 459. [Rheology. Theory and Application. V. 1 / Ed. F.R. Eirich. Academic Press Inc., Publishers, N.Y. (1956)].
- [3] В.Е. Гуль, В.Н. Кулезнев. Структура и механические свойства полимеров. Высш. шк., М. (1972). 320 с.
- [4] Г.М. Бартенев, Ю.В. Зеленев. Физика и механика полимеров. Высш. шк., М. (1983). 391 с.
- [5] Yu-Hsuan Liao, Olivier Marietta-Tondin, Zhiyong Liang, Chuck Zhang, Ben Wang. Mat. Sci. Eng. A 385, 175 (2004).
- [6] Shiqiang Deng, Meng Hou, Lin Ye. Polymer Testing 34, 803 (2007).
- [7] П.П. Кобеко. Аморфные вещества. Изд-во АН СССР, М.-Л. (1952). 432 с.
- [8] А.И. Слуцкер, Ю.И. Поликарпов, К.В. Васильева. ФТТ 44, 1529 (2002).
- [9] Б.В. Мотт. Испытание на твердость микровдавливанием. Металлургиздат, М. (1960). 338 с.
- [10] А.С. Поваренных. Твердость минералов. Изд-во АН УССР, Киев. (1963). 304 с.
- [11] Ю.С. Боярская, Д.З. Грабко, М.С. Кац. Физика процессов микроиндентирования. Штиинца, Кишинев (1986). 294 с.
- [12] A.C. Fischer-Cripps. Nanoindentation. Springer, New York (2011). 302 p.
- [13] E.H. Lee, J.R.M. Radok. Trans. ASME. J. Appl. Mech. 27, 438 (1960).

- [14] I.N. Sneddon. Int. J. Eng. Sci. 3, 47 (1965).
- [15] A.C. Fischer-Cripps. Mater. Sci. Eng. A 385, 74 (2004).
- [16] Q. Li, M. Zaiser, V. Koutsos. Phys. Status Solidi (a) 201, R89 (2004); Vasileios Koutsos, Qianqian Li, Michael Zaiser, Jane R. Blackford. 13th Int. Conf. on Deformation, Yield and Fracture of Polymers. 2006. P. 451.
- [17] L.S. Fomenko, S.V. Lubenets, V.D. Natsik, A.I. Prokhvatilov, N.N. Galtsov, Yu.V. Milman, V. Koutsos, Q.Q. Li. J. Mater. Sci. In press (2012).
- [18] A.R. Spurr. J. Ultrastruct. Res. 26, 31 (1969).
- [19] С.И. Булычев, В.П. Алехин. Испытание материалов непрерывным вдавливанием индентора. Машиностроение, М. (1990). 224 с.
- [20] Ю.И. Головин. ФТТ 50, 2113 (2008).
- [21] B.J. Briscoe, K.S. Sebastian, M.J. Adams. J. Phys. D 27, 1156 (1994).
- [22] B.J. Briscoe, I. Fiori, E. Pelillo. J. Phys. D 31, 2395 (1998).
- [23] Shuang Yang, Yong-Wei Zhang. J. Appl. Phys. 95, 3656 (2004).
- [24] Chien-Kuo Liu, Shanboh Lee, Li-Piin Sung, Tinh Nguyen. J. Appl. Phys. 100, 033 503 (2006).
- [25] Y. Zhou, F. Pervin, I. Lewis, Sh. Jeelani. Mater. Sci. Eng. A 452–453, 657 (2006).
- [26] A.F. Gerk. Philos. Mag. 32, 355 (1975).
- [27] H. Takagi, Ming Dao, M. Fujiwara, M. Otsuka. Mater. Trans. 47, 2006 (2006).
- [28] А. Новик, Б. Берри. Релаксационные явления в твердых телах / Пер. с англ. под ред. Э.М. Надгорного, Я.М. Сойфера. Атомиздат, М. (1975). 472 с. [A.S. Nowick, B.S. Berry. Anelastic relaxation in crystalline solids. Academic Press, N.Y.-London (1972)].
- [29] Ю.Н. Работнов. Механика деформируемого твердого тела. Наука, М. (1988). 712 с.