# 01;03 Модели анизотропно поляризующихся суспензий с необратимыми процессами: релаксация анизотропии, диэлектрофорез и электровязкие течения

#### © Н.Л. Васильева, Л.Т. Черный

Научно-исследовательский институт механики Московского государственного университета им. М.В. Ломоносова, 119899 Москва, Россия e-mail: sv 2@mail.ru

(Поступило в Редакцию 3 марта 2010 г. В окончательной редакции 22 июня 2010 г.)

Рассматриваются среды, состоящие из анизотропно поляризующихся частиц дисперсной фазы и непроводящей жидкой несущей фазы. Частицы обладают анизотропией типа "легкая ось" или "легкая плоскость". Построена полная электрогидродинамическая модель, описывающая движение среды в электрическом поле с учетом необратимых процессов. Найдены законы, определяющие поляризацию среды, диэлектрофорез частиц и релаксацию анизотропии. Получены выражения для присутствующих в них кинетических коэффициентов и выражение для свободной энергии среды. Определена зависимость эффективной вязкости от напряженности электрического поля при течении в узких каналах.

#### Введение

Управление движением и свойствами поляризующихся дисперсных систем с помощью электрических полей находит широкое применение в различных технологических процессах и устройствах [1-4]. В качестве примеров можно привести электроориентирование керамических волокон в коллоидных растворах, применяемых при производстве композитных материалов [1], и контроль вибрации в технике на основе электрореологического эффекта, проявляющегося в суспензиях полупроводников в изолирующих жидкостях [3,4]. Диэлектрофоретические методы открывают уникальные возможности для манипулирования дисперсными системами с субмикронными частицами, среди которых сепарация биочастиц (клеток, макромолекул белков и ДНК) [5,6], управление наноэлектроцепями [7], контроль движения и реологических свойств наносуспензий [8]. Важнейшей задачей при работе с микродисперсными системами является определние индивидуальных и коллективных характеристик частиц дисперсной фазы, например, размеров и концентраций частиц различных сортов. Среди используемых методов важное место занимают сепарация частиц суспензий и определение их влияния на реологические свойства дисперсной системы [9,10]. Например, измеряя вязкость среды и затем используя ее теоретическую или экспериментальную зависимость от свойств частиц дисперсной фазы, можно найти некоторые их характеристики [10]. Электрогидродинамические методы диагностики микродисперсных систем особенно удобны в лабораторных условиях и находят широкое применение в нанотехнологиях и микрожидкостных устройствах [11].

Многие перспективные методы манипулирования субмикронными частицами суспензий основаны на явлении диэлектрофореза частиц в неоднородных электрических полях. При этом обычно используются модели изотропно поляризующихся частиц, взвешенных в непроводящей жидкой несущей фазе [5,11]. В то же время использование анизотропных веществ открывает возможности создания новых микро- и наноструктурированных материалов путем синтеза дисперсных частиц с заданными свойствами и манипулирования ими [12]. Многие биологические макромолекулы также обладают анизотропными свойствами [10,13]. Это делает актуальной разработку моделей дисперсных систем с анизотропно поляризующимися частицами дисперсной фазы. Электрическое поле способно ориентировать такие частицы, в результате чего среда может проявлять анизотропные свойства на макроскопическом уровне (т.е. после осреднения по малым объемам, содержащим достаточно много частиц дисперсной фазы). Ориентация частиц влияет на их взаимодействие между собой и с несущей фазой, в частности, на диэлектрофорез частиц и на реологические свойства дисперсной системы. В результате реологические характеристики могут зависеть от напряженности электрического поля [14,15]. Эти эффекты открывают новые возможности в применении электрических полей для управления и диагностики анизотропно поляризующихся дисперсных систем.

В настоящей статье рассматриваются среды, состоящие из анизотропно поляризующихся частиц дисперсной фазы и непроводящей жидкой несущей фазы. Предполагается, что форма частиц близка к сферической, их седементация несущественна, а анизотропия частицы задается вмороженным в нее вектором. Построена полная электрогидродинамическая модель, описывающая движение среды в электрическом поле с учетом броуновского движения векторов анизотропии отдельных частиц. На основе общих соотношений термодинамики необратимых процессов получены законы, определяющие диэлектрофорез частиц дисперсной фазы и релаксацию средней анизотропии в движущейся среде. Найдены выражения для присутствующих в них кинетических коэффициентов и выражение для свободной энергии среды. При этом анизотропия среды зависит от электрического поля и оказывает существенное влияние на законы поляризации среды и диэлектрофореза частиц. В результате эти законы становятся фактически нелинейными в отличие от обычно рассматриваемого случая изотропных суспензий. Ориентация анизотропно поляризующихся частиц электрическим полем приводит также к дополнительной диссипации энергии в вихревых движениях. Этот эффект проявляется как возрастание эффективной вязкости при увеличении напряженности электрического поля. Ниже найдена соответствующая зависимость для течений в узких каналах. Полученные результаты могут исползоваться при разработке новых методов манипулирования микродисперсными системами и их диагностики.

### 1. Электрические характеристики анизотропной дисперсной системы

Индукция  $D^{\circ}$  и напряженность  $E^{\circ}$  электрического поля внутри сферической одноосной частицы связаны соотношением [16]

$$\mathbf{D}^{\circ} = \varepsilon_0 \big( (\varepsilon_{\parallel} - \varepsilon_{\perp}) (\mathbf{a} \mathbf{E}^{\circ}) \mathbf{a} + \varepsilon_{\perp} \mathbf{E}^{\circ} \big). \tag{1}$$

Здесь **а** — единичный вектор, параллельный оси анизотропии частицы;  $\varepsilon_0$  — диэлектрическая проницаемость вакуума;  $\varepsilon_{\parallel}$  и  $\varepsilon_{\perp}$  — продольное и поперечное значения (относительно **a**) диэлектрической проницаемости частицы. Для частицы, находящейся во внешнем однородном поле с напряженностью **E**, значение **E**° определяется равенствами

$$\mathbf{E}^{\circ} = (\alpha_{\parallel} - \alpha_{\perp})(\mathbf{a}\mathbf{E})\mathbf{a} + \alpha_{\perp}\mathbf{E}, \qquad (2)$$

где  $\varepsilon$  — диэлектрическая проницаемость окружающей среды, а коэффициенты  $\alpha_{\parallel}$  и  $\alpha_{\perp}$  выражаются следующим образом:

$$\alpha_{\parallel} \equiv 3\varepsilon (2\varepsilon + \varepsilon_{\parallel})^{-1}, \quad \alpha_{\perp} \equiv 3\varepsilon (2\varepsilon + \varepsilon_{\perp})^{-1}.$$
 (3)

Соотношения (2) и (3) позволяют вычислить электрическую часть свободной энергии частицы, которая определена первым равенством в (4) [16],

$$w \equiv -\frac{1}{2} \int_{V^{\circ}} \left( \mathbf{E} (\mathbf{D}^{\circ} - \varepsilon_0 \varepsilon \mathbf{E}^{\circ}) \right) dV$$
$$= -\frac{1}{2} \varepsilon_0 V^{\circ} \left( \Delta \chi (\mathbf{a} \mathbf{E})^2 + \chi_{\perp} \mathbf{E}^2 \right). \tag{4}$$

Здесь V° — объем частицы и введены следующие обозначения:

$$\Delta \chi \equiv \chi_{\parallel} - \chi_{\perp}, \ \chi_{\parallel} = \alpha_{\parallel}(\varepsilon_{\parallel} - \varepsilon), \ \chi_{\perp} = \alpha_{\perp}(\varepsilon_{\perp} - \varepsilon). \ (5)$$

Первое равенство в (5) можно также преобразовать к виду (используя второе и третье равенства (5) и выражения (3)):

$$\Delta \chi = \alpha_{\parallel} \alpha_{\perp} (\varepsilon_{\parallel} - \varepsilon_{\perp}). \tag{6}$$

Таким образом, значения  $\Delta \chi > 0$  соответствуют анизотропии частиц типа "легкая ось" ( $\varepsilon_{\parallel} > \varepsilon_{\perp}$ ), а значения  $\Delta \chi < 0$  соответствуют анизотропии типа "легкая плоскость" ( $\varepsilon_{\parallel} < \varepsilon_{\perp}$ ). Это ознчает, что частица, свободно подвешенная в электрическом поле, будет стремиться поляризоваться соответственно вдоль оси анизотропии или в плоскости, перпендикулярной этой оси [16].

Далее будем рассматривать только среды с малой объемной концентрацией дисперсной фазы  $Y \equiv nV^{\circ} \ll 1$ , где n — число частиц в единице объема. В этом случае соотношения (2) и (4) можно использовать для каждой частицы, положив в них **E** равным напряженности поля в сплошной среде (с ошибкой порядка Y). Напряженность **E** и индукция поля **D** в точке M сплошной среды определяются путем осреднения их микроскопических значений  $\mathbf{E}^{\circ}$  и  $\mathbf{D}^{\circ}$  по физически бесконечно малому объему  $\Delta V(M)$ , содержащему достаточно много частиц дисперсной фазы. Из этого определения характеристик поля в среде вытекает тождество

$$\mathbf{D} - \varepsilon_0 \varepsilon \mathbf{E} = \frac{1}{\Delta V} \int_{\Delta V} (\mathbf{D}^\circ - \varepsilon_0 \varepsilon \mathbf{E}^\circ) dV, \qquad (7)$$

где интеграл отличен от нуля только внутри частиц [16]. Подставив в (7) выражение (1) для  $\mathbf{D}^{\circ}$  и учитывая выражение (2) для  $\mathbf{E}^{\circ}$ , найдем связь между компонентами векторов  $\mathbf{D}$  и  $\mathbf{E}$  в рассматриваемой анизотропной сплошной среде

$$D^{i} = \varepsilon_{0} \varepsilon E^{i} + \varepsilon_{0} n V^{\circ} (\Delta \chi \langle a^{i} a^{j} \rangle + \chi_{\perp} \delta^{ij}) E_{j}$$
(8)

и тем самым — закон поляризации среды  $\mathbf{P} \equiv \mathbf{D} - \varepsilon_0 \mathbf{E}$ . Здесь угловые скобки обозначают средние величины, которые, согласно общим положениям статистической механики, могут быть вычислены следующим образом:

$$\langle a^i a^j \rangle = \frac{1}{n} \int a^i a^j G(\mathbf{a}) d\mathbf{a},$$
 (9)

где  $G(\mathbf{a})$  — функция распределения частиц по векторам анизотропии **a** (и по координатам). Интегрирование производится по направлениям **a**. Равенство (8) определяет линейную зависимость **D** от **E**, если параметры *n* и  $\langle a^i a^j \rangle$  рассматриваются как независимые. В состоянии термодинамического равновесия они могут быть выражены через **E** (см. ниже (16)–(21)), после чего указанная зависимость становится нелинейной.

# Параметры дисперсной фазы в состоянии термодинамического равновесия

В предположении броуновского движения векторов анизотропии частиц функция *G* удовлетворяет уравнению Смолуховского

$$\frac{\partial G}{\partial t} + \operatorname{div}(\mathbf{v}^{\circ}G - D_x \nabla G) + \operatorname{div}^{S}([\boldsymbol{\omega}^{\circ}\mathbf{a}]G - D_a \nabla^{S}G) = 0,$$
(10)

Журнал технической физики, 2011, том 81, вып. 2

$$\mathbf{v}^{\circ} = \mathbf{v} + \frac{1}{6\pi\eta R^{\circ}} \mathbf{f}, \quad \boldsymbol{\omega}^{\circ} = \boldsymbol{\omega} + \frac{1}{6\eta V^{\circ}} \mathbf{m}, \qquad (11)$$
$$D_{x} = \frac{k_{B}T}{6\pi\eta R^{\circ}}, \quad D_{a} = \frac{k_{B}T}{6\eta V^{\circ}}. \qquad (12)$$

Здесь **v** и  $\omega = \frac{1}{2}$  гоt **v** — скорость и угловая скорость несущей фазы вдали от частицы;  $R^{\circ}$  — радиус частицы;  $\eta$  и T — вязкость и температура среды;  $k_B$  — постоянная Больцмана. Величины **f** и **m** обозначают силу и момент, действующие на частицу со стороны электрического поля. Они легко выражаются через энергию частицы [16]

$$\mathbf{f} = -\nabla w = \varepsilon_0 V^{\circ} \big( \Delta \chi(\mathbf{a} \mathbf{E}) a_k + \chi_{\perp} E_k \big) \nabla E^k, \qquad (13)$$

$$\mathbf{m} = -\left[\mathbf{a} \ \frac{\partial w}{\partial \mathbf{a}}\right] = \varepsilon_0 V^{\circ} \Delta \chi(\mathbf{a} \mathbf{E}) [\mathbf{a} \mathbf{E}]. \tag{14}$$

Далее будем считать, что величины v и  $\omega$  совпадают соответственно со скоростью и угловой скоростью сплошной среды в рассматриваемой точке, так как объемная концентрация дисперсной фазы предполагается малой.

В состоянии термодинамического равновесия в неподвижной среде решение уравнения (10) дает в качестве *G* распределение Больцмана

$$G = C \exp\left(-\frac{w}{k_B T}\right), \quad C = \text{const.}$$
 (15)

Подставив выражение (15) для *G* в соотношения (9), после довольно громоздких вычислений получаем

$$\langle a^i a^j \rangle = \pm \left( A^i A^j - \frac{1}{3} A^2 \delta^{ij} \right) + \frac{1}{3} \delta^{ij}. \tag{16}$$

Здесь  $A^i$  — компоненты вектора **A**, направленного вдоль **E**, с квадратом модуля, равным

$$A^{2} = L(u^{2}) \equiv \frac{3}{4} \left( \frac{1}{u} e^{\pm u^{2}} \left( \int_{0}^{u} e^{\pm z^{2}} dz \right)^{-1} - \frac{1}{u^{2}} \right) \mp \frac{1}{2},$$
$$u^{2} \equiv \frac{\varepsilon_{0} |\Delta \chi| V^{\circ} E^{2}}{2k_{B}T}.$$
(17)

В (16) и последующих формулах с двойными знаками верхние знаки соответствуют анизотропии частиц типа "легкая ось" ( $\Delta \chi > 0$ ), а нижние знаки соответствуют анизотропии частиц типа "легкая плоскость" ( $\Delta \chi < 0$ ). Параметр *и* представляет собой безразмерную величину напряженности поля. Функция  $L(u^2)$ , определенная первым равенством в (17), представлена на рис. 1 и будет использоваться ниже. Присутствующий в ней



**Рис. 1.** Функция  $L(u^2)$ , определенная первым соотношением (17). Кривые I и II соответствуют случаям  $\Delta \chi > 0$  (анизотропия типа "легкая ось") и  $\Delta \chi < 0$  (анизотропия типа "легкая плоскость").

интеграл выражается через интеграл Досона  $D_2(u)$  (при  $\Delta \chi > 0$ ) или через интеграл вероятностей  $\operatorname{erf}(u)$  (при  $\Delta \chi < 0$ ) [19]. Из (17) вытекают следующие асимпотические разложения для случаев достаточно малых или больших полей:

$$A^{2} = \frac{2}{15}u^{2}, \quad \langle a^{i}a^{j} \rangle = \frac{1}{3}\delta^{ij} + \frac{2}{15}u^{2}\left(e^{i}e^{j} - \frac{1}{3}\delta^{ij}\right);$$
$$u^{2} \ll 1, \tag{18}$$

$$A^{2} = 1 - \frac{3}{2u^{2}}, \quad \langle a^{i}a^{j} \rangle = e^{i}e^{j} - \frac{3}{2u^{2}}\left(e^{i}e^{j} - \frac{1}{3}\delta^{ij}\right);$$
$$u^{2} \gg 1, \quad \Delta \chi > 0, \tag{19}$$

$$\langle a^{i}a^{j} \rangle = \frac{1}{2} \left( \delta^{ij} - e^{i}e^{j} \right) + \frac{3}{4u^{2}} \left( e^{i}e^{j} - \frac{1}{3} \delta^{ij} \right);$$
$$u^{2} \gg 1, \quad \Delta \chi < 0, \tag{20}$$

где  $e^i$  — компоненты единичного вектора, направленного вдоль напряженности электрического поля.

Используя (15), можно также найти распределение концентрации частиц дисперсной фазы в состоянии термодинамического равновесия

$$n = \int G d\mathbf{a} = \frac{2C}{u} \left( \int_{0}^{u} e^{\pm z^{2}} dz \right) \exp\left(\frac{\chi_{\perp} u^{2}}{|\Delta \chi|}\right).$$
(21)

### 3. Законы сохранения и термодинамические функции

Течения вязких сред обычно являются вихревыми, в которых  $\omega = \frac{1}{2}$  rot  $\mathbf{v} \neq 0$ . В таких течениях частицы дисперсной фазы вместе с векторами анизотропии **a** (относительное положение вектора **a** в частице фиксировано)

испытывают дополнительное вращение с угловой скоростью  $\omega$  (см. уравнения (11)). В результате распределение  $G(\mathbf{a})$  теряет симметрию относительно напряженности электрического поля. Вычисление функции  $G(\mathbf{a})$ и средних значений  $\langle a^i a^j \rangle$  становится весьма сложной задачей, которая требует решения уравнения Смолуховского (10) в движущейся среде. В прикладных задачах обычно полезнее использовать цепочку уравнений для *n*,  $\langle a^i a^j \rangle$ , ... вместо (10). При этом тензор  $\langle a^i a^j \rangle$ , вообще говоря, перестает быть одноосным. Ситуация облегчается, если возмущения, вносимые движением среды, малы по сравнению с влиянием электрического поля. В этом случае, считая отклонение от одноосности  $\langle a^i a^j \rangle$  также малым, можно использовать для  $\langle a^i a^j \rangle$ представления (16), которые верны для любого одноосного тензора второго ранга со следом, равным единице. При этом знаки "±" соответствуют случаям  $\lambda_{\parallel} > \lambda_{\perp}$  и  $\lambda_{\parallel} < \lambda_{\perp}$ , где  $\lambda_{\parallel}$  и  $\lambda_{\perp}$  — собственные значения тензора  $\langle a^i a^j \rangle$  для направлений вдоль и поперек его оси. Однако вектор А, присутствующий в (16), теперь следует рассматривать как дополнительный термодинамический параметр, характеризующий анизотропию дисперсной среды на макроскопическом уровне. При этом изменение вектора А со временем определяется релаксационным уравнением, которое в состоянии термодинамического равновесия должно давать зависимость (17).

Чтобы построить полную модель рассматриваемой среды, включающей такое уравнение, будем исходить из общих законов баланса массы, импульса и момента импульса среды, а также баланса частиц дисперсной фазы [20]

$$\rho \frac{dv^{i}}{dt} = \nabla_{j}(-p\delta^{ij} + \sigma^{ij} + \sigma_{M}^{ij}),$$
$$\sigma_{M}^{ij} = E^{i}D^{j} - \frac{1}{2}E_{k}D^{k}\delta^{ij}, \qquad (22)$$

$$\frac{d\rho}{dt} + \rho \nabla_j v^j = 0, \qquad \rho \frac{d}{dt} \frac{n}{\rho} + \nabla_j I^j = 0,$$
  
$$\sigma^{ij} + \sigma_M^{ij} = \sigma^{ji} + \sigma_M^{ji}. \tag{23}$$

Здесь  $\rho$  — плотность массы среды; p — давление;  $\sigma^{ij}$  — компоненты тензора внутренних напряжений в среде за счет вязкости несущей фазы и наличия анизотропно поляризующейся дисперсной фазы;  $\sigma_M^{ij}$  — компоненты тензора Максвелла для внутренних напряжений электрического поля;  $I^j$  — компоненты вектора потока частиц вследствие их диффузии и диэлектрофореза. Круглые скобки в индексах тензоров (ниже) обозначают соответственно операцию симметризации. Суммарный тензор внутренних напряжений среды и поля считается симметричным, так как внутренний момент дисперсных частиц пренебрежимо мал. Распределение электрического поля в непроводящей сплошной среде описывается уравнениями электростатики [16]

$$\operatorname{div} \mathbf{D} = \mathbf{0}, \quad \operatorname{rot} \mathbf{E} = \mathbf{0}. \tag{24}$$

В дальнейшем ограничимся важным для приложений случаем несжимаемой несущей фазы и не будем учитывать малые возмущения плотности среды вследствие неоднородности распределения дисперсных частиц (т.е. полагаем  $\rho = \text{const}$ ). Тогда изменение плотности внутренней энергии среды и поля U определяется соотношением [16]

$$\frac{dU}{dt} = -\sigma^{ij}\nabla_{j}v_{i} + E_{k}\frac{dD^{k}}{dt} - \nabla_{k}q^{k},$$
$$U = F + TS + \frac{1}{2}(\mathbf{ED}).$$
(25)

Здесь  $q^j$  — компоненты вектора потока тепла,  $F(n, T, A^k)$  — плотность свободной энергии среды,  $S = -\frac{\partial}{\partial T} \left(F + \frac{1}{2} E_k D^k\right)_{n,A,D}$  — плотность энтропии.

Из соотношений (22)–(25) вытекает уравнение баланса энтропии, которое для последующего анализа удобно представить в виде (при  $\rho = \text{const}$ )

$$T \frac{dS}{dt} + \nabla_j (q^j - \mu I^j) = \sigma^{(ij)} e_{ij} - I^j (\nabla_j \mu + X_k \nabla_j A^k) + \left( n \frac{\tilde{d}A^k}{dt} + I^j \nabla_j A^k \right) X_k.$$
(26)

Здесь  $e_{ij} = \nabla_{(i} v_{j)}$  — компоненты тензора скоростей деформаций,  $\mu$  — электрохимический потенциал поляризующихся дисперсных частиц

$$\mu = \frac{\partial F}{\partial n} - \frac{1}{2} \varepsilon_0 V^{\circ} \left( \chi \delta^{ij} + |\Delta \chi| \left( A^i A^j - \frac{1}{3} A^2 \delta^{ij} \right) \right) E_i E_j,$$
$$\chi \equiv \frac{1}{3} \left( \chi_{\parallel} + 2\chi_{\perp} \right), \tag{27}$$

и кроме того, введены обозначения

$$X_{k} = \varepsilon_{0} |\Delta \chi| V^{\circ} \left( E_{k} E^{j} - \frac{1}{3} E^{2} \delta_{k}^{j} \right) A_{j} - \frac{1}{n} \frac{\partial F}{\partial A^{k}},$$
$$\frac{\tilde{d}A^{k}}{dt} = \frac{dA^{k}}{dt} - [\boldsymbol{\omega} \mathbf{A}]^{k}.$$
(28)

Величины  $\tilde{dA}^k/dt$  представляют собой производные компонент  $A^k$  в системе отсчета, движущейся и вращающейся вместе со средой. Величины  $X_k$  можно рассматривать как обобщенные термодинамические силы, ответственные за необратимые процессы релаксации анизотропии среды **A**.

В состоянии термодинамического равновесия  $\mu =$  = const,  $X_k = 0$ , и из определений (27) и (28) для этих величин вытекают соотношения

$$\frac{\partial F}{\partial n} - \frac{1}{2} \varepsilon_0 V^{\circ} \left( \chi E^2 + \frac{2}{3} |\Delta \chi| A^2 E^2 \right) = \text{const} \quad \text{при } \mu = \text{const},$$
(29)

$$\frac{2}{3} \varepsilon_0 |\Delta \chi| V^{\circ} E^2 A^2 = \frac{1}{n} \frac{\partial F}{\partial A^k} A^k \quad \text{при } X_k = 0, \tag{30}$$

причем направления E и A должны совпадать. С другой стороны, в термодинамическом равновесии величина

вектора **А** должна определяться соотношением (17). Это условие вместе с (30) позволяет найти зависимость  $F(A^k)$ :

$$F = \frac{2}{3} n k_B T \int L^{(-1)}(A^2) d(A^2) + F_1(n, T), \qquad (31)$$

где  $L^{(-1)}(A^2)$  — функция, обратная функции  $L(u^2)$ , определенной равенством (17),  $F_1$  не зависит от  $A^k$ . График  $L^{(-1)}$  легко находится из рис. 1. Проведем интегрирование по частям в выражении (31) для F и подставим его в (29). Учитывая затем определение функции  $L^{(-1)}$ , преобразуем (29) к виду

$$\frac{\partial F_1}{\partial n} - k_B T \left(\frac{2}{3} \int A^2 d(u^2) - \frac{\chi}{|\Delta \chi|} u^2\right) = \text{const.} \quad (32)$$

При заданной функции  $F_1(n, T)$  соотношение (32) определяет распределение концентрации частиц в состоянии термодинамического равновесия. Указанное распределение должно совпадать с (21). Это условие позволяет найти зависимость  $F_1$  от концентрации частиц n

$$F_1 = nk_B T \ln \frac{n}{N(T)} + F_0(T),$$
 (33)

где  $F_0(T)$  и N(T) зависят только от температуры T. В том, что выражение (21) для n получается как решение из (32) и (33), легче всего убедиться прямой подстановкой (21) в (33) и затем (33) и (17) в (32). После этого (32) обращается в тождество  $(d/du \text{ or } (32) \equiv 0)$ .

# Законы диффузии и диэлектрофореза частиц дисперсной фазы и релаксации анизотропии среды

Чтобы получить релаксационные уравнения для  $I^{j}$  и  $\tilde{d}A^{k}/dt$  в отсутствие термодинамического равновесия, будем считать, что отклонение от последнего достаточно мало, и используем линейные законы термодинамики необратимых процессов [18,20]. В результате из уравнений (25) можно вывести следующие соотношения (см. (34)) между обобщенными термодинамическими силами  $\nabla_{j}\mu + X_{k}\nabla_{j}A^{k}$ ,  $X_{k}$  и соответствующими обобщенными потоками

$$I^{j} = -\frac{nD_{x}}{k_{B}T} \left( \nabla^{j} \mu + X_{k} \nabla^{j} A^{k} \right),$$
$$\frac{\tilde{d}A^{k}}{dt} + \frac{I^{j}}{n} \nabla_{j} A^{k} = C^{kq} X_{q}.$$
(34)

Для упрощения формул пренебрежем влиянием  $\nabla T$  на процессы диффузии частиц и релаксации анизотропии среды. В (34) также опущены перекрестные члены, так как перекрестные эффекты между диффузией и релаксацией анизотропии фактически уже учтены за счет принятого конкретного выбора обобщенных термодинамических сил (см. ниже). Кроме того, для частиц, близких к сферическим, влияние распределения частиц по направлениям вектора **a** на их диффузию и на вязкое течение несущей фазы между частицами исчезает. В результате в (34) выбран скалярный коэффициент диффузии (его значение обосновано ниже) и отсутствуют перекрестные члены, обусловленные вязким течением. При этом из (25) также получается обычное выражение для тензора вязких напряжений со скалярным коэффициентом вязкости. С учетом зависимости последнего от концентрации дисперсной фазы (поправка Эйншетейна [21]) имеем

$$\sigma^{(ij)} = 2\eta \left( 1 + \frac{5}{2} n V^{\circ} \right) \nabla^{(i} v^{j)}.$$
(35)

Подставив выражения (26) и (27) для  $\mu$  и  $X_k$  в первое равенство (34), учитывая формулы (30), (32) и определение (12) для  $D_x$ , получим следующее выражение для потока анизотропно поляризующихся частиц в результате их диффузии и диэлектрофореза

$$I^{j} = -D_{x}\nabla^{j}n + \frac{\varepsilon_{0}nV^{\circ}}{6\pi\eta R^{\circ}} \times \left(\chi\delta_{ik} + |\Delta\chi|\left(A_{i}A_{k} - \frac{1}{3}A^{2}\delta_{ik}\right)\right)\nabla^{j}\frac{E^{i}E^{k}}{2}.$$
 (36)

Точно такое выражение получается прямым интегрированием уравнения Смолуховского (10) по всевозможным направлениям вектора анизотропии частиц **a** с учетом (16), что подтверждает правильный выбор коэффициента  $-nD_x/k_BT$  в (34) и отсутствие перекрестных членов в этих соотношениях. Отметим, что вследствие диэлектрофореза компоненты потока частиц  $I^j$  зависят от вектора анизотропии дисперсной среды **A**, который в свою очередь определяется релаксационным уравнением, содержащим  $I^j$ .

Если движение среды вносит малое возмущение в распределение **A**, то в уравнении (34) для  $I^{j}$  можно считать **A** направленным вдоль **E** и положить  $A^{2} = L(u^{2})$ , согласно (17). В результате находим

$$I^{j} = -D_{x}\nabla^{j}n + nb\nabla^{j}\frac{E^{2}}{2},$$
  
$$b \equiv \frac{\varepsilon_{0}V^{\circ}}{6\pi\eta R^{\circ}}\left(\chi + \frac{2}{3}|\Delta\chi|L(u^{2})\right), \qquad (37)$$

где b — коэффициент диэлектрофоретической подвижности частиц, а безразмерный параметр  $u^2$  пропорционален  $E^2$ . Из (37) и (17) следует, что при возрастании  $u^2$  от нуля до бесконечности величина b увеличивается от значения  $b_0 = \frac{\varepsilon_0 \chi V^{\circ}}{6 \pi \eta R^{\circ}}$  до максимального значения

$$b^+ = rac{arepsilon_0 \chi_{\parallel} V^\circ}{6\pi \eta R^\circ}$$
 при  $\Delta \chi > 0$  или  $b^- = rac{arepsilon_0 \chi_{\perp} V^\circ}{6\pi \eta R^\circ}$  при  $\Delta \chi < 0.$  (38)

В результате диэлектрофорез анизотропных частиц является нелинейным процессом, за исключением случаев достаточно малых или больших электрических полей. Это объясняется влиянием электрического поля на ориентацию частиц, от которой, в свою очередь, зависит действующая на них электрическая сила (см. (13)). Согласно (37), нелинейный эффект исчезает в отсутствие анизотропии частиц (в этом случае  $\chi_{\parallel} = \chi_{\perp} = \chi$ и, следовательно,  $\Delta \chi = 0$ ,  $b = b_0$ ), что согласуется с предложенными моделями диэлектрофореза изотропно поляризующихся частиц [5]. Соотношения (37) и (38) могут служить основой для разработки диэлектрофоретических методов манипулирования анизотропно поляризующимися частицами в микродисперсных системах.

Кинетические коэффициенты  $C^{kq}$  в (34), вообще говоря, должны зависеть от значений компонент  $A^j$ , которые можно определять из условий равновесия  $X_k = 0$ . Действительно, учет  $X_k \neq 0$  в указанных коэффициентах сделал бы соотношения (34) нелинейными и был бы превышением точности. По той же причине зависимость  $C^{kq}$  от  $E^j$  может быть сведена к зависимости от  $A^j$ . В результате компоненты  $C^{kq}$  можно записать в виде

$$C^{kq} = \frac{D_a}{k_B T} \left( C_{\parallel} \frac{A^k A^q}{A^2} + C_{\perp} \left( \delta^{kq} - \frac{A^k A^q}{A^2} \right) \right), \qquad (39)$$

где безразмерные коэффициенты  $C_{\parallel}$  и  $C_{\perp}$  описывают релаксацию вдоль и поперек направления А и, вообще говоря, зависят от А<sup>2</sup> и Т. Чтобы найти их, рассмотрим релаксацию анизотропии в неподвижной среде в однородном электрическом поле с постоянной концентрацией частиц дисперсной фазы. В этом случае уравнение релаксации тензора  $\langle a^i a^j \rangle$  может быть получено непосредственно из уравнения Смолуховского (10), если предположить, что высшие моменты  $\langle a^i a^j a^p a^q \rangle$ выражаются через  $\langle a^i a^j \rangle$ . Такое предположение обрывает цепочку моментов компонент вектора анизотропии частиц, к которой сводится (10). При этом тензор  $\langle a^i a^j \rangle$ оказывается одноосным и, следовательно, может быть выражен в виде (16) через некоторый вектор. Для его компонент  $A^k$  получается уравнение, которое может быть представлено в виде второго равенства (34), если в последнем отбросить члены с  $\omega$  и  $I^{j}$ . Описанная процедура требует проведения громоздких алгебраических преобразований и вычислений, подробное изложение которых могло бы составить предмет отдельной статьи. В конечном результате получаются следующие выражения:

$$C_{\parallel} = rac{9}{4L^{(-1)}(A^2)}, \quad C_{\perp} = \pm rac{1}{3} + rac{2}{3A^2} - rac{2}{L^{(-1)}(A^2)}.$$
 (40)

С учетом асимптотических разложений (19) и (20) из (40) находим, что  $C_{\parallel} = 0, C_{\perp} = 1$  при  $A^2 = 1, \Delta \chi > 0$  и при  $A^2 = 1/2, \Delta x < 0$ . В этих предельных случаях векторы анизотропии всех частиц направлены вдоль **A** (при  $\Delta \chi > 0$ ) или изотропно распределены в плоскости, перпендикулярной **A** (при  $\Delta \chi < 0$ ). При этом второе

уравнение (34) представляется в виде (с учетом (11) и (12))

$$\frac{d\mathbf{A}}{dt} + \frac{I'}{n} \nabla_{j} \mathbf{A} = [\mathbf{\Omega} \mathbf{A}],$$
$$\mathbf{\Omega} = \boldsymbol{\omega} + \frac{\varepsilon_{0} |\Delta \chi|}{6\eta A^{2}} (\mathbf{A} \mathbf{E}) [[\mathbf{A} \mathbf{E}] \mathbf{A}] \equiv \boldsymbol{\omega} \pm \frac{1}{6\eta V^{\circ} A^{2}} \mathbf{m}_{a=A}.$$
(41)

Как и следовало ожидать, в случае  $A^2 = 1$ ,  $\Delta \chi > 0$  равенства (41) просто сводятся к уравнению движения вектора анизотропии каждой частицы **a** = **A**.

Соотношения (34), (35), (39) и (40), определяющие поток частиц, тензор вязких напряжений и релаксацию анизотропии среды, а также уравнения (8) и (16), определяющие зависимость индукции от напряженности поля, совместно с уравнениями электрогидродинамики (22)–(25) образуют полную систему уравнений, описывающих движение рассматриваемой среды.

# Течения в поперечном электрическом поле и эффективная вязкость

Рассмотрим установившиеся течения рассматриваемой дисперсной системы в канале между параллельными металлическими стенками, к которым приложена разность электрических потенциалов (рис. 2). Течение может создаваться в результате перепада давления вдоль канала или за счет относительного движения его стенок. Будем считать, что все характеристики течения зависят только от поперечной координаты и, следовательно,  $d\mathbf{v}/dt = 0, \ d\mathbf{A}/dt = 0$  (однако  $d\mathbf{A}/dt \neq 0$ ). Соответствующие результаты можно приближенно использовать также для течений в узких каналах между коаксиальными цилиндрами (т.е. при  $h \ll R$ , где h и R — ширина и радиус кривизны канала). Такие течения часто встречаются в важных прикладных задачах и технологических устройствах, например, при сепарации диспергированных частиц и измерении их характеристик [10]. Пусть также отсутствует эмиссия (или поглощение) частиц



**Рис. 2.** Течение в плоском канале с неподвижными стенками при наличии перепада давления и поперечного электрического поля.

на стенках канала, и, следовательно, поток  $I^{j} = 0$ , а концентрация n = const.

Используя соотношения (23), (24) и (35), а также выражения (8) и (16), уравнение (22) для определения скорости среды можно представить в виде

$$\nabla\left(p - \frac{1}{2}\left(E_k D^k\right) = \eta\left(1 + \frac{5}{2}nV^\circ\right)\Delta\mathbf{v} + \frac{\varepsilon_0|\Delta\chi|nV^\circ}{2}\operatorname{rot}\left((\mathbf{AE})[\mathbf{AE}]\right)\right). \quad (42)$$

Здесь также учтено, что для рассматриваемых течений **E** остается перпендикулярным металлическим стенкам канала, хотя **D** приобретает параллельную им компоненту (при  $\mathbf{v} \neq 0$ ). Умножив векторно уравнение (39) на **A** и учитывая определения (12) и (28), найдем

$$-A^{2}\omega = \frac{C_{\perp}\varepsilon_{0}|\Delta\chi|}{6\eta} \,(\mathbf{AE})[\mathbf{AE}]. \tag{43}$$

Отсюда следует, что движение среды вызывает отклонение направления вектора **A** от направления **E**, которое для достаточно сильных полей или медленных течений будет малым (т.е. при  $\eta v/h \ll \varepsilon_0 |\Delta \chi| E^2$ ). В этом случае коэффициент  $A^2/C_{\perp}$  в (43) может быть вычислен на основании равновесной зависимости  $A^2$  от невозмущенного поля  $E^2$ . Исключив с помощью (43) член (**AE**)[**AE**] из уравнения (42), окончательно получим

$$\nabla\left(p - \frac{1}{2} \left(E_k D^k\right)\right) = \eta_{\text{eff}} \Delta \mathbf{v}, \quad \eta_{\text{eff}} = \eta (1 + \Phi n V^\circ).$$
(44)

Коэффициент Ф в (44), определенный следующим образом:

$$\Phi(A) = \frac{5}{2} + \frac{3A^2}{2C_{\perp}(A^2)},\tag{45}$$

может считаться постоянным, так как невозмущенное поле однородно внутри канала. Подставив в (45) зависимость (40) для  $C_{\perp}(A^2)$  и учитывая выражение (17) для  $A^2(u^2)$ , найдем зависимость  $\Phi(u)$ 

$$\Phi(u) = \frac{5}{2} + \frac{3L(u^2)}{2} \left( \pm \frac{1}{3} + \frac{2}{3L(u^2)} - \frac{2}{u^2} \right)^{-1}.$$
 (46)

Согласно определению (17), безразмерный параметр u пропорционален величине напряженности электрического поля в канале. Зависимость  $\Phi(u)$  показана на рис. 3. В сильных электрических полях соотношение (46) существенно упрощается

$$\Phi = 4 - \frac{3}{4u^2}, \quad \Delta \chi > 0; \quad \Phi = \frac{13}{4} - \frac{9}{8u^2}, \quad \Delta \chi < 0;$$
$$u^2 \equiv \frac{\varepsilon_0 |\Delta \chi| V^\circ E^2}{2k_B T} \gg 1. \tag{47}$$

При выводе (47) были использованы асимптотические выражения (19) и (20) для функции  $L(u^2)$ .



**Рис. 3.** Зависимость коэффициента  $\Phi$  в выражении (44) для эффективной вязкости  $\eta_{\text{eff}}$  от безразмерной напряженности электрического поля *и*. Кривые I и II соответствуют случаям  $\Delta \chi > 0$  (анизотропия типа "легка ось") и  $\Delta \chi < 0$  (анизотропия типа "легка ось").

Уравнение (44) совпадает с уравнением течения обычной вязкой жидкости с эффективной вязкостью  $\eta_{\rm eff}$ . Присутствие анизотропно поляризующихся дисперсных частиц дает дополнительный вклад в  $\eta_{\rm eff}$ . Этот вклад пропорционален объемной концентрации дисперсной фазы nV° и зависит от напряженности электрического поля через параметр  $u^2$ . Если поле отсутствует ( $u^2 = 0$ ), то  $\Phi(0) = 5/2$ . В этом случае выражение (44) для эффективной вязкости совпадет с выражением Эйнштейна. Возрастание электрического поля приводит к монотонному увеличению  $\Phi(u)$  и  $\eta_{\text{eff}}$ , что объясняется следующим образом. Из-за наличия анизотропии поляризации частиц электрическое поле вызывает частичное упорядочивание их ориентации. Поэтому при вихревом движении дисперсной среды частицы не могут свободно вращаться вместе со средой с локальной угловой скоростью  $\omega = \frac{1}{2}$  rot v. Вращение вязкой несущей фазы относительно дисперсных частиц приводит к дополнительной диссипации энергии. На макроскопическом уровне она проявляется как диссипация вследствие неравновесности средней анизотропии среды А, эволюция которой описывается релаксационным уравнением (39). В конечном счете это явление приводит к возрастанию эффективной вязкости среды в рассматриваемом течении. В достаточно сильных полях ( $u^2 \gg 1$ )  $\eta_{
m eff}$  стремится к значению  $\eta(1+4nV^\circ)$  при  $\Delta\chi>0$  или  $\eta(1+3.25nV^\circ)$ при  $\Delta \chi < 0$ .

Выражения (44) для  $\eta_{\text{eff}}$  и  $\Phi(u)$  легко обобщаются на случай, когда присутствуют несколько сортов различных частиц путем замены члена  $\Phi nV^{\circ}$  на  $\sum \Phi_{(i)}n_{(i)}V_{(i)}^{\circ}$ , где суммирование производится по номеру сорта частиц (*i*). При этом зависимости  $\Phi_{(i)}(u_{(i)})$  по-прежнему определяются выражениями типа (46) и (47), записанными для соответствующего сорта частиц. Полученные выражения для эффективной вязкости позволяют, проводя

Журнал технической физики, 2011, том 81, вып. 2

измерение в электрическом поле зависимости  $\eta_{\text{eff}}(E)$ , определять характеристики дисперсной фазы, например, объемные концентрации различных сортов дисперсных частиц.

#### Заключение

В настоящей работе рассматривались анизотропные среды, в которых форма дисперсных частиц мало отличается от сферической, а их анизотропия обусловлена диэлектрической анизотропией вещества частиц. Для приложений представляет интерес также случай, когда анизотропия частиц в основном имеет геометрическую природу. В этом случае вещество частиц изотропно, но их форма существенно отличается от сферической и обычно аппроксимируется эллипсоидом. Такой случай может быть исследован методами, которые в идейном плане мало отличаются от методов, использованных выше, хотя законы, описывающие неравновесные процессы, становятся более громоздкими. В целом, электрогидродинамическая модель, построенная в настоящей работе, позволяет проводить расчеты течений поляризующихся сред с учетом диффузии и диэлектрофореза частиц дисперсной фазы, а также релаксации анизотропии среды. Результаты по диэлектрофоретической подвижности частиц и эффективной вязкости среды могут использоваться при разработке методов манипулирования микродисперсными системами и их диагностики.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 10-01-00015).

#### Список литературы

- Itoh T., Masuda S., Gomi F. // J. Electrostat. 1994. Vol. 32. P. 71–89.
- Han S.P., Yang S.M. // Colloid Interface Sci. 1996. Vol. 177.
   P. 132–142.
- [3] Sproston J.L., Stanway R., Williams E.M., Rigby S. // J. Electrostat. 1994. Vol. 32. P. 253–259.
- [4] Stanway R., Sproston J.L., El-Wahed A.K. // J. Smart. Mater. Struct. 1996. Vol. 5. P. 464–482.
- [5] Castellanos A., Ramos A., Gonzalez A., Green N.G., Morgan H. // J. Phys. D.: Appl. Phys. 2003. Vol. 36. P. 2584– 2597.
- [6] Minerick A.R., Zhou R., Takhistov P., Chang H.C. // Electrophoresis. 2003. Vol. 24. P. 3703–3717.
- [7] Wissner Gross A.D. // Nanotechnology. 2006. Vol. 17. P. 4986–4990.
- [8] Wen W., Huang X., Yang S., Lu K., Sheng P. // Nature Materials. 2003. Vol. 2. P. 727–730.
- [9] Gascoyne P.R.C., Vykoukal J. // Electrophoresis. 2002. Vol. 23.
   P. 1973–1983.
- [10] *Cantor C.R., Schimmel P.R.* Biophysical chemistry. Part 2. San Francisco: W.H. Freeman & Company, 1980. 365 p.
- [11] Hughes M.P. // Electrophoresis. 2002. Vol. 23. P. 2569-2582.
- [12] Millman J.R., Bhatt K.H., Prevo B.G., Velev O.D. // Nature Materials. 2005. Vol. 4. P. 98–102.

- [13] Tanford C. Physical Chemistry of macromolecules. N.Y.: Jonh Wiley & Sons, Inc., 1961. 710 p.
- [14] Foulc J.-N., Atten P., Felici N. // J. Electrostat. 1994. Vol. 33. P. 103–112.
- [15] Parthasarathy M., Klingenberg D.J. // Mater. Sci. Eng. R. 1996. Vol. 17. P. 57–103.
- [16] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 623 с.
- [17] Хаппель Дж., Бреннер Г. Гидродинамика при малых числах Рейнольдса. М.: Мир, 1976. 630 с.
- [18] Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч. 1. М.: Наука, 1976. 583 с.
- [19] Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 830 с.
- [20] Седов Л.И. Механика сплошной среды. Т. 1. М.: Наука, 1984. 528 с.
- [21] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1989. 736 с.