об определении параметра Грюнайзена из экспериментальных данных

© М.Н. Магомедов

Институт проблем геотермии Дагестанского научного центра РАН, 367030 Махачкала, Россия e-mail: mahmag@dinet.ru

(Поступило в Редакцию 15 января 2010 г.)

Показано, что широко используемый метод вычисления параметра Грюнайзена (γ) твердого тела по экспериментальным данным коэффициента теплового расширения (α_p), модуля упругости(B_T), объема (V) и теплоемкости (C): $\gamma = \alpha_p B_T V/C$, справедлив только в том случае, когда температура Дебая (Θ) не изменяется с температурой (T). Показано, что если функция Θ имеет температурную зависимость, то данный метод становится не вполне корректным, особенно для квантовых кристаллов. Получено корректное выражение для вычисления параметра Грюнайзена и определены верхняя и нижняя грани, за которые функция $\gamma(T)$ не может заходить.

На современном этапе широко используется формула для вычисления параметра Грюнайзена (γ) твердого тела по экспериментальным данным коэффициента теплового расширения ($\alpha_p = [\partial \ln(V)/\partial T]_P$), модуля упругости ($B_T = -V(\partial P/\partial V)_T$), объема (V) и изохорной теплоемкости (C), которую иногда называют законом Грюнайзена [1–3]:

$$\gamma = \alpha_p B_T V / C. \tag{1}$$

Однако недавно было экспериментально обнаружено нарушение данного закона Грюнайзена при низких температурах [3]: "Отклонение весьма ощутимо по величине, но трудно интерпретируемо". Кроме того, как легко видеть из вывода соотношения (1), при его получении предполагается, что температура Дебая (Θ) не изменяется с температурой (T) [4]. Но будет ли справедлив закон Грюнайзена (1), если функция Θ имеет температурную зависимость? Ответу на этот вопрос и посвящена данная работа.

В традиционной теории Дебая предполагается, что величина Θ не зависит от температуры. Тогда выражения для свободной энергии (F_D) , энтропии $(S_D = -(\partial F_D/\partial T)_V)$ и изохорной теплоемкости $(C_D = -(\partial^2 F_D/\partial T^2)_V)$ трехмерного молекулярного кристалла получаются в виде:

$$F_D^* = F_D / (3N_A n_i k_b)$$

$$= 3\Theta/8 + T \ln[1 - \exp(-\Theta/T)] - (T/3)\mathscr{D}_3(\Theta/T),$$

$$S_D^* = S_D / (3N_A n_i k_b)$$

$$= -\ln[1 - \exp(-\Theta/T)] + (4/3)\mathscr{D}_3(\Theta/T),$$

$$C_D^* = C_D / (3N_A n_i k_b)$$

$$= 4\mathscr{D}_3(\Theta/T) - 3(\Theta/T) / [\exp(\Theta/T) - 1].$$
 (2)

Здесь N_A — число Авогадро, n_i — число ионов в молекуле, k_b — постоянная Больцмана, $\mathscr{D}_3(x)$ — функция

Дебая, имеющая вид [2]:

$$\mathscr{D}_{3}(x) = (3/x^{3}) \int_{0}^{x} \{t^{3}/[\exp(t) - 1]\}dt.$$

Вместе с тем у многих веществ обнаруживается зависимость параметра Θ от температуры. Если принять во внимание наличие такой зависимости, то выражения для энтропии и изохорной теплоемкости будут содержать производные от функции $\Theta(T)$ и будут иметь вид [4]:

$$S^{*} = S/(3N_{A}n_{i}k_{b})$$

$$= S_{D}^{*} - [(3/8) + (T/\Theta)\mathscr{D}_{3}(\Theta/T)](\partial \Theta/\partial T)_{V}, \quad (3)$$

$$C^{*} = C/(3N_{A}n_{i}k_{b})$$

$$= C_{D}^{*}[1 - (T/\Theta)(\partial \Theta/\partial T)_{V}]^{2}$$

$$- [(3/8) + (T/\Theta)\mathscr{D}_{3}(\Theta/T)]T(\partial^{2}\Theta/\partial T^{2})_{V} = C_{D}^{*}L_{c}.$$
(4)

Произведение $\alpha_p B_T V$ легко найти из выражения (3) обычным методом

$$\alpha_p B_T V = -V(\partial^2 F/\partial T \partial V) = V(\partial S/\partial V)_T$$
$$= 3N_A n_i k_b V(\partial S^*/\partial V)_T.$$

Таким образом, можно получить выражение

$$\gamma = (V/C^*)(\partial S^*/\partial V)_T = (\gamma_D C_D^* - L_\alpha)/C_D^* L_c, \quad (5)$$

где $\gamma_D = (V/C_D^*)(\partial S_D^*/\partial V)_T$ — параметр Грюнайзена для дебаевской модели твердого тела с не зависящей от температуры величиной Θ :

$$L_{\alpha} = [(3/8) + (T/\Theta)\mathscr{D}_{3}(\Theta/T)]V(\partial^{2}\Theta/\partial T\partial V),$$

$$L_{c} = [1 - (T/\Theta)(\partial\Theta/\partial T)_{V}]^{2} - [(3/8) + (T/\Theta)\mathscr{D}_{3}(\Theta/T)]T(\partial^{2}\Theta/\partial T^{2})_{V}/C_{D}^{*}.$$
 (6)

Значения γ_{low}^* , рассчитанные по экспериментальной (Θ_0) и "скорректированной" (Θ_{0c}) температуре Дебая при T = 0 для кристаллов простых веществ. Значения: $\Delta_{\Theta} = (\Theta_{0c} - \Theta_0)/\Theta_0$ и $\Delta_{\gamma} = [\gamma_{low}^*(\Theta_0) - \gamma_{low}^*(\Theta_{0c})]/\gamma_{low}^*(\Theta_0)$ указывают на величину поправки (в %) к Θ_0 и к $\gamma_{low}^*(\Theta_0)$ из-за "корректировки" температуры Дебая по формуле (12). Для гелия и лития величина Θ_0 бралась из двух источников ввиду заметной разницы

Кристалл	<i>k</i> ₃	$D/k_b, \mathbf{K}$	Θ ₀ , K	χ (10)	$\begin{array}{c}f_{g}(\Theta_{0})\\(11)\end{array}$	$\gamma^*_{ m low}(\Theta_0) \ (11)$	Θ_{0c}, K (12)	$\Delta_{\Theta}, \%$	$\begin{array}{c} f_g(\Theta_{0c}) \\ (11) \end{array}$	$rac{arphi^*(\Theta_{0c})}{(11)}$	$\Delta_{\gamma}, \%$
He	8	10.22 [6]	~ 35 [7]	25.02	0.963	0.803	47.15	34.7	1.298	0.780	2.89
		''	~ 20 [8]	14.30	0.550	0.849	24.44	22.2	0.673	0.833	1.96
	12	10.22 [6]	~ 35 [7]	16.68	0.642	0.83k6	43.83	25.2	0.804	0.818	2.23
		''	$\sim 20~[8]$	9.53	0.367	0.882	23.15	15.7	0.425	0.870	1.29
p-H ₂	12	36.7 [6]	124.5 [6]	16.52	0.636	0.837	155.65	25.0	0.795	0.819	2.22
o-D ₂	12	36.7 [6]	114.0 [6]	15.13	0.582	0.845	140.54	23.3	0.718	0.827	2.06
Ne	12	36.7 [6]	74.6 [6]	9.90	0.381	0.879	86.74	16.3	0.443	0.867	1.35
Ag	12	119.8 [6]	93.3 [6]	3.79	0.146	0.940	99.67	6.8	0.156	0.937	0.35
Kr	12	164.0 [6]	71.7 [6]	2.13	0.082	0.964	74.53	3.9	0.085	0.962	0.13
Xe	12	230.4 [6]	64.0 [6]	1.35	0.052	0.976	65.62	2.5	0.053	0.975	0.06
Li	8	4927.9 [5]	448.0 [9]	0.66	0.025	0.988	453.66	1.3	0.026	0.988	0.02
		''	333.0 [10]	0.49	0.019	0.991	336.13	1.0	0.019	0.991	0.01

Если функция Θ не зависит от температуры, то из (6) имеем $L_{\alpha} = 0$ и $L_c = 1$, тогда из (5) следует $\gamma = \gamma_D$. Но если имеет место зависимость Θ от *T*, тогда значение γ , вычисленное с помощью (1) из экспериментальных термодинамических параметров, будет отличаться от величины γ_D , которое следует из модели Дебая, где значение Θ от температуры не зависит. Возникает вопрос: каково значение γ/γ_D в области низких и высоких температур для конкретных веществ?

Для случая низких температур ($T \ll \Theta$) имеем [2,4]:

$$\mathcal{D}_{3}(\Theta/T) \cong (\pi^{4}/5)[T/\Theta(T)]^{3},$$

$$C_{D}^{*} \cong (4\pi^{4}/5)[T/\Theta(T)]^{3},$$

$$\Theta(T)_{\text{low}} \cong \Theta_{0}[1 - \chi(T/\Theta_{0})^{k}],$$
(7)

где величины $\Theta_0 = \Theta(T = 0 \text{ K}), \quad \chi, \quad k \quad \mu \quad \gamma_0 = = -[\partial \ln(\Theta_0)/\partial \ln(V)]_T$ от температуры не зависят, причем в этом случае: $\gamma_D = \gamma_0 = (V/C_D^*)(\partial S_D^*/\partial V)_T$ —параметр Грюнайзена для дебаевской модели с не зависящей от температуры величиной Θ_0 . Тогда из (5) и (6) можно получить

$$y_{\text{low}}^* = \frac{\gamma}{\gamma_0} = \frac{1 + f_g(k - 1 - \lambda)/2}{[1 + \chi(T/\Theta_0)^k]^2 + f_g(k - 1)/2},$$
$$\lambda = -\gamma_0^{-1} [\partial \ln(\chi) / \partial \ln(V)]_T,$$
$$f_g = (15/16\pi^4) k \chi(T/\Theta_0)^{k-4}.$$
(8)

Пусть частицы (атомы или молекулы) в кристалле взаимодействуют посредством парного потенциала Ми–Ленарда–Джонса [5,6]:

$$\varphi(r) = [D/(b-a)][a(r_0/r)^b - b(r_0/r)^a].$$
(9)

Здесь D и r_0 — глубина и координата минимума потенциальной ямы, b и a — параметры, характеризующие жесткость и дальнодействие потенциала: b > a.

Как показано в [4], в этом случае для трехмерного кристалла имеем

$$k = 4, \quad \chi = (3\pi^4/5k_3)(k_0\Theta_0/D),$$
 (10)

где k_3 — первое координационное число. Тогда $\lambda = 1$ и формула (8) преобразуется к виду

$$y_{\text{low}}^* = (a + f_g) / [1 + (3f_g/2)] \le 1,$$

$$f_g = (9/4k_3(k_0\Theta_0/D) \ge 0. \tag{11}$$

Равенство $\gamma_{\text{low}}^* = 1$ возникает, только если $f_g = 0$. Тогда расчет γ по формуле (1) совпадает со значением параметра Грюнайзена, который получается при учете зависимости $\Theta(T)_{\text{low}}$. С ростом аргумента f_g функция γ_{low}^* монотонно уменьшается до $\gamma_{\text{low}}^*(f_g = \infty) = 2/3$.

В таблице представлены результаты расчетов χ и χ^*_{low} по формулам (10) и (11) для ряда кристаллов. При этом данные величины были рассчитаны как при экспериментально определенной из (2) величины Θ_0 , так и из "скорректированного" (за счет учета зависимости $\Theta(T)$) значения Θ_{0c} , для которого было получено [4]:

$$\Theta_{0c} = \Theta_0 [1 + (45\chi/8\pi^4)]^{1/3}$$

= $\Theta_0 [1 + (27/8k_3)(k_0\Theta_0/D)]^{1/3}.$ (12)

При высокой температуре $(T \gg \Theta(T))$ функция (4) должна удовлетворять закону о равном распределении энергии по степеням свободы [11,12], частным случаем которого является закон Дюлонга–Пти [2,11,12]:

$$\lim_{T/\Theta\to\infty} C/(3N_A n_i k_b) = 1.$$
(13)

При $T \gg \Theta(T)$ функция Дебая
и C_D^* можно представить в виде [11,12]:

$$\mathcal{D}_{3}(\Theta/T) \cong 1 - (3/8)(\Theta/T) + (1/20)(\Theta/T)^{2},$$
$$C_{D}^{*} \cong 1 - (1/20)(\Theta/T)^{2}.$$
(14)

Тогда (4) можно преобразовать в выражение:

$$C_{\text{high}}^* \cong [1 - (1/20)(\Theta/T)^2][1 - (T/\Theta)(\partial\Theta/\partial T)_V]^2 - (T^2/\Theta)(\partial^2\Theta/\partial T^2)_V.$$
(15)

Высокотемпературное поведение функции $\Theta(T)$ обычно оценивают (см. [11,12]), приравнивая полученную в эксперименте зависимость $C(T)^*_{\text{high}}$ к выражению $\{1 - (1/20)[\Theta(T)/T]^2\}$. Однако при таком методе оценки функции $\Theta(T)$ полностью игнорируется вклад и от первой, и от второй производных функции $\Theta(T)$ в решеточную теплоемкость кристалла при $T \gg \Theta(T)$.

Из (15) легко получить дифференциальное уравнение, которому должна удовлетворять функция $\Theta(T)$ для выполнения закона равнораспределения (13) при $T/\Theta(T) \to \infty$ [13]:

$$T(\partial^2 \Theta/\partial T^2)_V - (T/\Theta)[(\partial \Theta/\partial T)_V]^2 + 2(\partial \Theta/\partial T)_V = 0.$$
(16)

Тривиальным решением данного уравнения является не зависящая от температуры постоянная величина Θ_{∞} . В общем случае уравнению (16) удовлетворяет функция вида

$$\Theta(T)_{\text{high}} = \Theta_{\infty} \exp(-\alpha_w \Theta_{\infty}/T) \cong \Theta_{\infty} [1 - (\alpha_w \Theta_{\infty}/T)],$$
(17)

где $\Theta_{\infty} = \Theta(T \to \infty)$, причем величина Θ_{∞} , как правило, не совпадает со значением Θ_0 и также приводится в справочниках [14]. Величина α_w представляет собой подгоночный параметр, задающий величину роста функции $\Theta(T)_{\text{high}}$ при $T/\Theta_{\infty} \to \infty$. Именно линейный рост функции $\Theta(T)$ отмечался в работах [2,6,8,10,14], однако учет этой зависимости при выводе расчетных формул типа (1), к сожалению не производился.

Подставив (14) и (17) в (5) и (6) можно получить

$$\gamma_{\text{high}}^* = \frac{\gamma}{\gamma_{\infty}} = \frac{1 + f_h}{1 + f_h^2} \ge 1, \quad f_h = \alpha_w \Theta_{\infty} / T < 1, \quad (18)$$

где

$$\gamma_{\infty} = -[\partial \ln(\Theta_{\infty})/\partial \ln(V)]_T = \gamma_D = (V/C_D^*)(\partial S_D^*/\partial V)_T$$

— параметр Грюнайзена для дебаевской модели с не зависящей от температуры величиной Θ_{∞} . Знак равенства $\gamma_{\text{high}}^* = 1$ возникает, только если $f_h \cong 0$. В этом случае расчет γ по формуле (1) совпадает со значением параметра Грюнайзена, который получается при учете зависимости $\Theta(T)_{\text{high}}$. Из (18) легко видеть, что функция γ_{high}^* имеет максимум в точке: $f_h = 2^{1/2} - 1 = 0.4142$ и $\gamma_{\text{high}}^* = 0.5/(2^{1/2} - 1) = 1.2071$.

Схематичная зависимость функции $\gamma^* = \gamma/\gamma_D$ от относительной температуры: $T/\Theta(T)$ для двух различных веществ.

При $T/\Theta_{\infty} \to \infty$ имеем $\gamma_{\text{high}}^* x \to 1$, т.е. чем выше значение T/Θ_{∞} , тем слабее зависимость $\Theta(T)_{\text{high}}$ в (17) и тем ближе величина γ_{∞} , рассчитанная по (1) (т.е. без учета зависимости $\Theta(T)_{\text{high}}$), к значению γ , которое рассчитано с учетом зависимости $\Theta(T)$.

Таким образом, значение параметра Грюнайзена γ_D , рассчитанное по формуле (1) (т. е. без учета зависимости $\Theta(T)$), при низких температурах больше, а при высоких температурах меньше значения γ , которое получается при учете в соотношении (1) зависимости $\Theta(T)$). При этом функция $\gamma^*(T/\Theta) = \gamma(T/\Theta)/\gamma_D$ будет иметь вид, схематично показанный на рисунке.

Множество функциональных зависимостей $\gamma^*(T)$ имеет как верхнюю (sup), так и нижнюю (inf) грани, за которые функция $\gamma^*(T/\Theta)$ ни для какого вещества не может заходить: sup $\gamma^* = 0.5/(2^{1/2} - 1) = 1.2071$, inf $\gamma^* = 2/3 = 0.6667$. Отклонение от закона Грюнайзена, обнаруженное в [1,3], можно легко объяснить неучетом зависимости $\Theta(T)$, т.е. использование формул (2) вместо более корректных выражений (3) и (4).

Автор благодарит А.Д. Филенко, а также К.Н. Магомедова и З.М. Сурхаеву за плодотворные дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке Программы президиума РАН (проект № 12.1.19) и РФФИ (грант № 09-08-96508-р-юг-а).

Список литературы

- [1] Беломестных В.Н., Теслева Е.П. // ЖТФ. 2004. Т. 74. Вып. 8. С. 140–142.
- [2] Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 294 с.
- [3] Прекул А.Ф., Щеголихина Н.И., Подгорных С.М. Физика низких температур. 2009. Т. 35. № 7. С. 683–686
- [4] Магомедов М.Н. // ФТТ. 2003. Т. 45. Вып. 1. С. 33–36.

- [5] Магомедов Н.И. // ТВТ. 2006. Т. 44. № 4. С. 518–533.
- [6] Криокристаллы / Под ред. Б.И. Веркина и А.Ф. Приходько. Киев: Наук. думка, 1983. 526 с.
- [7] Пешков В.П. // УФН. 1968. Т. 94. № 4. С. 607–640.
- [8] Trickey S.V., Kirk Q.P., Adams E.D. // Rev. Mod. Phys. 1972. Vol. 44. № 4. P. 668–715.
- [9] Альтиулер Л.В., Брусникин С.Е., Кузьменко Е.А. Журн. прикладной мех. и техн. физики. 1987. № 1. С. 134–146.
- [10] Физическая акустика / Под ред. У. Мезона. Т. З. Динамика решетки. М.: Мир, 1968. 392 с. [Physical Acoustics / Ed. by W.P. Mason. Vol. 3. London: Academic Press, 1965.]
- [11] Майер Дж., Геперт-Майер М. Статистическая механика. М.: Мир, 1980. 544 с. [Mayer J.E., Goeppert Mayer M. Statistical Mechanics. NY: Y. Wiley and Sons Ltd., 1977.]
- [12] Шиллинг Г. Статистическая физика в примерах. М.: Мир, 1976. 432 с. [Schilling H. Statistische Physik in Beispielen. Leipzig: VEB, 1972.]
- [13] *Магомедов М.Н.* // Журн. физ. химии. 2002. Т. 76. № 5. С. 785–788.
- [14] Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Справочник. М.: Металлургия, 1989. 384 с.