03:04:09:12

Электромагнитный вибратор — инициатор электрического пробоя воздуха в подкритическом поле квазиоптического сверхвысокочастотного пучка

© К.В. Александров, А.А. Волков, Л.П. Грачев, И.И. Есаков, Л.Г. Северинов

Московский радиотехнический институт РАН, 117519 Москва, Россия e-mail: grachev@mrtiran.ru

(Поступило в Редакцию 10 июня 2010 г.)

Описываются результаты исследования резонансных свойств цилиндрических электромагнитных вибраторов различного диаметра со сферически закругленными концами как инициаторов электрического пробоя воздуха в подкритическом поле квазиоптического сверхвысокочастотного (СВЧ) пучка. В экспериментах вибратор располагался как в поле бегущей электромагнитной волны, так и в пучности поля над помещенным в СВЧ-пучок экраном. По результатам опытов определены степень укорочения полуволнового вибратора, обеспечивающая его способность инициировать пробой воздуха, а также поле на вершине-полюсе такого вибратора и требования к точности выполнения его резонансной длины.

Введение

Электрический разряд в газах при давлении p в сотни Тогг, зажигаемый в квазиоптическом пучке сверхвысокочастотного (СВЧ) диапазона длин волн λ [1], энергетически эффективно взаимодействует с возбуждающим разряд электромагнитным (ЭМ) полем [2]. Это открывает определенные возможности по поиску путей его практического применения [3–5].

Такой разряд может быть зажжен и при уровне СВЧполя в квазиоптическом пучке, меньшем минимального критического пробойного поля, необходимого для осуществления самостоятельного безэлектродного пробоя газа при заданном р. В этом случае электрический пробой должен быть каким-либо способом инициирован [6-9]. Именно после этого начнется процесс развития разряда. Один из способов реализации инициированного СВЧ-разряда в подкритическом поле заключается в помещении в квазиоптический пучок линейного ЭМ-вибратора, например, в виде металлического цилиндра со сферически закругленными концами [10]. При этом его диаметр 2a, длина 2L и положение оси относительно направления вектора электрической составляющей исходного поля Е0 должны обеспечивать необходимый для электрического пробоя газа уровень индуцированного поля в области концов вибратора.

Традиционно ЭМ-вибраторы используются в антенной технике для излучения и приема ЭМ-волн метрового диапазона, и для этих целей их характеристики достаточно изучены [11–13]. Так, в зависимости от отношения $\lambda/2a$ определена степень укорочения "полуволнового" вибратора по сравнению с $\lambda/2$, обеспечивающая резонанс тока в его центральной области. При использовании такого вибратора в качестве инициатора пробоя газа важен не ток в его центральной области, а существенное превышение поля на его конце-полюсе $E_{\rm pol}$ исходного возбуждающего ЭМ вибратор поля E_0 . Кроме того,

в сантиметровом диапазоне λ реальное, определяемое конструкторскими требованиями отношение $\lambda/2a$ может быть существенно меньше этого параметра, характерного для метрового диапазона λ .

Результаты исследований резонансных свойств цилиндрических ЭМ-вибраторов со сферически закругленными концами различного диаметра как инициаторов электрического пробоя воздуха в подкритическом поле квазиоптического ЭМ-пучка сантиметрового диапазона λ описаны в работе [10]. В представленных там экспериментах вибратор конкретного диаметра 2а помещался в линейно поляризованный квазиоптический СВЧ-пучок вдоль его вектора Е₀. В опытах с этим вибратором при варьировании его длины 2L определялся минимальный уровень поля $E_0 = E_{\rm br}$, при котором он еще инициировал электрический пробой воздуха атмосферного давления. Для вибраторов с различными 2а определялось отношение $2L_{\rm res}/(\lambda/2)$, где $2L_{\rm res}$ — длина вибратора, при которой значение $E_{\rm br}$ минимально. В опытах оценивались и требования к точности выполнения размера $2L_{\text{res}}$, задаваемой добротностью Q вибратора, и зависимость от 2a минимального значения $E_{\rm br}$, обеспечивающего пробой воздуха при резонансной длине вибратора $2L_{res}$. В то же время экспериментально измерять значения E_0 в квазиоптическом ЭМ-пучке в предполагаемом месте расположения вибратора традиционными методами достаточно сложно. При давлении воздуха р в сотни Тогг в опытах уровни $E_{\rm br}$ значительны, что может приводить не только к СВС-наводкам на измерительные цепи, но и к паразитным электрическим пробоям, инициируемым этими цепями.

При экспериментальной возможности контролируемо менять давление воздуха в рабочей камере p_c , в которой сформирован квазиоптический СВЧ-пучок, резонансные свойства инициатора могут быть исследованы и другим способом. По этой методике ЭМ-вибратор помещается

3* 35

в СВЧ-пучок, и при конкретных значениях 2a и 2L при фиксированном значениии E_0 определяется максимальное давление $p_c = p_{\rm br}$, при котором данный вибратор еще инициирует СВЧ-пробой воздуха. Результатам выполнения именно таких экспериментов и посвящена данная работа.

В опытах вибратор помещался как в бегущую СВЧ-волну со структурой поля ТЕМ, так и располагался над плоскостью помещенного в ЭМ-пучок перпендикулярно его вектору Пойнтинга $\mathbf \Pi$ металлического экрана в ближней к этой плоскости пучности ЭМ-волны. По результатам опытов были построены зависимости $p_{\mathrm{br}}(2L)$ для ряда значений 2a. Они позволили в широком диапазоне значений отношения $\lambda/2a$ построить график зависимости от этого параметра степени укорочения полуволнового вибратора-инициатора $2L_{\mathrm{res}}/(\lambda/2)$, его добротности Q и резонансных значений E_{pol} .

Экспериментальная установка

Схема экспериментальной установки приведена на рис. 1.

В состав установки входит "СВЧ безэховая" герметичная рабочая камера. Давление воздуха в ней p_c может устанавливаться в диапазоне от атмосферного значения до $p_c \approx 3$ Тогг и измеряться с точностью ± 1.5 Тогг. Внутренняя поверхность камеры выложена радиопоглощающим материалом.

В центральную область рабочей камеры вертикально излучается линейно поляризованный ЭМ-пучок с $\lambda=12.3\,\mathrm{cm}$. В осевой области пучка вектор электрической составляющей ЭМ-волны \mathbf{E}_0 горизонтален.

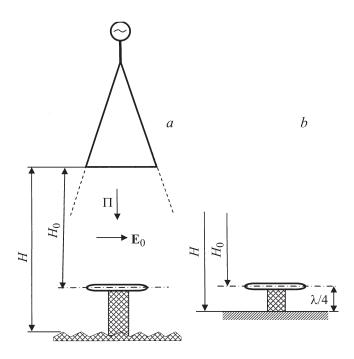


Рис. 1. Схема выполнения экспериментов.

Пучок сформирован рупорной антенной длиной $15\,\mathrm{cm}$ с квадратным излучающим раскрывом $9\times9\,\mathrm{cm}$. Входное сечение рупора переходит в прямоугольный волновод с внутренним сечением $9\times4.5\,\mathrm{cm}$. В плоскости их соединения расположена радиопрозначная пластина, которая герметизирует заполненный атмосферным воздухом волновод от рабочей камеры.

В опытах на некотором расстоянии H от раскрыва рупора перпендикулярно вектору Пойнтинга излучения П помещается либо радиопоглощающий материал, обеспечивающий режим бегущей волны, либо металлический экран. На них по оси ЭМ-пучка устанавливается пенопластовая стойка с прямоугольным поперечным сечением размером 3 × 3 cm. В опытах на верхнюю плоскость этой стойки симметрично оси пучка помещается цилиндрический ЭМ-вибратор со сферически загругленными концами диаметром 2а и длиной 2L. При этом его ось идет вдоль вектора Е₀. В качестве материала для вибраторов использовались медь, алюминий и нержавеющая сталь. Высота пенопластовой стойки при расположении на радиопоглотителе (см. рис. 1, a) делается такой, чтобы размер H_0 от раскрыва рупора до оси вибратора был заданным. При расположении стойки на экране ее высота, как иллюстрирует рис. 1, b, обеспечивает расстояние от оси вибратора до поверхности экрана h, равное $(\lambda/4) = 31$ mm.

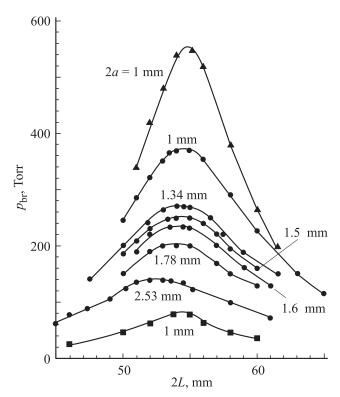
Контрольные измерения по методике, изложенной в работе [14], дали для режима бегущей волны на расстоянии от излучающего раскрыва $H_0=77\,\mathrm{mm}$ значение амплитуды исходного поля $E_0 \backsimeq 50\,\mathrm{V/cm}$. При наличии экрана, т. е. в режиме стоячей волны, при расстоянии его плоскости от плоскости раскрыва рупора $H=108\,\mathrm{mm}$, в пучности поля на расстоянии от экрана $h=31\,\mathrm{mm}$ измерения дали значение $E_0 \backsimeq 100\,\mathrm{V/cm}$.

Экспериментальная методика

Опыты с каждым вибратором конкретного диаметра 2a начинались с его наибольшей длины $2L \approx$ $\approx 65 \, \mathrm{mm} > \lambda/2$. Этот вибратор помещался на пенопластовую стойку, и при атмосферном давлении воздуха в рабочей камере включается СВЧ-генератор. Если при этом давлении p_c вибратор не инициирует пробой, то p_c с шагом $\Delta p_c = 30$ Torr начинает уменьшаться до момента пробоя. Факт пробоя надежно регистрируется визуально через кварцевый иллюминатор на боковой поверхности рабочей камеры. После регистрации факта пробоя давление p_c увеличивается на 30 Torr, и устанавливается выдержка в несколько минут. Затем p_c начинает уменьшаться, но уже с шагом $\Delta p_c = 3$ Torr. Таким образом, максимальное давление воздуха, при котором данный ЭМ-вибратор инициирует его пробой $p_c = p_{\rm br}$, определяется с точностью до 3 Torr. Затем ЭМвибратор укорачивается, и цикл измерений $p_{\rm br}$ с новым размером 2L повторяется.

Укорочение вибратора происходит с одного и того же конца, т. е. форма другого его конца во всех циклах остается неизменной. Имеющиеся данные по исследованию свойств плазмы глубоко подкритического СВЧ-разряда в воздухе констатируют, что при $p \gtrsim 100 \, \text{Torr}$ температура газа в плазменной области превышает 1000 К [5]. В выполняемых опытах это может приводить к тепловой эрозии поверхности вибратора. Для ее недопущения в опытах СВЧ-излучение включается на короткое время $au_{\rm pul} = 0.2\,{\rm s}$. При этом в них при неизменных условиях пробой при последовательных включениях СВЧгенератора даже при $p_c > p_{\rm br}$ носит нерегулярный характер. Это связано с возможным отсутсвием около концевой полюсной поверхности вибратора с усиленным полем $E_{\rm pol}$ свободных электронов, кладущих начало пробойной лавине. Для ликвидации этой нестабильности в опытах синхронно с включением СВЧ-излучения поверхность этого полюса ЭМ-инициатора освещается ультрафиолетовым (УФ) излучением, генерируемым плазмой расположенного вне ЭМ-пучка импульсного искрового высоковольтного разрядника. В опытах УФизлучение преимущественно освещает конец вибратора с неизменной геометрией. При наличии УФ-подсветки пробой воздуха при $p_c = p_{\rm br}$ носит регулярный характер в независимости от материала вибратора.

В опытах при уменьшении 2L давление $p_{\rm br}$ первоначально растет, достигает максимума $p_{\rm br\,max}$, а затем начинает падать. В них шаг укорочения $\Delta 2L$ имеет масштаб долей миллиметра и минимален в области $p_{\rm br\,max}$. После прохождения этого давления вибратор дополнительно постепенно укорачивается примерно на 5 mm.


Опыты выполнялись с вибраторами, имеющими размер 2a в диапазоне от 5.6 до 1 mm, т.е. с параметром $\lambda/2a \approx 20-120$.

Результаты экспериментов в бегущей электромагнитной волне

Основной целью этих экспериментов было подтверждение правомерности выбранной методики определения резонансных параметров ЭМ-вибратора как инициатора СВЧ-пробоя газа путем их сравнения с имеющимися данными.

На рис. 2 в координатах $p_{\rm br}=f(2{\rm L})$ помещены результаты экспериментов, полученные при помещении вибратора в ЭМ-пучок в режиме бегущей волны (см. рис. 1, a). Для одних и тех же значений 2a они соединены аппроксимирующими линиями. Опыты проводились в трех режимах при различных значениях H и H_0 : в основной серии H=118, $H_0=77\,{\rm mm}$ (точки на рис. 2); и в двух контрольных: H=118, $H_0=54\,{\rm mm}$ (верхняя зависимость на рис. 2) и H=310, $H_0=170\,{\rm mm}$ (нижняя зависимость на рис. 2).

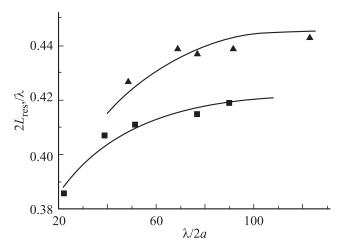

Приведенные опытные данные позволяют определить зависимость от 2a степени укорочения резонансного

Рис. 2. Результаты экспериментов в бегущей электромагнитной волне.

"полуволнового" вибратора, усиления поля на его полюсе и его добротности.

На рис. З верхняя кривая показывает заимствованную из работы [11] зависимость $2L_{\rm res}/\lambda$ от $\lambda/2a$, а в виде треугольников нанесены данные, полученные по экспериментальным графикам рис. 2. Опытные данные практически легли на приведенную зависимость, что и обосновывает правомерность используемой методики определения электрических свойств ЭМ-вибраторов.

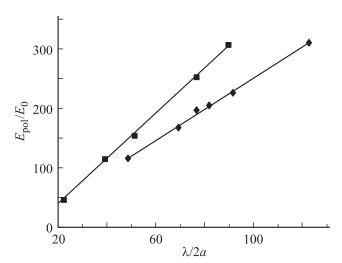


Рис. 3. Резонансная длина "полуволнового" вибратора в зависимости от его диаметра.

Из рис. 2 следует, что значения $2L_{\rm res} \approx 54.5\,{\rm mm}$ при $2a = 1 \, \text{mm}$ совпадают как для основной экспериментальной серии при $H_0 = 77 \,\mathrm{mm}$ (вторая сверху кривая), так и для двух контрольных. Эти зависимости отличаются лишь величиной $p_{
m br}^{
m max}$. При этом значения $p_{\rm br}^{\rm max}$, естественно, растут с приближением к излучающему раскрыву рупора, т.е. с ростом E_0 . Независимость значения $2L_{\text{res}}$ от H и H_0 демонстрирует отсутствие влияния на результаты опытов взаимного положения элементов схемы. В них исследуются свойства именно помещенного в ЭМ-пучок объекта без электродинамического влияния его присутствия на другие элементы схемы. Это является основным существенным отличием опытов в квазиоптических пучках от экспериментов, проводимых, например, в различного вида резонансных системах.

На рис. 4 нижняя линия аппроксимирует экспериментальные результаты зависимости от параметра $\lambda/2a$ отношения индуцированного поля на полюсе вибратора $E_{\rm pol}$ при его длине $2L=2L_{\rm res}$ к исходному полю: $E_{\rm pol}/E_0$. При этом амплитуда поля $E_{\rm pol}$ для каждого 2a рассчитана по значениям $p_{\rm br}^{\rm max}$ в предположении, что оно равно критическому пробойному полю для данного давления воздуха: $E_{\rm pol}\approx E_{\rm cr}=42p_{\rm br}^{\rm max}$ V/cm, где размерность давления — Torr [15]. Видно, что зависимость $E_{\rm pol}/E_0$ от $\lambda/2a$ является практически линейной.

Экспериментальные графики на рис. 2 позволяют, в зависимости от параметра $\lambda/2a$, оценить величину электрической добротности $Q=2L_{\rm res}/\Delta 2L$ исследованных ЭМ-вибраторов, где $\Delta 2L$ — полная ширина кривой $p_{\rm br}(2L)$ по уровню $p_{\rm br}^{\rm max}/\sqrt{2}$. Эти оценки в исследованном диапазоне значений $\lambda/2a$ дают среднее значение Q=6 с отклонением от него в $\pm 15\%$. Знание величины Q позволяет оценить необходимую относительную точность выполнения резонансной длины вибратора $\delta 2L/2L_{\rm res}$ по заданному требованию к точности обеспечения величины $p_{\rm br}^{\rm max}$. Зависимость $p_{\rm br}$ от 2L

Рис. 4. Зависимость отношения поля на вершине-полюсе вибратора резонансной длины к исходному полю от диаметра вибратора.

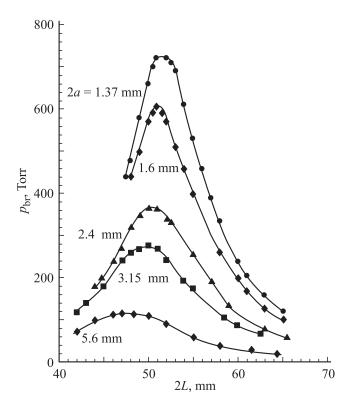
вибратора в области его резонансной длины $2L_{\text{res}}$ можно аппроксимировать выражением [16]

$$p_{\rm br} = \frac{p_{\rm br}^{\rm max}}{\sqrt{1 + Q^2 (2L_{\rm res}/2L - 2L/2L_{\rm res})^2}},$$
 (1)

отсюда

$$\frac{\delta 2L}{2L_{\rm res}} = \frac{1}{2Q} \sqrt{\frac{1}{(p_{\rm br}/p_{\rm br}^{\rm max})^2} - 1} = \frac{\sqrt{2(\Delta p_{\rm br}/p_{\rm br}^{\rm max})}}{2Q}.$$
 (2)

Например, в опытах для вибратора с $2a=1.6\,\mathrm{mm}$ резонансная длина $2L_{\mathrm{res}}=54\,\mathrm{mm}$ и $p_{\mathrm{cr}}\approx235\,\mathrm{Torr}$. Положим, возможное максимальное отклонение от этого давления $\Delta p_{\mathrm{br}}=15\,\mathrm{Torr}$ или $p_{\mathrm{br}}/p_{\mathrm{br}}^{\mathrm{max}}=0.94$. Тогда при Q=6 отношение $\delta2L/2L_{\mathrm{res}}=0.03$ или $\delta2L=1.6\,\mathrm{mm}$, т.е. если резонансная длина данного вибратора будет выдержана с точностью $\pm1.6\,\mathrm{mm}$, то он осуществит инициацию пробоя воздуха при его давлении p_{br} , меньшем $p_{\mathrm{br}}^{\mathrm{max}}$ не более чем на 6%.


Результаты экспериментов при расположении электромагнитного вибратора в пучности сверхвысокочастотного поля

Если величина исходного поля в области квазиоптического ЭМ пучка, в которой предполагается зажечь СВЧ разряд, недостаточна для инициации газового пробоя при требуемом сравнительно высоком его давлении, то величину поля можно удвоить. Для этого в ЭМ пучок перпендикулярно его вектору $\mathbf{\Pi}$ помещается металлический экран, и уже над ним на расстоянии $h=\lambda/4$ располагается инициирующий пробой ЭМ вибратор (см. рис. 1,b). При таком расположении вибратора его резонансные свойства могут измениться. Их определение и было целью описываемых в данном разделе экспериментов.

На рис. 5 в координатах $p_{\rm br}=f(2L)$ помещены результаты этих экспериментов при размере H=108 mm. Для одних и тех же значений 2a они соединены аппроксимирующими линиями.

По этим данным на рис. З построен график зависимости $2L_{\rm res}/\lambda$ от $\lambda/2a$. Он расположен ниже аналогичной зависимости, прокомментированной в предыдущем разделе. Следовательно, при расположении ЭМ вибратора над экраном его степень укорочения, обеспечивающая инициацию пробоя воздуха при $p_{\rm br}^{\rm max}$, возрастает по сравнению со случаем помещения вибратора в бегущую ЭМ волну.

На рис. 4 верхняя линия является зависимостью от $\lambda/2a$ отношения $E_{\rm pol}/E_0$ при помещении ЭМ вибратора резонансной длины $2L_{\rm res}$ над экраном в пучность поля. Эта зависимость практически прямолинейна и располагается несколько выше аналогичной зависимости, соответствующей помещению вибратора в поле бегущей ЭМ волны.

Рис. 5. Результаты экспериментов при помещении электромагнитного вибратора над экраном в пучность поля.

И наконец, соответствующая обработка графиков с рис. 5 для исследованного диапазона $\lambda/2a$ дает среднее значение электрической добротности вибраторов $Q=6\pm0.19$. Как и в предыдущем разделе, эта величина по формуле (2) позволяет оценить необходимую точность выполнения резонансной длины вибратора.

Заключение

Таким образом, экспериментально исследованы резонансные свойства цилиндрических вибраторов со сферически закругленными концами путем определения максимального давления воздуха, при котором вибратор с конкретным диаметром и длиной при неизменном поле еще инициирует электрический пробой воздуха.

В зависимости от диаметра "полуволнового" вибратора определена степень его укорочения, обеспечивающая максимальное индуцированное поле на конце-полюсе вибратора. При этом при расположении вибратора в поле бегущей волны квазиоптического СВЧ-пучка зависимость степени укорочения от диаметра практически совпадает с известной зависимостью. Опыты показали, что при расположении вибратора над помещенным в СВЧ-пучок металлическим экраном в пучность поля степень укорочения резонансного вибратора возрастает.

В функции диаметра вибратора резонансной длины определена величина превышения индуцированного поля на его вершине-полюсе по сравнению с исходным

полем в СВЧ-пучке. При обоих исследованных положениях вибратора в квазиоптическом пучке эти зависимости являются линейными. Они обратно пропорциональны диаметру вибратора. В исследованном диапазоне варьирования диаметров вибратора этот коэффициент усиления достигает 300. Таким образом, с помощью таких резонансных вибраторов может быть инициирован пробой газов и реализован СВЧ-разряд в квазиоптическом пучке с уровнем подкритичности поля в несколько сотен.

Полученные опытные результаты могут являться "опорными" при решении аналогичных задач численными методами в конкретных практических схемах.

Список литературы

- [1] Александров К.В., Грачев Л.П., Есаков И.И., Федоров В.В., Ходатаев К.В. // ЖТФ. 2006. Т. 76. Вып. 11. С. 52–60.
- [2] Бычков Д.В., Грачев Л.П., Есаков И.И. // ЖТФ. 2009. Т. 79. Вып. 3. С. 39–45.
- [3] Грачев Л.П., Есаков И.И., Ходатаев К.В. // ЖТФ. 1998.Т. 68. Вып. 12. С. 15–24.
- [4] Грачев Л.П., Есаков И.И., Ходатаев К.В. // Мат. Междунар. симп. "Термохимические и плазменные процессы в аэродинамике". СПб., 2002. С. 113–119.
- [5] Бычков Д.В., Грачев Л.П., Есаков И.И., Раваев А.А., Северинов Л.Г. // ЖТФ. 2009. Т. 79. Вып. 9. С. 33–40.
- [6] Грицинин С.И., Дорофеюк А.А., Коссый И.А., Магунов А.Н. // ТВТ. 1987. Т. 25. № 6. С. 1068–1072.
- [7] Грицинин С.И., Коссый И.А., Силаков В.П., Тарасова Н.Т., Терехин В.Е. // ЖТФ. 1987. Т. 57. Вып. 4. С. 681–686.
- [8] Аскарьян Г.А., Батанов Г.М., Грицинин С.И., Коссый И.А., Костинский А.Ю. // ЖТФ. 1990. Т. 60. Вып. 11. С. 77–84.
- [9] Вихарев А.Л., Горбачев А.М., Ким А.В., Колыско А.Л. // Физика плазмы. 1992. Т. 18. Вып. 8. С. 1064–1075.
- [10] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1995. Т. 65. Вып. 7. С. 60–67.
- [11] Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антеннофидерные устройства. М.: Сов. радио, 1974. 536 с.
- [12] Ротхаммель К. Антенны. М.: Энергия, 1979. 320 с.
- [13] *Чернышов В.П.* Антенно-фидерные устройства радиосвязи и радиовещания. М.: Связь, 1978. 288 с.
- [14] Грачев Л.П., Есаков И.И., Ходатаев К.В., Цыпленков В.В. // Физика плазмы. 1992. Т. 18. Вып. 3. С. 411–413.
- [15] Гуревич А.А. // УФН. 1980. Т. 132. Вып. 4. С. 685-690.
- [16] *Круг Л.А.* Основы электротехники. Т. 2. М.; Л.: Гос. энергетическое изд-во, 1946. 634 с.