05,01

Магнитные и электрические свойства полуметаллического ферромагнетика Co₂CrAl

© Н.И. Коуров¹, А.В. Королёв¹, В.В. Марченков¹, А.В. Лукоянов^{1,2}, К.А. Белозерова¹

¹ Институт физики металлов УрО РАН,

Екатеринбург, Россия

² Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург, Россия E-mail: kourov@imp.uran.ru

(Поступила в Редакцию 23 октября 2012 г.)

Представлены результаты измерений магнитных и электрических свойств ферромагнитного сплава Co₂CrAl в двух структурных состояниях: после интенсивной пластической деформации и после кратковременного высокотемпературного отжига деформированных образцов. Эксперименты выполнены в интервале температур 2–900 K при напряженности магнитного поля $H \le 50$ kOe. Определены величины ферромагнитной T_C и парамагнитной Θ температур Кюри ($T_C = 305$ K, $\Theta = 326$ K), а также значения спонтанного μ_S и эффективного μ_{eff} магнитных моментов на молекулу сплава ($\mu_S = 1.62 \,\mu_B$, $\mu_{\text{eff}}^2 = 8.2 \,\mu_B^2$). Показано, что энергия магнитной кристаллической анизотропии сплава находится на уровне $\sim 5 \cdot 10^5$ erg/g. Особенности электрических свойств связываются с наличием энергетической щели в электронном спектре вблизи E_F и изменением ее параметров в зависимости от температуры.

Работа выполнена при частичной поддержке РФФИ (грант № 12-02-00271) и Программы фундаментальных научных исследований Отделения физических наук РАН (проект № 12-Т-2-1011).

1. Введение

В ряде работ (см., например, [1,2]) показано, что электронная зонная структура сплава Гейслера Co₂CrAl имеет вид, характерный для полуметаллических ферромагнетиков [3]: подзона электронов со спинами, направленными вдоль вектора намагниченности (спин "вверх"), является полностью занятой, а подзона с противоположным направлением спинов (спин "вниз") вблизи уровня Ферми *E*_F оказывается пустой. Иными словами, в этом сплаве для электронов со спинами "вниз" на уровне Ферми E_F формируется энергетическая щель, ширина которой по данным разных авторов [1,2,4,5] составляет 0.2-0.5 eV. Сплав Co2CrAl в упорядоченном состоянии выделяется в ряду полуметаллических ферромагнетиков тем, что спиновая поляризации в нем достигает предельного значения ~ 100%. Поэтому перспективы возможного использования этого сплава в устройствах спинтроники вызывают постоянный интерес к исследованию его физических свойств.

Зонная структура сплава Co₂CrAl легко трансформируется под действием внутренних напряжений, искажений структуры и в особенности в результате эффектов разупорядочения [3,4]. Под действием указанных факторов ширина энергетической щели и степень спиновой поляризации могут меняться вплоть до нулевых значений. Вероятно, в связи с этим обстоятельством данные по магнитным и электрическим свойствам, полученные разными авторами, расходятся. Особенно существенные различия обнаруживаются в температурной зависимости электросопротивления $\rho(T)$. В [3,4] после аморфизации сплава Co₂CrAl в результате сверхбыстрой закалки образцов при температурах ниже комнатной наблюдали

значительное уменьшение величины $\rho(T)$ и смену знака температурного коэффициента сопротивления (ТКС). Такое поведение электросопротивления связывалось с наличием в сплаве смеси металлических и полупроводниковых фаз.

В последние годы большое внимание уделяется поиску материалов на основе сплавов Гейслера с наилучшими функциональными характеристиками. При этом не только идут по пути изменения химического состава сплавов, но используют различные современные технологии, изменяющие их параметры. В частности, для разупорядочения сплавов наряду со сверхбыстрой закалкой используется метод интенсивной пластической деформации кручением образцов в наковальнях Бриджмена под высоким давлением. В настоящей работе выполнены комплексные экспериментальные исследования полуметаллического ферромагнетика Co₂CrAl с целью выявления связи его магнитных и электрических свойств с особенностями электронной зонной структуры и определения их изменения в результате разупорядочения образцов методом пластической деформации кручением под высоким давлением.

2. Магнитные свойства

Типичные магнитные свойства исследуемого сплава после кратковременного высокотемпературного отжига деформированных образцов показаны на рис. 1-3для поликристаллического образца в виде длинной прямоугольной призмы с расчетным (расчет по Аэрони [6]) значением размагничивающего фактора N = 0.148. Измерения выполнены на СКВИД-магнито-

Рис. 1. Намагниченность сплава Co₂CrAl при T = 2 K. На вставках: a-c — кривые намагничивания в слабых и сильных магнитных полях, d — зависимость $M(H^{-2})$.

метре MPMS-5XL фирмы Quantum Design в отделе магнитных измерений ИФМ УрО РАН.

В целом полученные экспериментальные данные согласуются с результатами ранее опубликованных работ [4,7]. В первую очередь отметим особенности исследуемого сплава, которым в ранних работах не уделялось особого внимания. Петля магнитного гистерезиса характеризуется коэрцитивной силой $H_C = 144$ Ое и остаточной намагниченностью $M_R = 32$ emu/g (вставка *a* на рис. 1).¹ Необратимые процессы технического намагничивания доминируют при напряженности поля $H \leq |H_S| \cong 4$ кОе (вставка *b* на рис. 1).² Эти данные указывают на то, что энергия магнитной анизотропии в исследуемом сплаве проявляет себя заметным образом. При этом величина поля анизотропии H_A , по-видимому, должна быть выше значения H_S . Более определенно оценить величину H_A можно следующим способом.

Как видно из вставки *c* на рис. 1, насыщение, т.е. выход на горизонтальную прямую M(H) = const, не достигается вплоть до максимального в наших экспериментах значения H = 50 kOe. В то же время при больших значениях H > 20 kOe выполняется закон приближения

к насыщению (вставка *d* на рис. 1) (закон Акулова [8]) для поликристалла

$$M = M_S - 4DK^2/M_S H^2, \tag{1}$$

где M_S — намагниченность насыщения, K — константа анизотропии, D — числовой коэффициент, который различен для разных типов анизотропии. Используя зависимость $M(H^{-2})$ (вставка *d* на рис. 1) и формулу (1), получаем $M_S = 45.9 \pm 0.1 \,\mathrm{emu/g}$ и соответственно Z-проекцию магнитного момента $\mu_S = 1.62 \mu_B$, приходящегося на молекулу Co₂CrAl, в основном состоянии ($T \cong 0$ K). Для сплава Co₂CrAl разные авторы [4] указывают экспериментальное значение μ_S в интервале $1.5-3\,\mu_B$. Расчетное значение момента µ для упорядоченного состояния этого сплава составляет 3 µ_В [1,2]. Одна из возможных причин расхождения теории и эксперимента заключается в том, что все экспериментальные данные получены на недостаточно совершенных в структурном отношении образцах. В частности, в экспериментах использованы поликристаллические образцы, приготовленные, как правило, методом дуговой плавки, что может приводить к неоднородному распределению компонент по образцу, невозможности получить высокую степень атомного порядка и соответственно к определенным отличиям реальной зонной структуры от расчетной.

Сплав Co₂CrAl имеет кубическую структуру типа $L2_1$, и, следовательно, магнитная кристаллическая анизотропия в этом сплаве должна быть кубической. В таком

¹ Величина M_R определена с учетом поправки на размагничивающий фактор образца, т.е. по точке, в которой пересекаются кривая размагничивания и прямая M = H/Nd, где d = 8.04 g/cm³ плотность исследуемого материала.

 $^{^{2}}$ Здесь H_{S} — критическое поле, при котором восходящая и нисходящая ветви петли гистерезиса сливаются в одну линию.

случае D = 2/105, что в свою очередь позволяет найти из эксперимента (вставка *d* на рис. 1) значение константы $K = 4.6 \cdot 10^5$ erg/g и величину поля анизотропии $H_A = 2K/M_S = 20$ kOe. Погрешность указанных величин не превышает нескольких процентов. Оценки параметров магнитной анизотропии носят характер первого приближения и далее будут сделаны определенные уточнения относительно магнитной анизотропии исследуемого образца.

Согласно хорошо известным теоретическим описаниям изотермы M(H), для поликристаллического образца относительная остаточная намагниченность $m_R = M_R/M_S$ зависит от числа эквивалентных кристаллографических осей легкого намагничивания (ОЛН). В случае кубической анизотропии характерными ориентациями ОЛН, как правило, являются кристаллографические направления либо типа (100) (три эквивалентные ОЛН, $K_3 > 0$, K_n — константа кубической анизотропии, n — число эквивалентных ОЛН), либо типа (111) ($K_4 < 0$). С ростом числа эквивалентных направлений ОЛН величина m_R растет и составляет 0.83 ($K_3 > 0$), 0.87 ($K_4 < 0$).

Для исследуемого образца в основном состоянии $(T \cong 0 \,\mathrm{K})$ экспериментальное значение $m_R^{\mathrm{exp}} = 0.70$, что существенно ниже минимально возможной теоретической величины m_R для кубического типа магнитной кристаллографической анизотропии и существенно выше для случая одноосной анизотропии с единственной выделенной ОЛН ($K_1 > 0$, $m_R = 0.5$). Это обстоятельство $(0.5 < m_R^{exp} < 0.83)$ позволяет предполагать, что магнитная анизотропия в исследуемом образце имеет более сложный тип по сравнению с простыми случаями кубической или одноосной анизотропии. Одно из возможных объяснений количественного несоответствия значения m_R^{exp} теоретическим величинам можно дать в рамках комбинированной модели Стонера-Вольфарта для случая наложения одноосной анизотропии на кубическую [9]. Такое смешанное анизотропное состояние является ожидаемым и ранее экспериментально исследовано в ряде работ [9–11].

Как отмечено в [4,5], одна из характерных особенностей исследуемого сплава — тетрагональные искажения структуры, вызванные неполнотой атомного упорядочения. Разумно предполагать, что такого типа искажения структуры могут быть причиной продуцирования одноосной анизотропии как дополнения к кубической. Основываясь на этом предположении, выполним анализ данных рис. 1 в модели [9] и определим параметры комбинированной анизотропии: $H_{A1} = 2K_1/M_S$, $H_{A3} = 2K_3/M_S$, $H_{A4} = 2K_4/M_S$, где H_{A1} и H_{A3} , H_{A4} — поля одноосной и кубической анизотропии при условии $K_3 > 0$, $K_4 < 0$ соответственно. Для решения этой задачи следует найти коэффициент D_{kU} в уравнении

$$M/M_S = 1 - D_{kU}/H^2,$$
 (2)

перестроив соответствующим образом график на вставке *d* к рис. 1. Значение этого коэффициента определяется

Параметры магнитной анизотропии при T = 2 К, определенные по экспериментальным данным (вставка d рис. 1) в рамках комбинированной модели Стонера–Вольфарта для случая наложения одноосной анизотропии на кубическую [9]

п	H _{A1} , kOe	H _{An} , kOe	$K_1, 10^5 \text{ erg/g}$	K_n , 10 ⁵ erg/g
$ \begin{array}{r} 3 \ (K_3 > 0) \\ 4 \ (K_4 < 0) \end{array} $	8.6	17.0	2.0	3.9
	6.5	22.7	1.5	-5.2

как

$$D_{kU} = H_{A1}^2 / 15 + H_{An}^2 / 105.$$
(3)

Необходимо также определить еще один параметр — $k_U(m_R)$, который является функцией намагниченности m_R и характеризует относительный вклад одноосной анизотропии в полную энергию магнитной анизотропии. В аналитическом виде функция $k_U(m_R)$ пока не получена, ее находят численными методами. Графики этой функции приведены в [9]. Воспользовавшись ими, несложно найти численные значения $k_U(m_R)$, которые в свою очередь определяются как

$$k_U(m_R) = H_{A1}/(H_{A1} + H_{An}).$$
(4)

В нашем эксперименте $m_R^{\exp} = 0.7$ и величина $k_U(m_R)$ составляет 0.336 или 0.221 для $K_3 > 0$ или $K_4 < 0$ соответственно, а значение $D_{kU} = 7.7 \cdot 10^6 \text{ Oe}^2$. Далее решаем уравнения (3), (4) и находим искомые параметры анизотропии, численные значения которых с погрешностью не более 5% указаны в таблице.

Выполненный анализ показывает, что энергия кубической магнитной анизотропии в сплаве Co₂CrAl, независимо от способов ее определения весьма значительна и соизмерима с таковой для некоторых сплавов 3*d*-металлов, а использование модели [9] дает дополнительную информацию о специфике магнитной анизотропии исследуемого образца и возможных его характеристиках. Однако полученные результаты оставляют открытым ряд вопросов о магнитной анизотропии сплава Co₂CrAl. Прежде всего это вопрос о знаке константы K_n , а также вопросы физики как базовой кубической, так и дополнительной одноосной анизотропии в этом и других полуметаллических ферромагнитных сплавах. Решение этих вопросов, вероятно, возможно при исследовании монокристаллов и дальнейшем развитии физики магнетизма сплавов Гейслера. В настоящее время мы не располагаем монокристаллическими образцами и не имеем возможности дать более детальную информацию о магнитной анизотропии Co₂CrAl. Отметим лишь, что возможность высокой энергии магнитной кристаллографической анизотропии в сплавах на основе Co2CrAl прогнозировалась в работе [12], в которой экспериментально установлены высокие значения орбитальных атомных магнитных моментов на ионах Cr и Co. Уместно также заметить, что результаты работы [12] и полученное нами подтверждение сделанного в этой работе прогноза позволяют предполагать высокий уровень анизотропной линейной магнитострикции в сплавах на основе Co₂CrAl.

Рис. 2. Температурные зависимости намагниченности при H = 0.5 (1) и 50 kOe (2). Стрелки вдоль кривых указывают направления изменения температуры. На вставке показана зависимость dM/dT(T), определенная для случая H = 0.5 kOe.

Температурная зависимость намагниченности, приведенная на рис. 2, была измерена по следующей схеме: охлаждение образца при H = 0 до температуры T = 2 K, затем включение поля $H = 0.5 \text{ kOe} \ll H_S$ и измерение функции M(T) в указанном поле в цикле непрерывный нагрев образца до парамагнитного состояния-последующее охлаждение до T = 2 К. Видно, что полученная зависимость M(T) характеризуется эффектом температурного гистерезиса. В [4,13] такая особенность поведения M(T) связывалась с возможным присутствием в сплаве атомно-упорядоченных и разупорядоченных областей, что может сопровождаться появлением конкурирующих ферро- и антиферромагнитных взаимодействий. В этом случае следует ожидать эффект однонаправленной магнитной анизотропии. Однако в наших образцах такого эффекта мы не обнаружили. На наш взгляд, температурный гистерезис зависимости M(T), измеренной при достаточно малой напряженности $H \ll H_S(T = 2 \text{ K}) \cong 4 \text{ kOe}$, является для ферромагнитных образцов типичным следствием температурных изменений петли магнитного гистерезиса, а именно уменьшения с ростом температуры коэрцитивной силы H_C и величины критического поля H_S , т.е. следствием специфики необратимых технических процессов намагничивания, прежде всего процессов необратимого смещения доменных границ под действием результирующего внутреннего магнитного поля, которое при однородном намагничивании образца можно определить, как $H_i(T) = H - NM(T)d$ (N — размагничивающий фактор образца, $d = 8.04 \,\text{g/cm}^3$ — плотность материала).

Подтверждением того, что температурный гистерезис политермы M(T) действительно есть следствие температурных изменений изотермы M(H), является следующее. Сопоставляя данные рис. 1 и 2, можно видеть, что при нагреве стартовая точка (T = 2 K, H = 0.5 kOe), которая

должна лежать на девственной кривой намагничивания, расположенной внутри петли гистерезиса, находится непосредственно на восходящей ветви петли гистерезиса, а точка завершения температурного цикла расположена практически на нисходящей ветви. При этом мы полагаем, что петля магнитного гистерезиса в широкой области температур обусловлена необратимыми эффектами перестройки магнитной доменной структуры в результате изменения внутреннего магнитного поля $H_i(T)$. Иными словами, при измерении M(T) внешнее магнитное поле Н сохраняется неизменным, а внутреннее поле H_i меняется с изменением намагниченности M. Именно под действием этого результирующего поля H_i в некотором интервале температур происходят необратимые процессы перестройки доменной структуры, а следовательно, и процессы намагничивания образца при его нагреве и размагничивания при его охлаждении.

Как видно из рис. 2, зависимость M(T) при $H = 50 \text{ kOe} > H_A \gg H_S$ является однозначной функцией, т.е. температурные изменения намагниченности при нагреве и охлаждении в этом случае носят обратимый характер.

Экспериментальные данные рис. 2 позволяют определить температуру Кюри T_C как положение точки перегиба на кривых M(T), которая находится как точка минимума зависимости dM/dT (см. вставку на рис. 2). Найденное таким способом значение T_C с погрешностью $\sim 1-2$ К составляет 308 и 318 К для эксперимента при H = 0.5 и 50 kOe соответственно. Детальное обсуждение используемого метода определения величины T_C выходит за рамки настоящей работы. В то же время из общих соображений следует, что с ростом величины H точка перегиба функции M(T) должна двигаться в сторону высоких температур, а более достоверным является результат при меньшем значении H, т.е. величину $T_C = 308$ К можно принять за истинное значение температуры Кюри исследованного сплава.

Результаты измерений магнитной восприимчивости выше *T_C* представлены на рис. 3. Видно, что в широком

Рис. 3. Парамагнитная восприимчивость для сплава Co₂CrAl. Сплошная линия — результат обработки экспериментальных данных согласно выражению (5).

Рис. 4. Рассчитанные ПЭС для сплава Co₂CrAl. *a* — в ферромагнитно-упорядоченном состоянии (спин-поляризованный LSDAрасчет), *b* — в разупорядоченном состоянии (расчет LDA без спиновой поляризации). На вставках представлены ПЭС вблизи *E*_F.

интервале температур парамагнитная восприимчивость в пределах погрешности измерений описывается законом Кюри-Вейсса

$$\chi = C/(T - \Theta). \tag{5}$$

Здесь *С* — постоянная Кюри, а Θ — постоянная Вейсса (или парамагнитная температура Кюри), численные значения которых составляют 0.0052 К · cm³/g и 326 К соответственно, а величина квадрата эффективного магнитного момента μ_{eff}^2 , приходящегося на формульную единицу, равна $8.2 \mu_B^2$. Используя данные низкотемпературных измерений, приведенные на рис. 1, находим величину спонтанного момента μ_S , также приходящегося на формульную единицу, в насыщении ($\mu_S = 1.62 \mu_B$) и определяем параметр Роудса–Вольфарта $p_{\rm R-W} = p_C/\mu_S$ = 1.26, где величина p_C находится из решения уравнения $p_C(p_C + 2) = \mu_{\rm eff}^2$ [14]. Полученное значение $p_{\rm R-W}$ является типичным для 3*d*-металлов, что указывает на недостаточно полную локализацию магнитных моментов на отдельных атомах.

3. Расчеты электронной структуры

Для уточнения особенностей структуры электронного спектра рассматриваемого сплава нами были проведены зонные расчеты методом линеаризованных мафин-тинорбиталей в приближении сильной связи и атомных сфер (штутгартский код ТВ-LМТО-ASA v. 47) [15]. В орбитальный базис были включены орбитали, соответствующие 4s-, 4p-, 3d-состояниям ионов Со и Сг, а также 3s-, 3p-, 3d-состояниям ионов Аl. Использовалась сетка из 47 неприводимых k-точек в первой зоне Бриллюэна (полное число k-точек составляет 1000). Полученные энергетические зависимости плотностей электронных состояний (ПЭС) (d, s, p) для случаев ферромагнитного (спин-поляризованный расчет в приближении локальной электронной спиновой плотности LSDA) и немагнитного (расчет в приближении локальной электронной слиновой поляризации) состояний сплава Со₂CrAl приведены на рис. 4.

Следует отметить, что результаты спин-поляризованного расчета в основных чертах совпадают с опубликованными ранее (см., например, [1,2]). Видно, что вблизи уровня Ферми E_F для электронов со спинами, направленными вдоль вектора намагниченности, выявляется полоса ПЭС шириной около 1 eV с несколькими узкими пиками, которая реализуется в основном за счет d-состояний. Наоборот, для электронов со спинами, направленными против вектора намагничивания, в окрестности E_F формируется глубокая энергетическая щель также шириной около 1 eV. Из проведенных зонных расчетов следуют значения моментов на атомах кобальта $\mu_{C_0} = 0.75 \,\mu_B$, хрома $\mu_{C_T} = 1.56 \,\mu_B$ и алюминия $\mu_{A1} = -0.06 \,\mu_{B}$. Суммарный магнитный момент, приходящийся на формульную единицу (f.u.), составляет $3 \mu_{\rm B}$, что значительно выше экспериментальных значений μ_S , но практически совпадает с величиной µ_{eff}. Соответственно расчетные величины ПЭС на уровне Ферми составляют для *d*-электронов $n_{\rm F}(d) = 4.52$ states/eV · f.u., для *s*-электронов $n_{\rm F}(s) = 0.06$ states/eV · f.u. и для p-электронов $n_{\rm F}(p) = 0.15$ states/eV · f.u. Суммарная ПЭС на *E*_F в ферромагнитном состоянии равняется $n_{\rm F}(E_{\rm F}) = 4.73$ states/eV · f.u. Это значение ПЭС несколько превосходит полученное в [2].

В разупорядоченном состоянии (расчет в приближении LDA) структура электронного спектра, особенно вблизи E_F, претерпевает значительные изменения. В окрестности E_F наблюдается полоса ПЭС, сформированная в основном за счет *d*-электронов с разными направлениями спинов. Соответственно магнитный момент в разупорядоченном состоянии равен нулю, а ПЭС на E_F принимают следующие значения: для *d*-электронов $n_{\rm F}(d) = 9.84$ states/eV · f.u., для *s*электронов $n_{\rm F}(s) = 0.16$ states/eV · f.u. и для *p*-электронов $n_{\rm F}(p) = 0.31$ states/eV · f.u. Суммарная ПЭС на $E_{\rm F}$ в разупорядоченном состоянии равняется $n_{\rm F}(E_{\rm F}) =$ = 10.31 states/eV · f.u. Следовательно, из-за "схлопывания" энергетической щели в электронном спектре суммарная ПЭС на уровне Ферми Е_F возрастает более чем в 2 раза.

4. Электрические свойства

Особенности поведения электрических свойств полуметаллического ферромагнетика Co₂CrAl иллюстриру-

Рис. 5. Температурные зависимости удельного электросопротивления $\rho(T)$, измеренные для пластически деформированного (разупорядоченного) (1) и отожженного при $T \sim 900$ K (2) сплава Co₂CrAl. Стрелки показывают направления изменения температуры.

ют результаты измерений удельного электросопротивления $\rho(T)$ и абсолютной дифференциальной термоэдс S(T), приведенные на рис. 5–7. Учитывая довольно необычный эффект увеличения ho(T) после отжига аморфного сплава Co₂CrAl, обнаруженный в [4,5], мы провели разупорядочение исследуемых нами образцов путем интенсивной пластической деформации кручением на пять оборотов наковален Бриджмена под высоким ($P = 10 \,\text{GPa}$) давлением. В результате такого разупорядочения образцов происходил переход из крупнокристаллического (с размерами зерен 100-500 µm) в нанокристаллическое (с размерами зерен 10-20 nm) состояние [16]. В отличие от [4,5] при этом наблюдалось возрастание электросопротивления в результате разупорядочения сплава при комнатной температуре на ~14%. Как видно из рис. 5, последующий нагрев приводил к необратимому уменьшению $\rho(T)$ в интервале температур 700-900 К до значений, свойственных атомно-упорядоченному сплаву Co₂CrAl. В дальнейшем поведение $\rho(T)$ носило обратимый характер.

Для электросопротивления исследованного сплава можно отметить две основные особенности: необычно большая его величина для металлического образца при $T \sim 0 \,\mathrm{K} \,\left(\rho_0 > 130 \,\mu\Omega \cdot \mathrm{cm}\right)$ и обнаруженная смена знака температурного коэффициента электросопротивления при изменении магнитного состояния вблизи T_C. Причины большой величины электросопротивления и отрицательного ТКС в магнитоупорядоченном состоянии сплава Co₂CrAl обсуждались в нескольких работах. Подробный анализ этих работ дается в [5]. Как правило, наблюдаемые особенности поведения $\rho(T)$ связываются с наличием спинового или структурного беспорядка в исследованных сплавах, приводящего к локализации электронов проводимости. Рассмотрение электрических свойств в этих работах обычно производится в рамках механизма перескока носителей заряда. Известно (см.,

Рис. 6. Электросопротивление атомно-упорядоченного сплава Co_2CrAl при $T \ll T_C$ в зависимости от квадрата намагниченности, измеренной при H = 50 kOe.

Рис. 7. Температурные зависимости термоэдс S(T), измеренные для пластически деформированного (разупорядоченного) (1) и отожженного при $T \sim 900$ K (2) сплава Co₂CrAl.

например, [17]), что в случае прыжковой проводимости температурная зависимость электропроводности $\sigma = \rho^{-1}$ должна иметь экспоненциальный вид. Однако обработка полученных нами данных измерений $\sigma(T)$ по экспоненциальному закону не дала удовлетворительных результатов в разумном интервале температур, что ставит под сомнение объяснение особенностей поведения электрических свойств Co₂CrAl только в рамках механизма прыжковой проводимости.

Для магнитоупорядоченных сплавов рассматриваемого вида, имеющих энергетическую щель в электронном спектре, величина электросопротивления и его температурная зависимость должны определяться прежде всего параметрами спектра вблизи $E_{\rm F}$. В свою очередь параметры электронного спектра зависят от спонтанной намагниченности. Согласно [18,19], в простейшем случае, когда изменение магнитного состояния незначительно, для магнитной составляющей электросопротивления $\rho_m(T)$ имеем разложение по намагниченности

$$\rho(T) = \rho(0) + aM_s^2,\tag{6}$$

где $\rho(0)$ включает в себя не зависящее от температуры остаточное электросопротивление, а также температурно-зависимые электрон-электронную ρ_{ee} и электронфононную ρ_{ph} составляющие, a — коэффициент, имеющий в нашем случае положительный знак. Для проверки этого предположения на рис. 6 представлена зависимость $\rho(T) \sim M^2$ (H = 50 kOe). Видно, что для атомноупорядоченного сплава Co₂CrAl соотношение (6) удовлетворительно выполняется в относительно широком интервале температур при $T \ll T_C$ — там, где из-за слабого парапроцесса $M_S \sim M$ (H = 50 kOe). Естественно, при этом предполагается относительная малость составляющих ρ_{ee} и ρ_{ph} при низких температурах.

Нарушение соотношения (6) при более высоких температурах связано прежде всего с ростом величины парапроцесса, когда M_S значительно отклоняется от M (H = 50 kOe), и с существенным возрастанием величины составляющей $\rho_{\rm ph}$. Кроме того, при температурах $T \rightarrow T_C$ происходят сильные изменения параметров электронного спектра вблизи $E_{\rm F}$, что должно приводить к значительным изменениям кинетических свойств и невыполнению соотношения (6). Подобная ситуация рассматривалась в [18,19] для антиферромагнитных металлов, в которых присутствует энергетическая щель в электронном спектре на уровне Ферми $E_{\rm F}$.

В атомно-упорядоченном сплаве Co₂CrAl при переходе в парамагнитное состояние из-за обращения в нуль спонтанной намагниченности исчезает "раздвижка" подполос с разными направлениями спинов, как это можно видеть из наших зонных расчетов в приближении локальной электронной плотности LDA без спиновой поляризации (рис. 4, *b*). Соответственно магнитная составляющая электросопротивления при $T > T_C$ выходит на насыщение и при дальнейшем росте температуры остается постоянной величиной. Несмотря на достаточно высокие значения электросопротивления, зависимость $\rho(T)$ выше T_C приобретает обычный для металлов вид с положительным ТКС, что обусловлено электронфононным механизмом рассеяния электронов проводимости при $T > \theta_D$ (здесь θ_D — температура Дебая).

Как известно [20], термоэдс металлических ферромагнетиков определяется "раздвижкой" подзон со спинами, имеющими взаимно противоположные направления,

$$S = -(\pi^2 k_{\rm B}^2 T/3e) \left[\frac{3}{2} E_{\rm F} - \frac{n_d'(\uparrow) + n_d'(\downarrow)}{n_d(\uparrow) + n_d(\downarrow)}\right]_{E_{\rm F}}.$$
 (7)

В выражении (7) стрелки указывают плотности состояний n_d и их первые производные n'_d на уровне Ферми E_F для *d*-подзон со спинами электронов вдоль (↑) вектора намагниченности и в противоположном направлении (↓). Согласно нашим и приведенным в [1,2] зонным расчетам, для сплава Co₂CrAl в ферромагнитном состоянии (в случае спин-поляризованного расчета) *d*-электроны

со спинами "вниз" на уровне Ферми E_F практически отсутствуют, т.е. термоэдс в основном определяется параметрами *d*-подзоны со спинами электронов "вверх". Для этой подзоны в окрестности E_F наблюдается многопиковая структура спектра. В результате расчета электронной структуры без учета поляризации электронов уровень Ферми в Co₂CrAl также проходит по широкой полосе с несколькими узкими пиками. В связи с этим значение плотностей электронных состояний на уровне Ферми будет изменяться в зависимости от температурного размытия, которое в данных расчетах не использовалось, и электрон-электронного взаимодействия, учтенного в приведенных расчетах в рамках приближения локальной электронной (спиновой) плотности. Все это затрудняет однозначное определение знака производной $n'_d(\uparrow)$, а следовательно, и сравнение знаков термоэдс, которые следуют из зонных расчетов и из эксперимента.

Экспериментально обнаруженное изменение знака наклона зависимости S(T) при переходе в парамагнитное состояние естественно объясняется сменой основного механизма рассеяния электронов проводимости [20]. В магнитоупорядоченном состоянии электрические свойства рассматриваемого сплава определяются в основном параметрами энергетической щели в электронном спектре, а при температурах $T > T_C$ — механизмом электрон-фононного рассеяния электронов проводимости.

5. Заключение

Таким образом, выполненные в настоящей работе исследования показывают, что разупорядочение сплава путем интенсивной пластической деформации кручением наковален Бриджмена на пять оборотов под давлением P = 10 GPa не приводит к существенным изменениям его электрических и магнитных свойств. Установлено, что этот сплав обладает высоким уровнем энергии магнитной анизотропии (~ $5 \cdot 10^5$ erg/g). Поведение электрических свойств (электросопротивления и термоэдс) можно связать с наличием энергетической щели вблизи E_F , а их величины и температурные зависимости находят удовлетворительное объяснение при учете изменения параметров электронного спектра на уровне Ферми в зависимости от самопроизвольной намагниченности.

Один из авторов (А.В.К.) благодарит Н.Г. Бебенина за полезное обсуждение результатов магнитных измерений.

Список литературы

- T. Block, M.J. Garey, B.A. Gurney, O. Jepsen. Phys. Rev. B 70, 205114 (2004).
- [2] M. Zhang, Z. Liu, H. Hu, G. Liu, Y. Cui, J. Chen, G. Wu, X. Zhang, G. Xiao. J. Magn. Magn. Mater. 277, 130 (2004).
- [3] В.Ю. Ирхин, М.И. Кацнельсон. УФН 164, 705 (1994).
- [4] Y.V. Kudryavtsev, V.N. Uvarov, V.A. Oksenenko, Y.P. Lee, J.B. Kim, Y.H. Hyun, K.W. Kim, J.Y. Rhee, J. Dubowik. Phys. Rev. B 77, 195 104 (2008).

- [5] Y.V. Kudryavtsev, Y.P. Lee, Y.J. Yoo, M.S. Seo, J.B. Kim, Y.S. Hwang, J. Dubowik, K.W. Kim, E.H. Choi, O. Prokhnenko. Eur. Phys. J. B 85, 19 (2012).
- [6] A. Aharoni. J. Appl. Phys. 83, 3432 (1998).
- [7] M. Hakimi, P. Kameli, H. Salamati. J. Magn. Magn. Mater. 322, 3443 (2010).
- [8] Н.С. Акулов. Ферромагнетизм. ГОНТИ, М.-Л. (1939). 187 с.
- [9] В.А. Игнатченко, Р.С. Исхаков, Г.В. Попов. ЖЭТФ 82, 1518 (1982); http://www.kirensky.ru/zdoc/ssi.pdf.
- [10] A.V. Korolyov, V.S. Gaviko, N.V. Mushnikov. Phys. Status Solidi A 119, K163 (1990).
- [11] N.V. Mushnikov, A.V. Korolyov, V.S. Gaviko, Ye.I. Raevski, L. Pareti. J. Appl. Phys. **70**, 2768 (1991).
- [12] H.J. Elmers, G.H. Fecher, D. Valdaitsev, S.A. Nepijko, A. Gloskovskii, G. Jakob, G. Schonhense, S. Wurmehl, T. Block, C. Felser, P.-C. Hsu, W.L. Tsai, S. Gramm. Phys. Rev. B 67, 104 412 (2003).
- [13] J. Dubowik, I. Goscianska, Y.V. Kudryavtsev, V.A. Oksenenko. Mater. Sci. Poland 25, 1281 (2007).
- [14] P. Rhodes, E.P. Wohlfarth. Proc. Roy. Soc. (London). A 273, 247 (1963).
- [15] O.K. Andersen, Z. Pawlowska, O. Jepsen. Phys. Rev. B 34, 5253 (1986).
- [16] В.В. Марченков, Л.А. Фомина, Е.П. Платонов, Н.И. Коуров, Е.Б. Марченкова, В.Г. Пушин, Е.И. Шредер, Н.А. Виглин, Т.П. Толмачев, В.П. Пилюгин, А.В. Королев, Х.В. Вебер. Тез. 36-го Совещ. по физике низких температур. СПб (2012). С. 215.
- [17] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1974). 472 с.
- [18] В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты *d*- и *f*-металлах и их соединениях. УрО РАН, Екатеринбург (2004). 472 с.
- [19] Ю.П. Ирхин. ФММ 4, 214 (1958).
- [20] Ф.Дж. Блатт, П.А. Шредер, Ф К. Лойлз, Д. Грейг. Термоэлектродвижущая сила металлов. Пер. с англ. под ред. Д.К. Белащенко. Металлургия, М. (1980). 248 с.