03

Эффект Пула-Френкеля в халькогенидных полупроводниках с различными кристаллическими структурами

© А.М. Пашаев^{1,2}, Б.Г. Тагиев^{1,2}, О.Б. Тагиев^{2,3}

 ¹ Национальная академия авиации, Баку, Азербайджан
 ² Институт физики НАН Азербайджана, Баку, Азербайджан
 ³ Филиал Московского государственного университета им. М.В. Ломоносова, Баку, Азербайджан
 E-mail: oktay58@mail.ru

(Поступила в Редакцию 1 октября 2012 г.)

Представлены результаты исследований электропроводности большой группы халькогенидных полупроводников, имеющих слоистую, кубическую и орторомбическую структуру, в сильных электрических полях до 10^5 V/ст. Выявленный рост электропроводности σ в сильных электрических полях объясняется термоэлектронной ионизацией Френкеля. Это позволило наряду с другими параметрами (например, энергией активации и концентрацией ловушек, длиной свободного пробега носителей тока, диэлектрическую проницаемость), а также оценить концентрацию и подвижность носителей тока исследуемых полупроводников. Показано, что в сильных электрических полях в полупроводниках, когда имеет место термоэлектронная ионизация ловушек, их диэлектрическая проницаемость ε , обусловленная электронной поляризацией, определяется простым способом, т. е. $\varepsilon = n^2$ (где n — коэффициент преломления света).

Работа выполнена при финансовой поддержке Фонда развития науки при Президенте Республики Азербайджан (грант № ЕІГ-2011-1(3)-82/01/1).

1. Введение

Халькогенидные двойные и тройные соединения с общими формулами $A^{III}B^{VI}$ ($A_2^{III}B_3^{VI}$) и $A^{II}B_2^{III}C_4^{VI}$ являются интересными полупроводниковыми объектами для исследования электрических, фотоэлектрических и люминесцентных явлений.

Слоистые кристаллы типа GaSe из группы $A^{III}B^{VI}$ (где A^{III} — Ga, In, Al и др.) в настоящее время из-за их структурных особенностей (в слоях имеет место ковалентная связь, а между слоями — связь Ван-дер-Ваальса) привлекают большое внимание исследователей [1–3]. Соединения $A^{III}B^{VI}$ не имеют аналогов среди элементарных полупроводников и отличаются рядом специфических свойств. В этих полупроводниках различие химических связей в слоях и между ними приводит к анизотропии их физических свойств.

В зависимости от типа и концентрации примесей, вводимых в $A^{\text{III}}B^{\text{VI}}$, их удельное сопротивление изменяется в широком интервале $(10^2 - 10^9 \,\Omega \cdot \text{cm})$, при этом резко увеличивается фоточувствительность (отношение темнового сопротивления R_d к световому R_l составляет $10-10^4$) [4–6].

Халькогениды галлия состава $A_2^{\text{III}}B_3^{\text{VI}}$ (Ga₂Se₃, Ga₂Te₂ и др.) являются алмазоподобными полупроводниками со структрными дефектами, обусловленными вакансиями галлия [7,8]. Наличие вакантных мест в структурах соединений $A_2^{\text{III}}B_3^{\text{VI}}$ делает их интерсными для исследования электрических, диэлектрических, люминесцентных явлений и перспективными для создания фотоэлектри-

ческих преобразователей. Соединения типа Ga₂S₃ характеризуются фоточувствительностью и люминесценцией.

Соединения Ca(Eu,Ba,Sr)Ga₂S₄(Se₄) при возбуждении их рентгеновскими и ультрафиолетовыми излучениями, электронными пучками и сильным электрическим полем в интервале температур 4.2–500 К обнаруживают эффективную люминесценцию [9–11].

Экспериментальные и теоретические исследования показывают, что в процессах фотопроводимости и люминесценции полупроводников важную роль играют локальные уровни [12–14].

В настоящей работе с целью определения механизмов токопрохождения и важных параметров локальных уровней исследование электропроводности полупроводников, входящих в группы $A^{III}B^{VI}$ ($A_2^{III}B_3^{VI}$) и $A^{II}B^{III}C_4^{VI}$, проводилось в сильных электрических полях до 10⁵ V/ст в интервале температур 77–400 К.

2. Термополевой эффект Пула-Френкеля в полупроводниках и диэлектриках

Проблемы совместного воздействия температуры и сильного электрического поля на ионизацию примесных уровней в полупроводниках, диэлектриках и структурах на их основе впервые более 70 лет назад теоретически рассмотрены Френкелем [15,16]. Поэтому увеличение электропроводности указанных материалов с ростом электрического поля объясняют термоэлектронной ионизацией Френкеля. В литературе термоэлектронную ионизацию Френкеля часто называют эффектом Пула и Френкеля (ЭПФ) [17,18]. Это, по всей вероятности, связано с тем, что Пул [19] почти 100 лет тому назад показал, что электропроводность σ слюды в сильных электрических полях увеличивается по экспоненциальному закону $\sigma = \sigma_0 e^{\alpha E}$ (σ_0 — электропроводность в области выполнения закона Ома, α — наклон зависимости $\lg \sigma$ от E). Согласно теории термоэлектронной ионизации Френкеля, электропроводность полупроводников и диэлектриков в сильных электрических полях экспоненциально зависит от квадратного корня электрического поля: $\sigma = \sigma_0 e^{\beta \sqrt{E}}$ ($\beta = \frac{e^3}{\sqrt{\pi \varepsilon \varepsilon_0 kT}}$ — наклон зависимости $\lg \sigma$ от \sqrt{E}). Коэффициент Пула α не связан с природой материала, тогда как коэффициент Френкеля β через диэлектрическую проницаемость ε зависит от природы материала.

Губанов [20] называет механизм Френкеля объемным эффектом Шоттки [21]. В эффекте Шоттки рассматривается уменьшение работы выхода из металла в вакуум при термоэлектронной эмиссии за счет сильного электрического поля. В этом смысле термоэлектронная ионизация примесных уровней (ловушек) в сильном электрическом поле аналогична эффекту Шоттки. Однако необходимо отметить, что механизм термоэлектронной ионизации Френкеля реализуется не у электрода, а во всем объеме полупроводника и диэлектрика.

ЭПФ теоретически рассмотрен во многих работах (см., например, [22,23]) и экспериментально обнаружен в полупроводниках, диэлектриках и структурах на их основе (см., например, [24,25]).

Сущность ЭПФ заключается в понижении энергии активации примесных уровней электрическим полем, что приводит к увеличению концентрации носителей тока

Рис. 1. Энергетическая диаграмма ловушек в электрическом поле. E_t — энергия активации ловушек; E_M — энергия активации, $E_M = E_t - \left(\frac{e^3}{\pi \varepsilon \varepsilon_0}\right)^{1/2} E^{1/2}$; E_0 — энергия активации ловушек, при которой происходит облегченное температурой туннелирование.

в полупроводниках и диэлектриках. Согласно теории Френкеля, энергия активации ловушек E_t с ростом величины электрического поля E уменьшается (рис. 1) [17]

$$E_t(E) = E(0) - \sqrt{\frac{e^3 E}{\pi \varepsilon \varepsilon_0}},\tag{1}$$

где E(0) — энергия активации ловушек в области выполнения закона Ома. В соответствии с формулой (1) величина E_t , которая в сильных электрических полях определяется по температурной зависимости электропроводности, линейно уменьшается с ростом \sqrt{E} .

В [17] отмечается, что ЭПФ имеет место, когда минимальное расстояние между ловушками равно расстоянию от ловушки до максимума потенциального барьера $r_m = \sqrt{e/\pi\varepsilon\varepsilon_0 F_{\rm cr}}$. Это условие соответствует концентрации ловушек

$$N_t \approx 1/(2r_m)^2 = \left(\pi \varepsilon \varepsilon_0 F_{\rm cr} e^{-1}\right)^{3/2}.$$
 (2)

В (2) $F_{\rm cr}$ — минимальная величина электрического поля, при котором наблюдается ЭПФ. Для оценки N_t по формуле (2) необходимо знать ε . Однако, определяя коэффициент Френкеля β при разных температурах, можно видоизменить выражение для N_t , тогда получим

$$N_t = \frac{3}{4\pi} \left(\frac{2e}{kT\beta} F_{\rm cr}^{1/2}\right)^3.$$
(3)

В [26] найдена связь между критическим радиусом центра захвата и уменьшением высоты потенциального барьера (см. (1)). Принимая во внимание линейную зависимость между E_t и \sqrt{F} , мы получили выражение [27,28] для N_t в следующем виде:

$$N_{t} = \frac{3}{4\pi} \frac{e^{3} F_{cr}^{3/2} \left(F_{2}^{1/2} - F_{1}^{1/2}\right)^{3}}{\left(E_{t}' - E_{t}''\right)^{3}},$$
(4)

где F_1 и F_2 — напряженности электрического поля, при которых энергии активации ловушек равны E'_t и E''_t соответственно.

Френкель [29] в начале пятидесятых годов XX века развивает результаты своих работ [15,16] о "надбарьерном механизме" термоэлектронной эмиссии из отдельных атомов полупроводников и диэлектриков, облегчающей их ионизацию. В предположении, что во внутренних (достаточно экранированных) точках тела $\varphi = 0$ (где φ — электрический потенциал, соответствующий полю *E*), он получает следующее выражение для отношения концентраций положительных (дырок) и отрицательных зарядов:

$$\frac{n^+}{n^-} = e^{-\frac{2e\varphi}{kT}}.$$
 (5)

Уравнение (5) совместно с уравнением Пуассона позволяет в принципе определить концентрацию положительных (n^+) и отрицательных (n^-) зарядов во всем объеме полупроводника и диэлектрика, находящихся в сильном электрическом поле E_0 ,

$$\frac{d^2\varphi}{dx^2} = 4\pi \left[e^{\frac{2e\varphi}{kT}} - e^{-\frac{e\varphi}{kT}} \right].$$
 (6)

В [30] получены следующие решения уравнения (6):

$$n^{+} = \frac{\varepsilon \varepsilon_{0}}{4kT} E_{0}^{2} + n_{0} - \left[\frac{1}{4} \left(\frac{\varepsilon \varepsilon_{0}}{2kT} E_{0}^{2} + 2n_{0}\right)^{2} - n_{0}^{2}\right],$$
$$n^{-} = \frac{\varepsilon \varepsilon_{0}}{4kT} E_{0}^{2} + n_{0} + \left[\frac{1}{4} \left(\frac{\varepsilon \varepsilon_{0}}{2kT} E_{0}^{2} + 2n_{0}\right)^{2} - n_{0}^{2}\right]^{1/2}.$$
 (7)

Автором [30] уравнения (7) анализировались для двух случаев: 1) $\frac{\mathcal{E}\mathcal{E}_0}{4kT}E_0^2 \ll n_0$; 2) $\frac{\mathcal{E}\mathcal{E}_0}{4kT}E_0^2 \gg n_0$. В этих выражениях E_0 — электрическое поле при x = 0.

В первом случае концентрации n^+ и n^- около электрода не зависят от электрического поля: $n^+ = n^- \approx n_0$. Второй случай выполняется, когда $n_0 \approx \frac{\varepsilon_c \varepsilon_0}{2kT} E_0^2$.

Автор [30] предполагает, что имеется лимитирующая величина электрического поля $E_{\rm lim}$, отделяющая первый случай ($E_0 < E_{\rm lim}$) от второго $E_0 > E_{\rm lim}$. При этом в [30] приводится следующая формула для определения концентрации n_0 в области выполнения закона Ома:

$$\frac{\varepsilon\varepsilon_0}{4kT}E_{\rm lim}^2 = n_0,\tag{8}$$

где ε — диэлектрическая проницаемость полупроводника и диэлектрика, ε_0 — электрическая постоянная вакуума, k — коэффициент Больцмана, T — абсолютная температура. В соответствии с теорией Френкеля в (8) входит величина диэлектрической проницаемости, обусловленная высокочастотной электронной поляризацией (т. е. $\varepsilon = n^2$).

Оценка n_0 по формуле (8) проводилась для слоистых, кубических и орторомбических кристаллов типа GaSe, Ga₂Se₃ и EuGa₂S₄ соответственно в электрических полях, при которых наблюдается ЭПФ.

3. Методика эксперимента

Синтезированы двойные и тройные халькогенидные полупроводники со слоистой (типа GaSe), кубической (типа Ga₂Se₃) и орторомбической (типа EuGa₂S₄, BaGa₂S₄ и др.) структурой.

Указанные типы соединений синтезировались из соответствующих компонентов, взятых в стехиометрических соотношениях, в эвакуированных кварцевых ампулах, откачанных до 10^{-4} mm Hg. Монокристаллы слоистых полупроводников выращивались методом Бриджмена. При этом размеры выращенных слоистых монокристаллов GaSe, GaTe, InSe и твердых растворов на их основе были $1.5 \times 6.0 \times 20$ mm. Омические контакты к образцам слоистых монокристаллов создавались вплавлением индия. Размеры образцов были $3 \times 0.2 \times 5$ mm. В этих кристаллах для измерения электропроводности вдоль (σ_{\parallel}) и поперек слоев (σ_{\perp}) омические контакты наносились на противоположную поверхность и торцы образцов, что позволяло оценить анизотропию проводимости.

Монокристаллы образцов с кубической структурой типа Ga₂Se₃ также выращивались методом Бриджмена, а образцы с орторомбической структурой — методом химической газотранспортной реакции. В качестве переносчика использовался иод.

Образцы монокристаллов халькогенидных полупроводников с кубической (типа Ga_2Se_3) и орторомбической (типа $EuGa_2S_4$, $BaGa_2S_4$) структурой подвергались химическому травлению. После травления образцы промывались в дистиллированной воде и спирте, омические контакты к ним создавались вплавлением индия. Толщина образцов изменялась в интервале $70-200\,\mu$ m. Площадь омических контактов изменялась от 1 до 6 mm².

Результаты измерений и их обсуждение

Анализ экспериментальных данных показывает, что в сильных электрических полях от 10^3 до $5\cdot 10^4\,V/cm$

Рис. 2. Зависимость электропроводности σ монокристалла GaSe от напряженности электрического поля *E* при различных температурах. *T*, K: *1* — 216, *2* — 198, *3* — 185, *4* — 169, *5* — 158, *6* — 144. *a* — в координатах $\lg \sigma - E$, *b* — в координатах $\lg \sigma - \sqrt{E}$.

Рис. 3. Зависимость электропроводности σ монокристалла *p*-GaTe от напряженности электрического поля *E* при различных температурах. *T*, K: *I* — 202, *2* — 180, *3* — 173, *4* — 156, 5 — 143, 6 — 123. *a* — в координатах $\lg \sigma - E$, *b* — в координатах $\lg \sigma - \sqrt{E}$.

зависимость σ различных халькогенидных полупроводников от E хорошо описывается формулой Френкеля.

На рис. 2 представлены экспериментальные данные для слоистых кристаллов на примере GaSe в координатах $\lg \sigma - E$ и $\lg \sigma - \sqrt{E}$. Аналогичные зависимости получены и для других образцов двойных и тройных халькогенидных полупроводников (рис. 3). Нетрудно заметить, что экспериментальные данные в координатах $\lg \sigma - \sqrt{E}$ (рис. 2, *b* и 3, *b*) лучше укладываются на прямую, чем в координатах $\lg \sigma - E$ (рис. 2, *a* и 3, *a*). Видно, что наклон зависимостей $\lg \sigma - \sqrt{E}$ с уменьшением температуры увеличивается. Этот результат хорошо согласуется с теоретическим выражением для коэффи-

циента Френкеля β . Если анализировать температурную зависимость β от обратной температуры, видно, что зависимость между этими величинами линейная (рис. 4). Из выражения для β следует, что произведение $Z = \beta kT$ от температуры не зависит, что хорошо иллюстрируется рис. 5.

Однако, как отмечается в [31], когда акцепторные или донорные уровни окружены ловушками, статистически заполненными электронами, наблюдается зависимость Z от T. При учете экранирования ионизируемых примесных уровней ловушками, статистически заполненными электронами, для температурной зависимости эффективной величины $Z_{\rm eff}$ получено следующее выражение:

 $Z_{\rm eff} = Z_0 \left[\frac{ET}{ET + CN_t} \right]^{1/2}, \tag{9}$

где

$$C = rac{e^3}{8\piarepsilon^2 k}, \quad Z_0 = \sqrt{rac{e^2}{\piarepsilon arepsilon_0}}.$$

Эксперименты и расчеты показывают, что зависимость Z от T имеет место при концентрации ловушек $N_t > 10^{17} \,\mathrm{cm}^{-3}$.

Рис. 4. Температурная зависимость коэффициента Френкеля β для образца монокристалла (Ga₂S₃)_{0.96}(Eu₂O₃)_{0.04}.

Рис. 5. Зависимость Z от температуры для образца монокристалла $(Ga_2S_3)_{0.95}(Eu_2O_3)_{0.05}$.

Материал	Концентрация но- сителей тока, cm^{-3}	Подвижность носителей тока, $\mbox{cm}^2/V\cdot\mbox{s}$	Энергия активации ловушек, eV	Концентрация ловушек N_t , cm ⁻³	Длина свободного пробега электрона, ст	$\varepsilon = n^2$
GaSe	$4 \cdot 10^{14}$	25	0.12-0.54	$5 \cdot 10^{16}$	$5 \cdot 10^{-6}$	8
GaTe	$5 \cdot 10^{15}$	50	0.12 - 0.54	$2 \cdot 10^{10}$	$3 \cdot 10^{-6}$	6
Ga ₂ Se ₃	$5\cdot 10^{10}$	10	0.12 - 0.54	$5 \cdot 10^{13}$	$5 \cdot 10^7$	10
Ga_2S_3	$5\cdot 10^{10}$	10	0.12 - 0.54	$6 \cdot 10^{13}$	10^{-6}	7
$EuGa_2S_4$	$3 \cdot 10^9$	2	0.12 - 0.54	$3.7\cdot10^{14}$	10^{-7}	8

Параметры исследованных материалов

Анализ полученных данных показывает, что выполнение закона Френкеля в различных халькогенидных полупроводниках со слоистой (типа GaSe), кубической (типа Ga₂Se₃) и орторомбической (типа EuGa₂S₄) структурой позволяет определить важнейшие параметры этих материалов, например энергию активации примесных уровней, диэлектрическую проницаемость, длину свободного пробега носителей тока, концентрацию ловушек, концентрацию носителей тока и их подвижность.

Результаты оценки параметров исследуемых полупроводников представлены в таблице.

5. Заключение

Исследование электропроводности монокристаллов слоистых (типа GaSe), кубических (типа Ga₂Se₃) и орторомбических (типа EuGa₂S₄) кристаллов в области выполнения закона Ома в сильных электрических полях до 10^5 V/cm при температурах 77–400 К позволяет определить механизм токопрохождения и оценить ряд важнейших параметров указанных полупроводников. К таким параметрам относятся энергия активации и концентрация ловушек, длина свободных носителей тока, их подвижность и др.

Установлено, что температурная зависимость электропроводности широкого круга халькогенидных полупроводников с различными кристаллическими структурами в области выполнения закона Ома в сильных электрических полях до 10^5 V/ст носит экспоненциальный характер. Рост σ в сильных электрических полях объясняется термополевым эффектом Френкеля, при этом энергия активации ловушек линейно уменьшается с увеличением величины квадратного корня электрического поля.

Список литературы

- S. Shigetomi, T. Jkari, H. Nakashima. J. Appl. Phys. 74, 4125 (1993).
- [2] А.П. Одринский. ФТП 44, 883 (2010).
- [3] Б.Н. Брудный, А.В. Кособуцкий, С.Ю. Саркисов. ФТП 44, 1194 (2010).
- [4] E.S. Guseinova, V.A. Gadzhiev, B.G. Tagiyev. Phys. Status Solidi B 36, 75 (1969); Phys. Status Solidi A 2, 463 (1970).
- [5] C. Manfredotti, A.M. Mancini, R. Murri, A. Rizzo, L. Vasenelli. Nuovo Cimento B 39, 257 (1977).

- [6] C. Manfredotti, R. Murri, A. Rizzo. Phys. Rev. B 10, 3387 (1974).
- [7] З.С. Медведева. Халькогениды элементов III Б подгруппы периодической системы. Наука, М. (1968). 216 с.
- [8] Н.А. Горюнова. Сложные алмазоподобные полупроводники. Сов. радио, М. (1968). 267 с.
- [9] Г.К. Асланов, Ч.М. Брискина, В.Ф. Золин, В.М. Маркушев, Г.М. Нифтиев, О.Б. Тагиев. Изв. АН СССР. Неорган. материалы 22, 1630 (1986).
- [10] Б.Г. Тагиев, О.Б. Тагиев, Р.Б. Джаббаров, Н.Н. Мусаева. Неорган. материалы **35**, 33 (1999).
- [11] C. Barthou, P. Benolloul, B.G. Tagiyev, O.B. Tagiyev, S.A. Abushev, F.A. Kazimova. J. Phys.: Cond. Matter 16, 8075 (2004).
- [12] А. Milhs. Примеси с глубокими уровнями в полупроводниках. Мир, М. (1977). 568 с.
- [13] С.М. Рывкин. Фотоэлектрические явления в полупроводниках. Физматгиз, М. (1963). 496 с.
- [14] А.Н. Георгобиани, П.А. Пипинис. Туннельные явления в люминесценции полупроводников. Мир, М. (1994). 224 с.
- [15] Я.И. Френкель. ЖЭТФ 8, 1893 (1938).
- [16] J.I. Frenkel. Phys. Rev. 54, 657 (1938).
- [17] R.M.Hill. Phil. Mag. 23, 59 (1971).
- [18] G.A. Connall, D.L. Camphausen, W. Pauel. Phil. Mag. 26, 541 (1972).
- [19] H.H. Poole. Phil. Mag. 32, 122 (1916).
- [20] А.И. Губанов. ЖТФ 24, 308 (1954).
- [21] W. Schottky. Z. Phys. B **118**, 539 (1942).
- [22] Н.Г. Волков, В.К. Ляпидевский. ФТТ 14, 1337 (1972).
- [23] C.L. Roy. J. Phys. Chem. Solids 47, 825 (1986).
- [24] Y.-F. Chen. Phys. Status Solidi B 153, 695 (1989).
- [25] O.B. Tagiyev, G.A. Kasimova. Phys. Status Solidi A 128, 167 (1991).
- [26] G.A. Dussel, K.W. Böer. Phys. Status Solidi B 39, 375 (1970).
- [27] Б.Г. Тагиев, У.Ф. Касумов, Н.Н. Мусаева, Р.Б. Джаббаров. ФТТ **45**, 403 (2003).
- [28] Б.Г. Тагиев, О.Б. Тагиев, Г.А. Касимова. ФТП 25, 1877 (1991).
- [29] Я.И. Френкель. ЖЭТФ 23, 619 (1952).
- [30] J. Godlewski. Phys. Status Solidi A 64, 499 (1981).
- [31] Y. Chan, T.S. Jayadevaiah. Phys. Status Solidi B 49, K129 (1972).