#### 01;11

# Влияние зависимости коэффициента зеркальности от угла падения электронов на величину импеданса

#### © А.В. Латышев, А.А. Юшканов

Московский государственный областной университет, 105005 Москва, Россия e-mail: avlatyshev@mail.ru, yushkanov@inbox.ru

#### (Поступило в Редакцию 29 октября 2009 г.)

Получено решение задачи о скин-эффекте в металле с зеркально-диффузными граничными условиями при любых значениях параметра аномальности в виде ряда Неймана. Для этого развивается метод, в основе которого лежит идея представления в виде источника не только граничного условия на поле, как обычно делается, но и граничного условия на функцию распределения. Коэффициент зеркальности является произвольной функцией угла падения электронов на поверхность металла.

### Введение

Последние десятилетия характеризуются возрастанием интереса к проблемам взаимодействия электромагнитной волны с веществом. Так, в [1] выяснены вопросы электросопротивления, а также протекания тока через границу раздела кристаллитов.

Явления в металле [2] с достаточно большой длиной свободного пробега электронов l существенно зависят от характера взаимодействия электронов проводимости с границами образца. Часто это взаимодействие описывается с помощью так называемого коэффициента зеркальности q, q — доля электронов, отражающихся от границы зеркально, а (1 - q) — диффузно. В [3] показано, что коэффициент зеркальности должен существенно зависеть от угла падения электронов на поверхность. Этот эффект особенно сильно выражен для скользящих электронов, когда угол падения близок к  $\pi/2$ . В [3] отмечалось, что это обстоятельство должно существенно сказаться на явлении скин-эффекта.

Задача о скин-эффекте является одной из важнейших задач кинетической теории плазмы. Эта задача имеет большое практическое значение. Сделаем небольшой обзор работ, связанных с настоящей работой.

Решение задачи о скин-эффекте с зеркальными граничными условиями хорошо известно [4,5]. Задача с диффузными граничными уловиями аналитически решена [6] в середине прошлого столетия.

Работа [7] посвящена изучению зависимости импеданса от угла падения электромагнитной волны на поверхность металла для случая зеркального характера отражения электронов от поверхности.

Работы [8,9] также посвящены предельно аномальному скин-эффекту.

В работе [10] показана эффективность метода разложения по собственным решениям для анализа структуры электрического поля в задаче о скин-эффекте в металле для случаев зеркального и диффузного граничных условий. В настоящее время актуальной является проблема получить решение этой задачи с общими зеркальнодиффузными граничными условиями. Именно коэффициент зеркальности q играет важную роль в описании скин-эффекта. Предельные случаи q = 0 — диффузное рассеяние электронов на поверхности металла и q = 1 — зеркальное рассеяние электронов — являются исключительными. В действительности коэффициент зеркальности в металле не равен ни нулю, ни единице, а принимает некоторые промежуточные значения.

Так, например, в работе [11] показано на основе анализа продольного магнитосопротивления тонкой проволоки из натрия [12], что коэффициент зеркальности в этом случае равен 0.4. В связи с этим замечанием задача о скин-эффекте с зеркально-диффузными граничными условиями приобретает исключительно принципиальное значение, которое велико как для теории, так и для практических применений. В частности, ее значение трудно переоценить, например, в металлооптике (см., например, [3,13]). В последнее время выявляются новые области применения теории скин-эффекта, например при анализе эффекта Казимира [14].

Цель настоящей работы состоит в изучении влияния коэффициента зеркальности и его зависимости от угла падения на скин-эффект в металле при любых значениях параметра аномальности. Случай коэффициента зеркальности, не зависящего от угла падения, рассмотрен в [15].

#### Постановка задачи

Пусть вырожденная плазма занимает полупространство x > 0. Функция распределения электронов [16]  $f = f(t, x, \mathbf{v})$  нормирована на их числовую плотность (концентрацию):

$$\int f(t, x, \mathbf{v}) d\Omega_{\rm F} = N(t, x), \quad d\Omega_{\rm F} = \frac{2d^3p}{(2\pi\hbar)^3}$$

 $\mathbf{p} = m\mathbf{v}$  — импульс электрона, m — его масса,  $\hbar$  — постоянная Планка,  $d^3p = dp_x dp_y dp_z$ .

Рассмотрим электромагнитную волну, падающую на поверхность металла по нормали к ней. Тогда внешнее поле имеет только одну *y*-компоненту. Самосогласованное электрическое поле внутри металла также имеет только одну *y*-компоненту  $E_y(t, x) = e^{-i\omega t}E(x)$ .

В качестве кинетического уравнения для функции распределения электронов будем использовать кинетическое уравнение Власова–Больцмана с самосогласованным электрическим полем  $E_y(t, x)$  и интегралом столкновений в форме  $\tau$ -модели. Для достаточно слабых внешних полей это уравнение можно линеаризовать по внешнему полю и по малым отклонениям  $f_l(x, \mathbf{v})e^{-i\omega t}$  от равновесной функции распределения Ферми  $f_0(\varepsilon)$ :

$$-i\omega f_l(x,\mathbf{v}) + v_x \frac{\partial f_l}{\partial x} + e_0 E(x) \frac{\partial f_0(\varepsilon)}{\partial p_y} = -\frac{f_l(x,\mathbf{v})}{\tau}.$$
(1)

Здесь  $\tau$  — характерное время между двумя последовательными столкновениями электрона,  $\tau = 1\nu$ ,  $\nu$  — эффективная частота столкновений электронов с дефектами решетки металла и фононами,  $e_0$  — заряд электрона,  $f_0(\nu) = H(\varepsilon_{\rm F} - \varepsilon), \quad H(x) - функция Хэвисайда,$ 

$$H(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0, \end{cases} \qquad \varepsilon = \frac{mv^2}{2}, \quad \varepsilon_{\rm F} = \frac{mv_{\rm F}^2}{2},$$

 $\varepsilon$  — кинетическая энергия электрона,  $\varepsilon_{\rm F}$  — энергия Ферми,  $v_F$  — скорость электрона на поверхности Ферми. Предполагается, что поверхность Ферми имеет сферическую форму.

Исключив магнитное поле из двух уравнений Максвелла, приходим к уравнению Пуассона с учетом тока смещения:

$$E''(x) + \frac{\omega^2}{c^2} E(x) = -\frac{4\pi i\omega}{c^2} j(x),$$
 (2)

где j(x) — плотность тока:

$$j(x) = e_0 \int v_y f_l(x, \mathbf{v}) d\Omega_{\mathrm{F}}: \qquad (3)$$

В работе [3] показано, что коэффициент зеркальности  $q = q(\theta)$  ( $\theta$  — угол падения электрона на границу) при отражении электронов от поверхности металлов стремится к единице при касательном падении, когда угол падения  $\theta$  стремится к  $\pi/2$ . Из этого следует, что коэффициент зеркальности  $q = q(\theta)$  можно представить в виде следующего разложения:

$$q(\theta) = 1 - a_1 \cos \theta - a_2 \cos^2 \theta - a_3 \cos^3 \theta + \dots$$
(4)

Здесь  $a_n$  — некоторые коэффициенты, зависящие от свойств поверхности металла.

Следуя [4], продолжим электрическое поле и функцию распределения электронов симметричным образом:

$$E(x) = E(-x), \quad f_l(x, \mathbf{v}) = f_l(-x, -v_x, v_y, v_z).$$
(5)

Продолжение неизвестных функций E(x) и  $f_l(x, \mathbf{v})$ , согласно [5], на полупространство x < 0 позволяет включить граничные условия в уравнения задачи.

Такое продолжение функции распределения и поля позволяет фактически рассматривать две задачи, одна из которых определена в "положительном" полупространстве x > 0, вторая — в "отрицательном" x < 0.

Сформулируем зеркально-диффузные граничные условия для функции распределения соответственно для "положительного" и "отрицательного" полупространств. Для этого обозначим  $q(\theta)$  через  $q(|\mu|)$ ,  $\mu = \cos \theta = v_x/v_F$ , далее вместо  $q(|\mu|)$  будем писать  $q(\mu)$ , считая  $q(\mu)$  четной функцией, тем самым разложение (4) записывается в виде

$$q(\mu) = 1 - a_1 |\mu| - a_2 |\mu|^2 - a_3 |\mu|^3 + \dots$$
 (4')

С учетом (4') зеркально-диффузные граничные условия для функции распределения имеют вид

$$f_1(+0, \mathbf{v}) = q(\mu)f_1(+0, -v_x, v_y, v_z), \quad v_x > 0,$$
 (6)

$$f_1(-0, \mathbf{v}) = q(\mu) f_1(-0, -v_x, v_y, v_z), \quad v_x < 0, \quad (7)$$

где  $q(\mu)$  — коэффициент зеркальности,  $0 \le q(\mu) \le 1$ .

В уравнениях (6) и (7) параметр  $q(\mu)$  — часть электронов, рассеивающихся границей зеркально,  $(1 - q(\mu))$  — часть электронов, рассеивающихся диффузно.

В уравнениях (1)-(3) положим:  $f_l = v_y \times \delta(v_F - v)h(x, \mu)$ , где  $h(x, \mu)$  — неизвестная безразмерная функция, а также перейдем к безразмерным переменным:

$$t_l = vt, \quad x_l = \frac{x}{l}, \quad l = \frac{v_F}{\tau}, \quad e(x_l) = \frac{e_0}{vmv_F}E(x_l)$$

и введем параметры

$$\alpha = \frac{e_0^2 \omega m^3 l^2 v_F^3}{c^2 v \pi \hbar^3 m} = \frac{3\pi N e_0^2 l^2 \omega}{c^2 m v} = \frac{3}{2} \left(\frac{l}{\delta_0}\right)^2,$$
$$\delta_0^2 = \frac{c^2}{2\pi \omega \sigma_0}, \quad \sigma_0 = \frac{e_0 N}{m v}, \quad \left(\frac{m v_F}{\hbar}\right)^3 = 3\pi^2 N,$$

N — концентрация электронов,  $\sigma$  — статическая электрическая проводимость,  $\delta_0$  — толщина скин-слоя в случае нормального скин-эффекта,  $\alpha$  — параметр аномальности скин-эффекта. Далее переменную  $x_l$  будем снова обозначать через x.

Таким образом, далее будем рассматривать следующую систему уравнений:

$$\mu = \frac{\partial h(x,\mu)}{\partial x} + z_0 h(x,\mu) = e(x), \quad z_0 = 1 - i \frac{\omega}{\nu}, \quad (8)$$

$$e''(x) + \left(\frac{\omega l}{c}\right)^2 e(x) = -i\alpha \int_{-l}^{l} (1 - \mu^2) h(x, \mu) d\mu.$$
(9)

Журнал технической физики, 2010, том 80, вып. 9

При малых значениях  $\alpha$  скин-эффект носит нормальный характер и его можно описать на основе макроскопической электродинамики. При больших значениях  $\alpha$ для описания скин-эффекта необходимо использование кинетической теории.

Сформулируем граничные условия на поверхности металла. Для функции распределения электронов на границе, согласно (6) и (7), получаем:

$$h(+0,\mu) = q(\mu)h(+0,-\mu), \quad 0 < \mu < 1,$$
  
 $h(-0,\mu) = q(\mu)h(-0,-\mu), \quad -1 < \mu < 0.$ 

С помощью второго равенства из (5) эти граничные условия преобразуются в следующие:

$$h(+0,\mu) = q(\mu)h(-0,\mu), \quad 0 < \mu < 1,$$
 (10)

$$h(-0,\mu) = q(\mu)h(+0,\mu), \quad -1 < \mu < 0.$$
 (11)

Вдали от границы функция распределения электронов и электрическое поле ищутся исчезающими:

$$h(+\infty,\mu) = 0, \quad e(+\infty) = 0.$$
 (12)

На границе плазмы считаем заданной конечную величину градиента электрического поля:

$$e'(0) = e'_s, \quad |e'_s| < +\infty.$$
 (13)

Здесь  $e'_s$  — заданная величина — градиент электрического поля на границе плазмы.

#### Характеристическая система

Включим граничные условия (10) и (11) в кинетическое уравнение (8), а граничное условие (13) включим в уравнение для электрического поля (9).

Согласно (6) и (7), электрическое поле и функция распределения продолжаются в область x < 0 следующим образом:

$$e(x) = e(-x), \quad h(x,\mu) = h(-x,-\mu).$$

Получаем следующую систему уравнений для описания скин-эффекта в полупространстве металла:

$$\mu \frac{\partial h}{\partial h} + z_0 h(x,\mu) = e(x) - (1 - q(\mu))|\mu|h(\mp 0,\mu)\delta(x),$$
(14)
$$e''(x) + \left(\frac{\omega l}{c}\right)^2 e(x)$$

$$= -i\alpha \int_{-l}^{l} (1 - \mu^2)h(x,\mu)d\mu + 2e'_s\delta(x).$$
(15)

В уравнении (14) слагаемое  $h(\mp 0, \mu)$  означает, что при  $\mu > 0$  в уравнении стоит  $h(-0, \mu)$ , а при  $\mu < 0$  — стоит  $h(+0, \mu)$ .

#### 1\* Журнал технической физики, 2010, том 80, вып. 9

Отметим, что при зеркальных граничных условиях  $(q(\mu) \equiv 1)$  член типа источника включается только в уравнение для электрического поля (см., например, [4]). Дело в том, что зеркальное граничное условие для функции распределения  $h(0, \mu) = h(0, -\mu)$  при этом оказывается включенным автоматически в кинетическое уравнение.

При общих зеркально-диффузных граничных условиях дело обстоит принципиально сложнее. Теперь граничные условия для функции распределения не включаются автоматически в кинетическое уравнение. Чтобы кинетическое уравнение "содержало" граничное условие для функции распределения, требуется включить в кинетичекое уравнение член типа источника. Нетрудно проверить, что граничные условия (10) и (11) включены в уравнение (14).

Решим уравнение (14) при x > 0,  $\mu < 0$ , считая заданным поле e(x), получим, удовлетворяя граничным условиям (12):

$$h_{+}(x,\mu) = \frac{1}{\mu} \exp\left(-\frac{z_{0}x}{\mu}\right) \int_{x}^{\infty} \exp\left(\frac{z_{0}t}{\mu}\right) e(t) dt.$$

Соответственно при  $x < 0, \mu > 0$  находим

$$h_{-}(x,\mu) = \frac{1}{\mu} \exp\left(-\frac{z_0 x}{\mu}\right) \int_{-\infty}^{x} \exp\left(\frac{z_0 t}{\mu}\right) e(t) dt.$$

Теперь уравнение (14) можно переписать в виде

$$\mu \frac{\partial h}{\partial x} + z_0 h(x, \mu) - e(x) = -(1 - q(\mu)) |\mu| h_{\pm}(0, \mu) \delta(x).$$
(16)

Решение уравнений (15) и (16) ищем в виде интегралов Фурье:

$$e(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} E(k) dk, \quad \delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk, \quad (17)$$

$$h(x,\mu) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \Phi(k,\mu) dk.$$
 (18)

При этом функция  $h_+(x, \mu)$  выражается через спектральную плотность электрического поля E(k) следующим образом:

$$h_{+}(x,\mu) = -\frac{\exp(-z_{0}x/\mu)}{2\pi\mu} \int_{-\infty}^{\infty} E(k)dk$$
$$\times \int_{x}^{\infty} \exp\left(iku + \frac{z_{0}u}{\mu}\right)du = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\exp(ikx)E(k)}{z_{0} + ik\mu}dk.$$
(19)

Нетрудно проверить, что выражение для  $h_{-}(x, \mu)$ в точности совпадает с выражением для  $h_{+}(x, \mu)$ . Учитывая, что функция e(x) — четная по x, а значит E(-k) = E(k), получим

$$h_{\pm}(0,\mu) = rac{z_0}{\pi} \int\limits_0^\infty rac{E(k)dk}{z_0^2 + k^2\mu^2}.$$

Теперь подставим интегралы Фурье (17)и (18), а также равенство (19) в уравнения (15) и (16). Получаем характеристическую систему уравнений

$$\Phi(k,\mu)(z_0+ik\mu) = E(k) - (1-q(\mu))\frac{|\mu|}{\pi} \int_0^\infty \frac{E(k_l)dk_l}{z_0^2 + k_l^2\mu^2},$$
(20)

$$L(k)E(k) = -2e'_{s} + \frac{\alpha z_{0}^{2}}{\pi i} \int_{0}^{\infty} E(k_{l})J(k, k_{l})dk_{l}.$$
 (21)

Здесь

$$J(k,k_l) = 2 \int_0^l \frac{(1-\mu^2)(1-q(\mu))\mu d\mu}{(z_0^2+k^2\mu^2)(z_0^2+k_l^2\mu^2)}$$

и введена дисперсионная функция

$$L(k) = k^{2} - \left(\frac{\omega l}{c}\right)^{2} - 2iz_{0}\alpha \int_{0}^{l} \frac{(1-\mu^{2})d\mu}{z_{0}^{2} + k^{2}\mu^{2}}$$

#### Решение задачи

Так как наша цель — нахождение импеданса, далее будем рассматривать уравнение (21). Уравнение (20) может быть использовано при нахождении функции распределения. Разложим спектральную плотность поля E(k) в ряд, членами которых служат последовательные приближения решения уравнения (21):

$$E(k) = E_0(k) + E_1(k) + E_2(k) + \dots$$
(22)

С помощью (22) из (21) находим

$$E_0(k) = -\frac{2e'_s}{L(k)}.$$
 (23)

Для *n*-го (*n* = 1, 2, ...) приближения получаем

$$E_{n}(k) = \frac{\alpha z_{0}^{2}}{L(k)\pi i} \int_{0}^{\infty} E_{n-1}(k_{l})J(k,k_{l})dk_{l}.$$
 (24)

После того как ряд (22) построен, спектральная плотность функции распределения находится из уравнения (20).

Согласно (17) и (22), построим электрическое поле:

$$e(x) = \frac{1}{\pi} \sum_{n=0}^{\infty} E_n(k) \cos kx \, dk$$

Перейдем к вычислению импеданса:

$$Z = \frac{4\pi i\omega l}{c^2} \frac{e(0)}{e'_s} = \frac{2i\omega l}{c^2 e'_s} \int_{-\infty}^{\infty} E(k)dk = \frac{4i\omega l}{c^2 e'_s} \int_{0}^{\infty} E(k)dk.$$

Раскладываем величину Z в ряд Неймана:

$$Z = Z_0 + Z_1 + Z_2 + \dots, \tag{25}$$

здесь

$$Z_n = \frac{4i\omega l}{c^2 e'_s} \int_0^\infty E_n(k) dk, \quad n = 0, 1, 2 \dots$$

# Анализ, обсуждение и численные результаты

Итак, выше представлен метод, приводящий к решению задачи о скин-эффекте с произвольным коэффициентом зеркальности. Отметим, что при  $q(\mu) \equiv 1$ метод приводит к классическому решению. Оно хорошо известно из литературы (см., например, [4]). Решение из [4] приведем к виду:

$$Z_{\rm ref} = -\frac{8i\omega l}{c^2} \int_{0}^{\infty} \frac{dk}{L(k)}, \quad \text{r. e. } Z_{\rm ref} = Z_0.$$
 (26)

Отметим, что ряд (25) можно просуммировать при малых значениях параметра аномальности  $\alpha$ . В самом деле, при малых  $\alpha$  основной вклад в интегралы определяется величинами  $k^2 \sim \alpha$ , т. е. существенны малые величины k. Из равенства (26) находим

$$\int_{0}^{\infty} \frac{dk}{L(k)} = \frac{ic^2}{8\omega l} Z_0.$$

Кроме того, при малых k и  $k_l$  имеем:  $J(k, k_l) = J_q z_0^{-4}$ , где

$$J_q = 2 \int_0^l (1 - \mu^2) (1 - q(\mu)) \mu d\mu.$$

Следовательно, в первом приближении находим:  $Z_l = Z_0^2 \alpha c^2 J_q / (8\pi \omega l z_0^2)$ . Точно так же при любом натуральном *n* получаем:

$$Z_n = Z_0^{n+1} \left( \frac{\alpha c^2 J_q}{8\pi \omega l z_0^2} \right)^n, \ n = 1, 2, ...$$

Следовательно, ряд (25) имеет следующую сумму:

$$Z = \frac{8\pi\omega lz_0^2 Z_0}{8\pi\omega lz_0^2 - \alpha c^2 J_q Z_0}.$$

Из данного выражения следует, что при малых значениях параметра аномальности  $\alpha$  зависимость импеданса от коэффициента зеркальности пропадает:  $Z \rightarrow Z_0$  при  $\alpha \rightarrow 0$ . При  $q(\mu) \equiv q$  интеграл  $J_q$  равен:  $J_q = (1 - q)/2$ , поэтому из полученной формулы следует

$$Z = \frac{16\pi\omega lz_0^2 Z_0}{16\pi\omega lz_0^2 - \alpha c^2 (1-q)Z_0}$$

Ясно, что при  $q(\mu) \equiv 1$  полученное решение является точным уже в нулевом приближении. Наибольшее отклонение от этого решения при учете конечного числа членов в ряде (25) достигается при  $q(\mu) \equiv 0$ . При  $q(\mu) \equiv 0$  решение задачи также хорошо известно это классическое решение с диффузными граничными условиями [6]. В терминах наших обозначений это решение запишется следующим образом:

$$Z_{\text{diff}} = -\frac{4\pi i\omega l}{c^2} \left[\frac{2}{\pi} \int_0^\infty \ln\left[k^{-2}L(k)dk\right]\right]^{-1}.$$

В дальнейшем анализе задачи ограничимся практически важным случаем, когда током смещения можно пренебречь.

Хорошо известно [16], что отношение импедансов в случае диффузных и зеркальных граничных условий для предельно аномального скин-эффекта, когда  $\alpha \gg 1$  и  $\omega \ll v$ , равно 1.125, т.е. в нулевом приближении различие точного и приближенного решений составляет 12.5%. Отметим, что в нулевом приближении величина импеданса от коэффициента зеркальности  $q(\mu)$  не зависит.

Введем аппроксимационные полиномы

$$Z^{(n)} = Z_0 + Z_1 + Z_2 + \dots + Z_n, \quad n = 1, 2, \dots$$

В общем случае величина импеданса зависит от параметров  $\alpha$ , q,  $\omega$ , v, l. Ограничимся исследованием зависимости от параметра аномальности  $\alpha$  и величины коэффициента зеркальности q. Будем считать, что частота  $\omega$  много меньше частоты рассеяния электронов v. При этом  $z_0 = 1$ .

Рассматрим сначала случай, когда коэффициент зеркальности *q* не зависит от угла падения электронов на поверхность металла, т.е. случай постоянного коэффициента зеркальности.

Остановимся на количественных оценках точности приближений. Возьмем случай  $\alpha > 1000$ . Численный анализ полученных результатов показывает, что для действительной части импеданса в первом приближении ошибка составляет менее 3.04%, во втором приближении — менее 1.05%, а в третьем — менее 0.38%.

Для мнимой части импеданса в первом приближении ошибка составляет менее 2.62%, во втором приближении — менее 0.98%, а в третьем — менее 0.35%.

Эти приближения говорят об эффективности представленного метода. Подчеркнем, что максимальная ошибка достигается при больших значениях параметра аномальности:  $\alpha > 10^3$ .

На рис. 1 и 2 представлены графики зависимостей  $\text{Re}Z/\text{Re}Z_0$  и  $\text{Im}Z/\text{Im}Z_0$  от параметра аномальности  $\alpha$  при различных постоянных значениях коэффициента зеркальности q. Кривые 1, 2, 3 отвечают значениям q = 0, 0.3, 0.7 соответственно.

Перейдем к рассмотрению случая переменного коэффициента зеркальности. Для анализа влияния зависимости коэффициента зеркальности от угла падения электронов на поверхность  $q(\theta)$  на величину импеданса рассмотрим некоторую конкретную реализацию этой зависимости. В общем случае эта зависимость определяется характером рассеяния электронов на поверхности металла [3]. В то же время представлет интерес рассмотрение некоторой общей модельной зависимости коэффициента зеркальности от угла падения электро-



**Рис. 1.** Зависимость ReZ/ReZ<sub>0</sub> от параметра аномальности *α* при различных значениях коэффициента аккомодации.



**Рис. 2.** Зависимость ImZ/ImZ<sub>0</sub> от параметра аномальности *α* при различных значениях коэффициента аккомодации.



**Рис. 3.** Зависимость  $\text{ReZ}/\text{ReZ}_0$  от параметра аномальности  $\alpha$  при различных значениях коэффициента аккомодации. Кривые *I*, *2*, *3* отвечают коэффициентам 0,  $1 - \cos \theta$ ,  $1 - 0.5 \cos \theta$  соответственно.



**Рис. 4.** Зависимость  $ImZ/ImZ_0$  от параметра аномальности  $\alpha$  при различных значениях коэффициента аккомодации. Кривые *1, 2, 3* отвечают коэффициентам 0,  $1 - \cos \theta$ ,  $1 - 0.5 \cos \theta$  соответственно.

нов на поверхность. Подобное рассмотрение позволяет оценить общее влияние переменности величины  $q(\theta)$  на импеданс, не связывая это рассмотрение с конкретной динамикой рассеяния электронов на поверхности. Для этого в общем представлении функции  $q(\theta)$  в виде ряда (4) оставим два первых члена:  $q(\theta) = 1 - a_1 \cos \theta$ .

При таком подходе величина *a*<sub>1</sub> является свободным параметром, характеризующим рассеяния электронов на поверхности металла.

Рассмотрим, как меняется импеданс при изменении коэффициента аномальности  $\alpha$  при различных значениях величины  $a_1$ . На рис. 3 и 4 приведена зависимость ReZ/ReZ<sub>0</sub> и и ImZ/ImZ<sub>0</sub> от коэффициента аномальности  $\alpha$ . Случай q = 0 (кривые *1* на рис. 3 и 4) —

это случай полностью диффузного рассеяния электронов на границе. Кривые 2 и 3 отвечают коэффициентам зеркальности  $q(\theta) = 1 - \cos \theta$  и  $q(\theta) = 1 - 0.5 \cos \theta$ , т.е. значениям  $a_1 = 1$  и a = 0.5.

Все кривые на рис. 3 и 4 имеют максимум (при различных значениях параметра аномальности  $\alpha_{\max} = \alpha_{\max}(q)$ ), причем наибольшее значение импеданса достигается в случае, когда все электроны рассеиваются диффузно на границе металла. В этом случае оба отношения ReZ/ReZ<sub>0</sub> и и ImZ/ImZ<sub>0</sub> выходят на свою асимптотику при  $\alpha \to \infty$ . Этот случай отмечается в [16]. Учет зависимости коэффициента зеркальности от угла падения электронов приводит к тому, что в случае предельно аномального скин-эффекта величина импеданса стремится к значению, равному соответствующему значению для случая зеркального рассеяния электронов. Таким образом,  $Z/Z_0 \to 1$ ,  $\alpha \to \infty$ . Это обстоятельство отмечалось ранее в [3].

Анализ графиков показывает, что величины импеданса при каждом значении параметра аномальности существенно зависят от коэффициента зеркальности. При этом чем меньше q, тем больше значение импеданса, и чем больше q, тем меньше значение импеданса. Это и понятно, ибо случай q = 0 отвечает диффузным граничным условиям, а случай q = 1 — зеркальным.

Итак, в данной работе разработан эффективнй метод решения граничных задач кинетической теории, основанный на симметричном продолжении электрического поля и функции распределения электронов.

Предлагаемый метод во втором приближении дает ошибку менее 1%, а в третьем — менее 0.38%. Третье приближение фактически совпадает с точным решением, когда параметр аномальности меняется в широком диапазоне: 0 <  $\alpha$  < 100. Метод пзволяет построить точное решение в виде ряда, т.е. является регулярным. Повышая степень полинома  $Z^n$ , можно строить решение с любой наперед заданной точностью.

## Список литературы

- Latyshev A.V., Yushkanov A.A. // Phys. Met. Metallogr. 2008.
   Vol. 105. N 3. P. 236–244.
- [2] Займан Дж. Электроны и фононы. М.: Мир, 1962. 488 с.
- [3] Андреев А.Ф. // УФН. 1971. Т. 105. Вып. 1. С. 113–124.
- [4] Абрикосов А.А. Основы теории металла. М.: Наука, 1977. 520 с.
- [5] Платцман Ф., Вольф П. Волны и взаимодействия в плазме твердых тел. М.: Мир, 1975. 436 с.
- [6] Reuter G.E.H., Sondheimer E.H. // Proc. Roy. Soc. A. 1948.
   Vol. 195. P. 336–352.
- [7] Kliewer K.L., Fuchs R. // Phys. Rev. 1968. Vol. 172. N 3. P. 607–624.
- [8] Hartmann L.E., Luttinger J.M. // Phys. Rev. 1966. Vol. 151.
   N 2. P. 430–433.
- [9] *Мирошниченко В.И., Остроушко В.Н.* Электромагнитные явления. 2001. Т. 2. № 3(7). С. 324–330.
- [10] Латышев А.В., Юшканов А.А. // ЖВММФ. 1999. Т. 39. № 6. С. 989–1005.

Журнал технической физики, 2010, том 80, вып. 9

- [11] Завитаев Э.В., Юшканов А.А. // ЖВММФ. 2006. Т. 130. Вып. 5. С. 887–894.
- [12] Chambers R.G. // Proc. Roy. Soc. A. 1950. Vol. 202. P. 378– 394.
- [13] Гинзбург В., Мотулевич Г.П. // УФН. 1955. Т. 55. Вып. 4. С. 469–535.
- [14] Esquivel R., Svetovoy V.B. <ArXiv:physics/quant-ph/0404073>.
- [15] Latyshev A.V., Yushkanov A.A. // Comp. Math. Math. Phys. Vol. 49. N 1. P. 131–145.
- [16] Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979. 528 с.