01;03 Маломодовая модель электроконвекции идеального диэлектрика

© В.А. Ильин

Пермский государственный университет, 614990 Пермь, Россия e-mail: ilin1@psu.ru

(Поступило в Редакцию 30 декабря 2009 г.)

Получена трехмодовая модель электроконвекции идеального диэлектрика в переменном электрическом поле горизонтального конденсатора. С помощью этой модели обнаружены и исследованы гистерезисные переходы между различными электроконвективными нелинейными режимами идеального жидкого диэлектрика. Рассмотрены случаи невесомости и нагрева сверху в поле тяжести. Изучены частотные зависимости электроконвективных колебательных режимов. Построены карты режимов. Исследованы сценарии перехода к хаосу: через субгармонический каскад, квазипериодичность, из равновесия. Кроме того, рассмотрено поведение электроконвективных колебаний в высокочастотном пределе.

Введение

В жидкости, заполняющей плоский горизонтальный конденсатор, в поле тяжести при различных нагревах могут возникать конвективные движения, вызванные термогравитационным механизмом неустойчивости. На пороги тепловой конвекции могут оказывать влияние различные факторы, в том числе диэлектрофоретический механизм неустойчивости, вызванный зависимостью от температуры диэлектрической проницаемости [1]. Диэлектрофоретические силы, возникающие в объеме жидкости, благодаря неоднородности диэлектрической проницаемости, могут привести жидкость в движение даже в невесомости. Переменные поля в зависимости от амплитуды и частоты могут сильно изменять порги конвективной неустойчивости и обеспечивать эффективный способ контроля конвекцией в некоторых технологических ситуациях [2–4].

В работе [5] на основе маломодовой модели проведено исследование режимов электроконвекции слабопроводящей жидкости, в которой действует электрокондуктивный механизм зарядообразования, связанный с зависимостью электропроводности от температуры.

В идеальных диэлектриках электропроводность среды σ считается равной нулю, свободные объемные заряды отсутствуют. Предполагается, что образование объемного заряда происходит благодаря неоднородности поляризации среды. Известно, что в линейной задаче об устойчивости идеального диэлектрика колебательные возмущения отсутствуют — порог конвекции связан с монотонной модой [1]. Ветвление нелинейных режимов идеального жидкого диэлектрика в постоянном электрическом поле происходит благодаря прямой бифуркации [6]. В переменном поле неустойчивость связана с параметрическим возбуждением конвекции. В работах [7,8] приведены предварительные результаты изучения электроконвекции идеальных диэлектриков на основе маломодовой модели.

В настоящей работе проведено более подробное и детальное исследование: построены бифуркационные

диаграммы режимов, обнаружено, что при некоторых значениях параметров переход к хаосу происходит в результате каскада удвоений периода. Получена и исследована модель электроконвекции в высокочастотном электрическом поле.

1. Постановка задачи

Рассматривается плоский горизонтальный слой неоднородно нагретой вязкой несжимаемой идеальной диэлектрической жидкости, находящейся в переменном вертикальном электрическом поле и поле силы тяжести. Идеально тепло- и электропроводные границы расположены при z = -h/2, h/2 (h — толщина слоя) и нагреты до разной температуры $T(-h/2) = \Theta$, T(h/2) = 0. Здесь T — температура, отсчитываемая от некоторого среднего значения, Θ — характерная разность температур. Случай $\Theta > 0$ соответствует нагреву снизу. Потенциал поля верхней границы равен нулю: $\varphi(h/2) = 0$, потенциал нижней — изменяется со временем t по гармоническому закону:

$$\varphi\left(-\frac{h}{2}\right) = U\cos(\Omega t).$$

Здесь U — амплитуда напряжения, $\Omega = 2\pi/t_f$ — частота, t_f — период модуляции.

В общем виде электрическая сила, действующая на единицу объема диэлектрической жидкости, может быть записана в виде [9]:

$$\mathbf{f}_{e} = \rho_{e}\mathbf{E} - \frac{1}{2}E^{2}\nabla\varepsilon + \frac{1}{2}\nabla\left(\rho\frac{\partial\varepsilon}{\partial\rho}E^{2}\right).$$
 (1)

Здесь ρ_e — свободный заряд единицы объема; ε , ρ — диэлектрическая проницаемость и плотность жидкости. Первая (кулоновская) часть силы (1) в идеальных диэлектриках отсутствует, так как ее наличие обусловлено свободным электрическим зарядом, которого нет. Последнее слагаемое имеет градиентный вид и приводит лишь к переопределению давления в уравнении

Навье-Стокса. Движение может вызвать только вторая (диэлектрофоретическая) часть силы, связанная с неоднородностью диэлектрической проницаемости.

Предполагается, что диэлектрическая проницаемость линейно зависит от температуры: $\varepsilon = \varepsilon_0(1 - \beta_{\varepsilon}T)$, где β_{ε} — положительный температурный коэффициент диэлектрической проницаемости. В этом случае действует диэлектрофоретический механизм неустойчивости. Используется электрогидродинамическое приближение, в котором магнитные эффекты считаются пренебрежимо малыми по сравнению с электрическими [1]. Считается, что максимальная разность потенциалов на пластинах конденсатора не превышает критического значения U_* , начиная с которого существенно влияние инжекции на движение жидкости. В уравнении теплопроводности пренебрегается вязкой диссипацией и джоулевым разогревом.

Тогда система уравнений электроконвекции жидкого диэлектрика запишется в виде

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla p + \eta \Delta \mathbf{v} + \rho \mathbf{g} - \frac{1}{2} \mathbf{E}^2 \nabla \varepsilon,$$
$$\frac{\partial T}{\partial t} + (\mathbf{v}\nabla)T = \chi \Delta T, \quad \operatorname{div} \mathbf{v} = \mathbf{0},$$
$$\operatorname{div}(\varepsilon \mathbf{E}) = \mathbf{0}, \quad \mathbf{E} = -\nabla \varphi, \tag{2}$$

$$\rho = \rho_0(1 - \beta T), \quad \varepsilon = \varepsilon_0(1 - \beta_\varepsilon T).$$

Здесь v, p, T — поля скорости, давления и температуры, η — динамическая вязкость, χ, β — коэффициенты температуропроводности и теплового расширения жидкости. Как правило, $\beta, \beta_{\varepsilon} \sim 10^{-2} - 10^{-4} \, \mathrm{K}^{-1}$.

Преобразуем уравнения, используя безразмерные переменные на основе масштабов: времени — $[t] = \rho_0 h^2/\eta$, расстояния — [r] = h, скорости — $[v] = \chi/h$, температуры — $[T] = \Theta$, потенциала — $[\varphi] = U\beta_{\varepsilon}\Theta$, давления — $[p] = \eta\chi/h^2$, частоты — $[\omega] = \rho_0\Omega h^2/\eta$.

Стационарное решение имеет вид:

ли вверх.

$$\mathbf{v}_0 = 0, \quad T_0 = -z + \frac{1}{2},$$
 $\varphi_0 = \left(-z + \frac{1}{2}\right) \cos \omega t, \quad \mathbf{E}_0 = \gamma \cos \omega t.$

(3)

Представим поля скорости, температуры, давления, потенциала и напряженности в виде **v**, $T = T_0 + \vartheta$, $p = p_0 + p', \varphi = \varphi_0 + \varphi', \mathbf{E} = \mathbf{E}_0 + \mathbf{E}'$ (штрихи означают отклонения величин от равновесных значений, далее штрихи опускаем). Запишем систему уравнений электроконвекции идеальных жидких диэлектриков в безраз-

мерном виде

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\Pr} (\mathbf{v}\nabla)\mathbf{v} = -\nabla p + \left(\operatorname{Ra} + \operatorname{Ra}_{\varepsilon} \cos^{2}(\omega t)\right)\vartheta\gamma + \operatorname{Ra}_{\varepsilon} \cos(\omega t) \frac{\partial \varphi}{\partial z} \gamma + \Delta \mathbf{v}, \Pr \frac{\partial \vartheta}{\partial t} - \mathbf{v}\gamma + (\mathbf{v}\nabla)\vartheta = \Delta\vartheta, \Delta\varphi + \frac{\partial \vartheta}{\partial z} \cos(\omega t) = 0, \quad \operatorname{div} \mathbf{v} = 0.$$
(4)

Здесь введены безразмерные параметры — число Прандтля Pr, тепловое число Рэлея Ra, электрическое число Рэлея Ra_ε:

$$\Pr = \frac{\eta}{\chi \rho_0}, \quad \operatorname{Ra} = \frac{\rho_0 g \beta \Theta h^3}{\eta \chi}, \quad \operatorname{Ra}_{\varepsilon} = \frac{\varepsilon_0 U^2 (\beta_{\varepsilon} \Theta)^2}{\eta \chi}.$$
(5)

Из определения (5) следует, что электрическое число Рэлея не зависит от направления градиента температуры.

Рассмотрим модельный случай, когда на недеформируемых свободных, изотермических границах слоя обращается в нуль произвольная потенциала (штрихом обозначена производная по z):

$$z = \pm \frac{1}{2}: \quad w = w^{\prime\prime} = \vartheta = \varphi^{\prime} = 0. \tag{6}$$

Задача изотропна в плоскости слоя, поэтому рассматриваются плоские возмущения $\mathbf{v} = (u, 0, w)$ и $\partial/\partial y = 0$.

2. Маломодовая модель электроконвекции

Введем функцию тока для скорости

$$w = \frac{\partial \psi}{\partial x}, \quad u = -\frac{\partial \psi}{\partial z}.$$
 (7)

В терминах функции тока уравнения, описывающие электротермическую конвекцию идеального жидкого диэлектрика, примут вид:

$$\frac{\partial}{\partial t}\Delta\psi + \frac{1}{\Pr}\left(\frac{\partial\psi}{\partial x}\frac{\partial}{\partial z}\Delta\psi - \frac{\partial\psi}{\partial z}\frac{\partial}{\partial x}\Delta\psi\right) = \operatorname{Ra}\frac{\partial\vartheta}{\partial x} + \operatorname{Ra}_{\varepsilon}\left(\frac{\partial\vartheta}{\partial x}\cos^{2}\omega t + \frac{\partial^{2}\varphi}{\partial z\partial x}\cos\omega t\right) + \Delta^{2}\psi,$$

$$\operatorname{Pr}\frac{\partial\vartheta}{\partial t} + \frac{\partial\psi}{\partial x}\frac{\partial\vartheta}{\partial z} - \frac{\partial\psi}{\partial z}\frac{\partial\vartheta}{\partial x} = \Delta\vartheta + \frac{\partial\psi}{\partial x}, \quad (8)$$

$$\Delta\varphi + \frac{\partial\vartheta}{\partial z}\cos\omega t = 0.$$

Граничные условия перепишутся следующим образом:

$$z = \pm \frac{1}{2}: \quad \psi = \psi'' = \vartheta = \varphi' = 0. \tag{9}$$

Для решения системы уравнений (8) используем метод Галеркина и следующие аппроксимации полей, удовлетворяющие граничным условиям:

$$\psi = A(t) \sin kx \cos \pi z,$$

$$\vartheta = B(t) \cos kx \cos \pi z + C(t) \sin 2\pi z,$$
 (10)

$$\varphi = D(t) \cos kx \sin \pi z + E(t) \cos 2\pi z,$$

где k — волновой вектор, характеризующий периодичность возмущений в плоскости слоя; A, B, C, D, E — амплитуды, зависящие от времени. Вторые слагаемые в аппроксимациях необходимы, чтобы учесть нелинейность системы (8).

Подставив разложения (10) в систему (8), после ортогонализации получим систему трех обыкновенных дифференциальных уравнений для амплитуд A, B, C и алгебраические выражения для амплитуд D, E:

$$\frac{\partial A}{\partial t} = -(\pi^2 + k^2)A + \frac{k}{\pi^2 + k^2} \left(\operatorname{Ra} + \operatorname{Ra}_{\varepsilon} \cos^2 \omega t \right) B + \frac{k\pi}{\pi^2 + k^2} \operatorname{Ra}_{\varepsilon} \cos \omega t D, \Pr \frac{\partial B}{\partial t} = kA - (\pi^2 + k^2)B - k\pi AC, \qquad (11) \Pr \frac{\partial C}{\partial t} = -4\pi^2 C + \frac{\pi k}{2} AB, D = -\frac{\pi}{\pi^2 + k^2} B \cos \omega t, \quad E = \frac{C}{2\pi}.$$

Исключим амплитуду *D* и преобразуем масштаб всех переменных:

$$k \to \pi k, \quad t \to \frac{\Pr}{\pi^2(1+k^2)} t, \quad A \to \frac{\sqrt{2}(1+k^2)}{k} X,$$

 $B \to \frac{\sqrt{2}}{\pi} Y, \quad C \to \frac{1}{\pi} Z,$ (12)

после чего получим трехмодовую модель электротермической конвекции (точка над переменными — производная по *t*):

$$\dot{X} = -\Pr X + \Pr(r + e\cos^2 2\pi v t)Y,$$

$$\dot{Y} = -Y + X - XZ,$$

$$\dot{Z} = -bZ + XY.$$
(13)

Здесь вместо циклической частоты использована линейная частота $\omega = 2\pi v$ и введены новые параметры:

$$r = \frac{Ra}{Ra_0}, \quad e = \frac{Ra_{\varepsilon}}{Ra_{\varepsilon 0}}, \quad b = \frac{4}{1+k^2},$$
$$Ra_0 = \frac{\pi^4 (1+k^2)^3}{k^2}, \quad Ra_{\varepsilon 0} = \frac{\pi^4 (1+k^2)^4}{k^4}, \qquad (14)$$

где r и е — нормированные тепловые и электрические числа Рэлея; b — геометрический параметр: Ra₀, Ra_{c0} —

критические числа, при которых начинается термогравитационная, или диэлектрофоретическая, конвекция соответственно. Из определения электрического числа следует, что е — всегда положительно (е > 0).

Динамическая система (13) является обобщением маломодовой модели Лоренца [10] на случай переменного электрического поля.

3. Модель электроконвекции в высокочастотном приближении

Рассмотрим модель (13) в высокочастотном приближении, когда период колебаний поля много меньше характерного времени движения жидкости. Подобное исследование влияния вибрации на режимы тепловой конвекции в высокочастотном приближении проведено в работе [11].

Решение системы уравнений (13) представим в виде суммы медленно (x_0, y_0, z_0) и быстро меняющихся со временем слагаемых (x, y, z):

$$X = x_0 + x, \quad Y = y_0 + y, \quad Z = z_0 + z.$$
 (15)

Подставим эти решения в (13), усредним по времени, учитываем, что средние значения быстро меняющихся слагаемых равны нулю, а средние значения от медленных частей равны им самим. В результате получим систему уравнений для осредненных величин:

$$\dot{x}_{0} = -\Pr x_{0} + \Pr r y_{0} + \Pr \frac{e}{2} \left(y_{0} + \langle y \cos 2\omega t \rangle \right),$$

$$\dot{y}_{0} = -y_{0} + x_{0} - x_{0}z_{0} - \langle xz \rangle, \qquad (16)$$

$$\dot{z}_{0} = -b z_{0} + x_{0}y_{0} + \langle xy \rangle.$$

Среднее значение по времени некоторой величины А определяется по следующему правилу:

$$\langle A \rangle = \frac{1}{T} \int_{0}^{T} A \, \mathrm{d} t,$$

где *T* — характерный период изменения величины *A*. Запишем уравнения для быстро меняющихся слагаемых:

$$\dot{x} = -\Pr x + \Pr r y + \Pr \frac{e}{2} (y + y_0 \cos 2\omega t),$$

$$\dot{y} = -y + x - x_0 z - x z_0, \qquad (17)$$

$$\dot{z} = -b z + x_0 y + x y_0.$$

Слагаемые $(-\Pr x)$, (-y), (-bz) дадут затухающий со временем вклад в решение, а слагаемые $\Pr ry$, $\Pr e y/2$, $(-x_0z)$ малы по сравнению с другими. В итоге получаем систему уравнений:

$$\dot{x} = \frac{1}{2} \Pr y_0 e \cos 2\omega t, \quad \dot{y} = x(1-z_0), \quad \dot{z} = x_0 y + x y_0.$$
(18)

Журнал технической физики, 2010, том 80, вып. 8

Решения этой системы имеют вид

$$x = \frac{1}{4\omega} \operatorname{Pr} y_0 \operatorname{e} \sin 2\omega t, \quad y = \frac{1}{8\omega^2} \operatorname{Pr} y_0(z_0 - 1) \operatorname{e} \cos 2\omega t,$$
$$z = -\frac{1}{8\omega^2} \operatorname{Pr} y_0^2 \operatorname{e} \cos 2\omega t. \tag{19}$$

Найденные решения (19) подставим в (16) и получим систему уравнений, описывающих осредненное движение идеального жидкого диэлектрика в высокочастотном пределе (нулевые индексы опущены, а переменные переписаны через прописные буквы):

$$\dot{X} = -\Pr X + \Pr r_e (1 - r_e D) Y + \Pr r_e^2 DYZ,$$

$$\dot{Y} = -Y + X - XZ,$$

$$\dot{Z} = -bZ + XY.$$
(20)

Здесь введены новые параметры:

$$r_e = r + \frac{e}{2}, \quad D = \frac{\Pr e^2}{8(2r+e)^2\omega^2}.$$
 (21)

Параметр *D* характеризует переменное электрическое поле. Этот параметр аналогичен вибрационному параметру, использованному в статье [11]. В нашем случае он зависит от частоты электрического поля, числа Прандтля, теплового и электрического числа Рэлея. Видно, что он всегда положителен.

Исследование модели электроконвекции в высокочастотном приближении

Система (20) имеет тривиальное решение, отвечающее отсутствию конвекции, т. е. чисто теплопроводящее состояние: $X_0 = 0, Y_0 = 0, Z_0 = 0.$

Исследуем на линейную устойчивость это тривиальное решение. Для этого представим все переменные в виде

$$X = X_0 + x e^{\lambda t}, \quad Y = Y_0 + y e^{\lambda t}, \quad Z = Z_0 + z e^{\lambda t},$$
 (22)

где x, y, z — малые возмущения, λ — инкремент возрастания. Подставим (22) в систему (20) и отбросим нелинейные по малым возмущениям члены. В результате после сокращения на экспоненты получим линейную алгебраическую систему:

$$\lambda x + \Pr x - \Pr r_e(1 - r_e D)y = 0,$$

$$\lambda y + y - x = 0.$$
 (23)

Компонента z всегда затухает, так как коэффициент b > 0. Решаем задачу на собственные значения. Условие разрешимости системы — равенство ее определителя

Рис. 1. Кривые зависимостей электрического числа от параметра D в случае невесомости (r = 0). Здесь изображена нейтральная кривая (линия I). Область I, ограниченная кривой I, является областью неустойчивости, II — область устойчивости. Кривая 2 — граница колебательной неустойчивости C решений. Выше кривой 3 в пространстве параметров появляется гомоклиническая петля. Кривая 4 — нижняя граница существования колебательных (левее точки A — хаотических, правее — периодических) режимов.

нулю. Раскрывая определитель, получим характеристическое уравнение: $\lambda^2 + \lambda(1 + Pr) + Pr(1 - r_e + Dr_e^2) = 0$, имеющее корни:

$$\lambda_{1,2} = \frac{-(1+Pr) \pm \sqrt{(1+Pr)^2 - 4Pr(1-r_e + Dr_e^2)}}{2}.$$
(24)

Если $\lambda < 0$, то возмущения затухают, стационарное состояние устойчиво. Если $\lambda > 0$, то возмущения возрастают, равновесие становится неустойчивым. Для $\lambda = 0$ получим уравнение нейтральной кривой

$$D = \frac{1}{r_e} - \frac{1}{r_e^2}.$$
 (25)

На рис. 1 приведена нейтральная кривая (1) — зависимость электрического числа от параметра D в случае невесомости (r = 0, r_e = e/2). Область I, ограниченная кривой 1, является областью неустойчивости; II область устойчивости.

Уравнение нейтральной кривой, записанное через обычные безразмерные параметры, имеет вид:

$$\mathbf{D} = \frac{2\pi^4 (1+k^2)^4}{2\operatorname{Ra} k^2 (1+k^2) + \operatorname{Ra}_{\varepsilon} k^4} - \frac{4\pi^8 (1+k^2)^8}{\left(2\operatorname{Ra} k^2 (1+k^2) + \operatorname{Ra}_{\varepsilon} k^4\right)^2}.$$
(26)

Система (20) имеет нетривиальное решение $X_0, Y_0, Z_0 = \text{const}(t)$. Оно находится из системы уравнений:

$$0 = -X_0 + r_e(1 - r_e D)Y_0 + r_e^2 D Y_z Z_0,$$

$$0 = -Y_0 + X_0 - X_0 Z_0,$$

$$0 = -b Z_0 + X_0 Z_0.$$
(27)

Из системы (27) найдем X₀, Y₀, Z₀:

$$X_0 = \pm \sqrt{b(r_e n - 1)}, \quad Y_0 = \pm \frac{\sqrt{b(r_e n - 1)}}{r_e n},$$

 $Z_0 = 1 - \frac{1}{r_e n}.$ (28)

Здесь возможны две пары стационарных симметричных решений — $C_{1,2}$ и $S_{1,2}$, описывающие конвективные валы: $n = (1 + \sqrt{1 - 4D})/2$ — для решений $C_{1,2}$ и $n = (1 - \sqrt{1 - 4D})/2$ — для решений $S_{1,2}$. Стационарные решения C существуют в областях I и II, ответвляясь на нижней ветви кривой *I*. При D = 0 эти решения совпадают с нетривиальными решениями системы Лоренца. Решения *S* существуют в области II, ответвляясь от верхней ветви кривой *I*. С ростом D решения *S* и *C* сливаются при D = 1/4 и исчезают. Правее этого значения D все возмущения затухают.

Проанализируем линейную устойчивость решения (28):

$$X = X_0 + x e^{\lambda t}, \quad Y = Y_0 + y e^{\lambda t}, \quad Z = Z_0 + z e^{\lambda t}.$$
 (29)

Повторив линейный анализ устойчивости, приходим к кубическому уравнению для λ :

$$\lambda^{3} - \lambda^{2}(1 + b + Pr) + \lambda \Pr\left(b + 1 - \frac{Dbe_{e}}{n} + \frac{Db}{n^{2}} + \frac{br_{e}n}{Pr} - \frac{1}{n} + \frac{D}{n^{2}}\right) - \Pr\left(1 + \frac{r_{e}n - 1}{n} - \frac{3D(r_{e}n - 1)}{n^{2}} + (r_{e}n - 1) - \frac{1}{n} + \frac{D}{n^{2}}\right) = 0.$$
(30)

На границе устойчивости *λ* — число мнимое:

$$\lambda = \lambda_r + i\lambda_i, \quad \lambda_r = 0, \quad \lambda_i = \omega \Rightarrow \lambda = i\omega.$$
 (31)

Подставим (31) в уравнение (30). Разделим вещественные и мнимые части кубического уравнения. В результате найдем частоту ω и критическое значение r_e .

Линейный анализ устойчивости показывает, что решения S монотонно неустойчивы (частота колебаний у них мнимая). А решения C становятся колебательно неустойчивыми (с вещественной частотой) начиная с критического значения r_e , определяемого выражением:

$$\begin{split} \mathbf{r}_{\mathbf{e}^{*}} &= \frac{\mathbf{Pr}}{n\mathbf{b}} \\ &\times \left(\frac{\mathbf{Db}(\mathbf{Pr} + \mathbf{b} - 2) + \mathbf{D}(\mathbf{Pr} + 1) + \mathbf{b}n^{2}(\mathbf{Pr} + \mathbf{b} + 2) +}{\mathbf{Pr}\,\mathbf{D}(\mathbf{Pr} + \mathbf{b} - 2) + n(\mathbf{Pr} - n\mathbf{b} - n)} \right). \end{split}$$
(32)

В постоянном электрическом поле в случае невесомости Ra = 0 (r = 0) волновое число и электрическое число Рэлея в минимуме нейтральной кривой равны k = 1, Ra_e = 1558.6, тогда b = 2 [7]. Все вычисления были сделаны для этого значения геометрического параметра и для Pr = 10. Полученная зависимость e_{*}(D) изображена кривой 2 на рис. 1.

Умеренная модуляция электрического поля оказывает умеренное стабилизирующее влияние. С увеличением D верхняя граница области неустойчивости стационарных конвективных валов и порог возникновения колебательного режима конвекции понижаются. При положительных значения D и достаточно больших значениях электрического параметра е теплопроводный режим устойчив относительно малых возмущений. При D < 1/4 в области II наряду с устойчивым равновесием существуют стационарные и периодические решения. При D > 1/4 независимо от начальных условий устанавливается теплопроводный режим.

Было проведено численное исследование нелинейных режимов конвекции. Система обыкновенных дифференциальных уравнений для амплитуд (20) интегрировалась численно методом пошагового интегрирования Рунге-Кутта-Мерсона. Полученные реализации временной эволюции амплитуды анализировались с помощью быстрого преобразования Фурье, определялся спектральный состав отклика конвективной системы на внешнее электрическое поле (у хаотического режима спектр Фурье — сплошной). Для получения данных использованы постоянные начальные условия: X = 0, Y = 0.5, Z = 0, кроме случаев, когда использовался метод продолжения по параметру.

В случае, когда D = 0, в системе происходят бифуркации, как и в триплете Лоренца [12]. При е < 2 единственным состоянием равновесия является устойчивый узел в начале координат (0,0,0) в пространстве параметров (*X*, *Y*, *Z*). Когда е > 2, начало координат становится седлом и из него рождаются два устойчивых состояния равновесия, отвечающие стационарной конвекции в виде валов жидкости, вращающихся в противоположных направлениях.

При некотором значении е = е₁ = 20.48 в фазовом пространстве системы появляется траектория, двоякоасимптотическая к точке 0 — гомоклиническая петля. При переходе е через е₁ рождаются неустойчивые седловые периодические движения — в жидкости происходят затухающие к стационарному состоянию периодические колебания. При этом в фазовом пространстве амплитуд (X, Z) траектория переходит из одной четверти плоскости в другую. Вместе с этими неустойчивыми циклами рождается очень сложное организованное предельное множество, но оно не является притягивающим. Это множество становится притягивающим по достижении $e = e_2 = 40.47$. При $e > e_2$ в системе наряду с устойчивыми состояниями равновесия существует аттрактор Лоренца. В зависимости от начальных условий в системе будет либо стационарный режим, либо хаотический. Так что $e = e_2$ является нижней границей области существования хаотических режимов. При $e = e_* = 42.86$ седловые циклы стягиваются к состоянию равновесия и теряют устойчивость, после чего аттрактор Лоренца становится единственным притягивающим множеством системы.

Это эквивалентно гистерезисному переходу между стационарным и хаотическим режимами. Методом продолжения по параметру при стремлении е к e_* со стороны меньших значений происходит колебательный переход к стационарному состоянию. При e_* из стационарного состояния скачком, жестко, рождается хаотический режим колебаний. При стремлении е к e_2 со стороны больших значений в системе существует хаос, который при e_2 переходит в стационарный режим.

Численное исследование позволило определить зависимость e_1 от параметра D в области I (кривая *3* на рис. 1). Эта кривая "утыкается" в нейтральную кривую. Была определена нижняя граница существования хаотических режимов $e_2(D)$ (кривая *4* на рис. 1). Эта граница с ростом D понижается, пересекает кривую *3*, смыкаясь с кривой *2*. Но при D = 0.064 (точка *A* на рис. 1) хаос исчезает, из стационарного режима рождается колебательный режим конвекции, т.е. при D больше этого значения (правее точки *A*) $e_2(D)$ становится нижней границей существования периодических режимов, а при e_* цикл становится единственным притягивающим множеством, и в системе существуют только периодические колебания.

В области хаоса были обнаружены окна периодичности. При некоторых значениях D методом продолжения по параметру периодические режимы проникали в область II, а потом устанавливалось равновесие.

5. Исследование модели электроконвекции для произвольных частот

Для случая произвольных частот была исследована система обыкновенных дифференциальных уравнений для амплитуд (13). Она интегрировалась численно при разных значениях внешней частоты и электрического числа. Полученные реализации временной эволюции амплитуды анализировались с помощью быстрого преобразования Фурье, и определялся спектральный состав отклика конвективной системы на внешнее электрическое поле. Все амплитуды трехмодовой модели (X, Y, Z)имеют одинаковые спектры, поэтому анализ проводился только одной из них — амплитуды X.

В случае, когда электрическое число e = 0, из (13) получается триплет Лоренца [10], моделирующий тепловую рэлеевскую конвекцию. В постоянном электрическом поле ($\nu = 0$) можно ввести эффективный параметр r = r + e и вновь получить триплет Лоренца. Переходы между различными типами движений в этом случае будут происходить при меньших значениях числа Рэлея.

В переменном поле характер конвективных движений определяется параметрическим резонансом.

Расчеты проводились для числа Прандтля Pr = 10. При Ra = 0 волновое число и электрическое число Рэлея в минимуме нейтральной кривой k = 1, $Ra_{\varepsilon c} = 16\pi^4 = 1558.6$ [7]. Тогда геометрический параметр b = 2. Все вычисления производились для этого значения геометрического параметра.

Для анализа интенсивности теплопереноса через конденсатор вычислялся усредненный по времени безразмерный теплопоток на границе диэлектрика (число Нуссельта) следующим образом:

$$\mathrm{Nu} = -\frac{k}{2} \int_{0}^{2/k} \left(\frac{\partial T}{\partial z}\right)_{z=\pm 1/2} \mathrm{d}x, \quad [\mathrm{Nu}] = \frac{qh}{\kappa\Theta}, \qquad (33)$$

где q — плотность потока тепла, κ — коэффициент теплопроводности. Усреднение числа Нуссельта проводилось по большому временному интервалу $t_{\rm end} = N t_f$ (N > 100):

Nu = 1 +
$$2\pi \frac{1}{t_{\text{end}}} \int_{0}^{t_{\text{end}}} Z(t) |_{z=\pm 1/2} dt.$$
 (34)

Случай Nu = 1 соответствует процессу молекулярного теплопереноса, превышение числа Нуссельта над единицей Nu > 1 свидетельствует о возникновении конвекции.

Исследование надкритических нелинейных режимов конвекции идеального диэлектрика в переменном электрическом поле было проведено для двух значений теплового числа Рэлея: r = 0 (невесомость), r = -10 (подогрев сверху в поле тяжести).

5.1. Невесомость

В случае невесомости (r = 0) были обнаружены различные периодические и хаотические электроконвективные режимы движения жидкости. Построена карта режимов электроконвекции на плоскости периода $t_f = 1/\nu$ (обратная частота) — амплитуда модуляции е (рис. 2). В пространстве управляющих параметров задачи имеются следующие области с различным поведением жидкости: I — область равновесия; II — область, в которой скорость и температура жидкости периодически меняются со временем; III — в системе существуют хаотические режимы колебаний.

Область равновесия I, в которой все возмущения затухают, располагается ниже линии е = 2. Возмущения в этой области затухают колебательным образом. Выше е = 2 в области II в слое возникает параметрическая неустойчивость — рождаются периоидческие колебания.

При высоких частотах переход к хаосу происходит при электрическом поле, в два раза большем, чем в постоянном поле. При расчете с постоянными условиями этот

Рис. 2. Карта режимов электроконвекции: I — равновесие, II — периодический режим, III — хаотический режим; I-3 — "языки" хаоса. AC — нижняя граница хаотических режимов, BC — верхняя граница хаоса; на BD (или ACD) и LM переход к хаосу происходит через квазипериодичность I; на DE и FG — через квазипериодичность 2; на IJ — через квазипериодичность 3; на EF, GH, JK — через субгармонический каскад удвоений периода.

переход в постоянном поле происходит при e = 20.9, в высокочастотном поле $e \rightarrow 41.8$.

Найдены три различных сценария перехода к хаосу через квазипериодичность. При высоких внешних частотах (малых периодах) вплоть до умеренных частот (участок *BD* на рис. 2, в точке D v = 1.3) переход происходит по перому сценарию — квазипериодичность *I*. При фиксированной частоте при малых значениях электрического числа в отклике можно обнаружить колебания с удвоенной внешней частотой и ее грамониками. При увеличении амплитуды поля появляется собственная частота. Вдали от границы равновесия спектры Фурье колебаний содержат две несоизмеримые частоты удвоенную внешнеюю и собственную, их гармоники и комбинированные частоты. Затем спектр становится сплошным — возникает хаос.

Обнаружены и исследованы гистерезисные переходы между периодическими и хаотическими режимами. Интегрируя уравнения, например, при фиксированной частоте v = 5 с постоянными начальными условиями можно увидеть, что при небольших значениях электрического числа в отклике содержится удвоенная внешняя частота 10. Затем при увеличении электрического числа появляется вторая собственная несоизмеримая частота 1.22 (с такой же частотой происходят периодические колебания при переходе к стационарному состоянию до возникновения хаоса в триплете Лоренца). И происходит переход к хаосу при e = 41.1 При интегрировании методом продолжения по параметру вторая частота возникает позднее, и переход происходит при e = 42.2. При уменьшении электрического числа наблюдается гистерезисный переход между периодическим и хаотическим режимами: хаотический режим существует до e = 40.6. При e = 40.5 колебания становятся периодическими. Обнаружено, что среднее значение теплопотока в хаотическом режиме меньше, чем в периодическом.

На рис. 3 представлена зависимость числа Нуссельта от электрического числа при частоте v = 5. При e = 2 мягко рождается периодический режим, поток тепла становится более интенсивным. При e = 40.5 и выше присутствует гистерезис между периодическим и хаотическим режимами.

Этот переход аналогичен тому, что происходит в модели в высокочастотном пределе. Линия AC на рис. 2 нижняя граница хаотических режимов, BC — верхняя граница хаоса. При уменьшении частоты модуляции (увеличении периода) ширина гистерезисного перехода уменьшается. Правее точки C (при частоте меньше v = 2) переход между периодическим и хаотическим режимами происходит без гистерезиса, но при этом вблизи порога хаоса существуют длительные переходные процессы. При интегрировании уравнений с постоянными начальными условиями в жидкости возникают хаотические колебания, которые после переходного процесса становятся гармоническими. Длительность переходного хаоса случайным образом зависит от начальных условий.

При внешних частотах, меньших $\nu = 1.3$ (на участке *DE* рис. 2), переход к хаосу осуществляется по другому сценарию — квазипериодичность 2. Аналогично первому сценарию при малых полях в отклике содержатся колебания с удвоенной внешней частотой

Рис. 3. Зависимость безразмерного среднего теплопотока (числа Нуссельта) от электрического числа при частоте v = 5.

и ее гармониками. При увеличении поля происходит однократное удвоение периода — жидкость начинает колебаться с внешней частотой. Затем рождается собственная частота. В итоге в спектре Фурье имеются собственная и внешняя частоты, их гармоники и комбинированные частоты. После этого колебания становятся хаотическими.

В интервале частот от 0.96 до 0.94 (*EF* на рис. 2) было обнаружено, что переход к хаосу происходит через субгармонический каскад удвоений периода колебаний. А у граничных частот 0.97 и 0.93 вблизи границы хаоса в спектрах Фурье имеются внешняя частота и несоизмеримая с ней собственная частота, их гармоники и комбинированные частоты, т.е. переход к хаосу происходит через квазипериодичность.

Продемонстрируем переход к хаосу через субгармонический каскад удвоений периода для частоты 0.95. С третьего по шестое удвоения периода происходят при следующих значениях электрического числа: $e_3 = 25.9647$, $e_4 = 26.0064$, $e_5 = 26.0117$, $e_6 = 26.0124$. Хаос возникает при $e_{\infty} = 26.013$. Оценка константы Фейгенбаума по первой тройке e_k дает значение: $\delta = 7.868$. Следующее приближение этой константы (вычисленное по второй тройке e_k): $\delta = 7.571$. Точное значение: $\delta = \lim_{k \to \infty} \frac{e_k - e_{k-1}}{e_{k+1} - e_k} = 4.669...$ [12]. Получается медленная сходимость к точному значению.

При вычислениях была обнаружена сильная чувствительность от начальных условий — для вычисления точек бифуркаций нужно было менять электрический параметр с малым шагом, чтобы не перескочить на хаотический режим колебаний. Для обнаружения появления малых частот в спектрах Фурье приходилось проводить вычисления до десятков тысяч безразмерных единиц времени.

При меныших частотах переход к хаосу происходит через квазипериодичность 2 (участок FG на рис. 2). На участке GH — при частотах около 0.75 и до конца нижнего "языка" хаоса 1 (частоты 0.64) — переход осуществляется через последовательность удвоений периода. Например, при частоте модуляции 0.64 со второго по четвертое удвоения периода происходят при: $e_2 = 16.573$, $e_3 = 16.621$, $e_4 = 16.629$. Хаос возникает при $e_{\infty} = 16.7$. Оценка константы Фейгенбаума дает значение: $\delta = 6$.

На рис. 2 можно увидеть три "языка" хаотических режимов (I, 2, 3), разделенных областями периодических режимов. Двигаясь в пространстве параметров вверх по амплитуде при фиксированной частоте через "язык" хаоса I, последовательно будем проходить области периодических и хаотических режимов. Выше третьего "языка" хаоса были обнаружены близко расположенные области с периодическим и хаотическим поведением, которые тянутся в область низких частот (больших периодов).

Переход к хаосу на нижней границе "языка" 2 (на участке IJ) происходит через третий вариант ква-

зипериодичности — квазипериодичность 3. Между 1 и 2 "языками" хаоса в спектрах колебаний содержатся внешняя частота, ее субгармоника (частота в два раза меньше внешней) и ее гармоники. При увеличении поля рождается собственная частота и комбинированные частоты. После этого колебания становятся хаотическими.

На участке *JK* переход к хаосу происходит через субгармонический каскад удвоений периода. При частоте 0.8 со второго по четвертое удвоения периода происходят при: $e_2 = 24.7276$, $e_3 = 24.7417$, $e_4 = 24.7439$. Хаос возникает при $e_{\infty} = 24.75$. Оценка константы Фейгенбаума дает значение: $\delta = 6.4$.

Переход к хаосу на нижней границе "языка" *3* (участок *LM*) происходит через квазипериодичность *1*. Перед возникновением хаоса в спектрах содержатся удвоенная внешняя частота, несоизмеримая собственная частота и комбинационные частоты.

5.2. Подогрев сверху в поле тяжести

Карта режимов электроконвекции на плоскости период $(t_f = 1/\nu)$ — амплитуда модуляции для случая подогрева сверху в поле тяжести (r = -10) представлена на рис. 4. В пространстве параметров задачи присутствуют следующие состояния конвективной системы: I диэлектрическая жидкость в механическом равновесии, все возмущения затухают; II — скорость и температура жидкости периодически меняются со временем; III в системе существуют хаотические режимы.

Рис. 4. Карта режимов электроконвекции: I — равновесие, II — периодические режимы (синхронные возмущения двух типов — H1, H2), III — хаотический режим; 1-3 — области неустойчивости. AC — нижняя граница хаотических режимов, BC — верхняя граница хаоса; на BD (или ACD) переход к хаосу происходит через квазипериодичность I; на DE — через квазипериодичность 2; на EF — через субгармонический каскад удвоений периода; на FG — из равновесия.

Границы резонансных областей диэлектрофоретической конвекции при нагреве сверху получены в [13], где было показано, что субгармонические возмущения отсутствуют, а синхронные возмущения делятся на два различных класса: H1, H2.

Для возмущений, принадлежащих этим классам, на пороге устойчивости выполняются следующие соотношения при сдвиге на половину периода:

$$t \to t + \frac{t_f}{2}, \qquad \begin{array}{l} \psi \to -\psi, \ \vartheta \to -\vartheta, \ \varphi \to \varphi; \ (H1)\\ \psi \to \psi, \ \vartheta \to \vartheta, \ \varphi \to -\varphi. \ (H2) \end{array} (35)$$

Временная эволюция амплитуды синхронных возмущений X(t) и Фурье спектр для возмущений типа H1 и H2 представлены на рис. 5, 6 соответственно. В первом случае (рис. 5, класс H1) амплитуда X колеблется с частотой внешнего воздействия, среднее значение за период равно нулю. В спектре Фурье наблюдаются также кратные частоты nv, где n = 3, 5, ... Во втором случае (рис. 6, класс H2) среднее значение амплитуды X отлично от нуля, а в спектрах присутствуют удвоенная внешняя частота и ее высшие гармоники 2vn, где n = 2, 4, ...

При высоких частотах (малых периодах) и больших надкритичностях (в области неустойчивости *1*, рис. 4) вблизи границы хаоса в спектрах Фурье присутствуют несоизмеримые частоты, и дальнейший переход к хаосу происходит через квазипериодичность. Как и в невесомости, обнаружен гистерезисный переход: линия *AC* на рис. 4 — нижняя граница хаотических режимов,

Рис. 5. Синхронные колебания класса H2: $t_f = 1$, e = 32 (точка b).

Рис. 6. Синхронные колебания класса H2: $t_f = 1$, e = 32 (точка a).

BC — верхняя граница хаоса. Правее точки C (при частоте меньше v = 2) переход между периодическим и хаотическим режимами происходит без гистерезиса. Но BD (или ACD) переход к хаосу происходит через квазипериодичность I, на участке DE — через квазипериодичность 2, на EF — через сценарий Фейгенбаума; на FG — из равновесия.

В пространстве параметров выше границы устойчивости на границе сближения синхронных возмущений двух типов (между областями I, 2) было обнаружено сложное поведение. При разных фиксированных внешних частотах было проведено интегрирование с постоянными начальными условиями с разными электрическими числами. В результате были получены различные электроконвективные режимы движения: равновесие, синхронные периодические режимы H1, H2 и хаос. Затем методом продолжения по параметру были обнаружены и исследованы различные гистерезисные переходы между ними.

При движении в пространстве параметров из области I в область 2 (при уменьшении частоты или увеличении периода модуляции) внутри области неустойчивости возникает конкуренция между равновесием и режимом H2, переход к хаосу происходит через удвоения периода. Область конкуренции H2 с равновесием растет, достигая границы хаоса (точка F). Граница хаоса начинает подниматься, а переход к хаосу происходит

Рис. 7. Безразмерный средний теплопоток при $\nu = 0.7$ ($t_f = 1.43$).

из равновесия. До возникновения хаоса наблюдаются затухающие к равновесию хаотические колебания.

При достижении области 2 конвекция начинается с режима H1. При достижении некоторого значения поля наблюдается конкуренция между режимами H1, H2, затем — между режимом H2 и равновесием. Область конкуренции равновесия и режима H2 заканчивается, устанавливается равновесие, затем возникает хаос.

На рис. 7 для такой конкуренции приведен характерный график зависимости числа Нуссельта Nu от амплитуды поля е для периода внешнего поля $t_f = 1.43$ (для частоты $\nu = 0.7$, штриховая кривая на рис. 4). Из графика видно, что с ростом надкритичности при е = 25.2 мягко рождается конвективный режим класса H1, число Нуссельта растет, немного превышая единицу: Nu_{max} = 1.08. Резкое увеличение теплопотока (Nu_{max} = 2.65) в интервале амплитуд поля 29.3 < e < 36.7 связано с переходом к режиму класса H2, рождающемуся жестким образом. В области 29.3 < е < 33 происходит конкуренция режимов H1, H2. В зависимости от начальных условий могут возникать колебания разных типов и гистерезисные переходы между ними при изменении амплитуды поля. Другой тип конкуренции режимов поведения диэлектрика: колебаний класса H2 и равновесия Eq, реализуется в области 33 < e < 36.7. В интервале амплитуд 36.7 < е < 39.3 в диэлектрике возможно только равновесие (Eq), переменное поле подавляет электроконвекцию. При дальнейшем увеличении степени надкритичности появляется область хаотических колебаний (е > 39.3), внутри которой расположены окна периодичности. Первое из них лежит в интервале амплитуд поля 40-40.8 (рис. 7).

В областях 2,3 и далее переход к хаосу происходит через последовательность бифуркаций удвоения периода. Продемонстрируем этот переход к хаосу для частоты $\nu = 0.4$. Значения параметра e_k , отвечающие бифуркациям удвоения периода, следующие: $e_1 = 23.5$, $e_2 = 24.1$, $e_3 = 24.124$, $e_4 = 24.129$. Хаос возникает при $e_{\infty} = 24.14$. Оценка константы Фейгенбаума по второму, третьему и четвертому e_k дает значение: $\delta = 4.8$ (точное значение: $\delta = 4.669...$).

В области хаоса обнаружены окна периодичности с равновесием, различными периодическими и хаотическими режимами. Такие окна наблюдаются также между точкой *G* и линией хаоса в области 2. В окнах периодичности хаос наступает либо через квазипериодичность, либо через удвоение периода, либо из равновесия.

На границе областей 2, 3 наблюдаются конкуренция между разными режимами и гистерезисные переходы между ними. Например, для внешней частоты v = 0.3 при интегрировании с постоянными начальными условиями периодический режим рождается при е = 24.4, дальше происходит субгармонический каскад удвоений периода и возникает хаос при е = 24.5. Продолжением по параметру периодический режим существует до меньших значений электрического числа е = 23.2, опускаясь ниже области устойчивости, определенной ранее, после чего устанавливается равновесие.

При интегрировании с постоянными начальными условиями для частоты v = 0.29 (рис. 8) равновесие существует до $e_C = 25.4$ (при приближении к этому значению возникают переходные хаотические колебания, которые со временем затухают). При e_C происходит переход к устойчивым хаотическим колебаниям (область *CD*). С помощью метода продолжения по пара-

Рис. 8. Зависимость числа Нуссельта от электрического числа при частоте v = 0.29 (A-B — периодический режим, B-C-D — хаос).

Рис. 9. Зависимость числа Нуссельта от электрического числа при частоте $\nu = 0.27$.

метру обнаружено, что при уменьшении электрического числа хаотический режим продолжается до $e_B = 24.6$, ниже которого рождается периодический режим, наблюдается обратный каскад удвоений периода. Периодические колебания существуют до $e_A = 23.4$, после чего жестким образом происходит переход в равновесное состояние.

При меньших внешних частотах при решении с постоянными начальными условиями переход к хаосу происходит из состояния равновесия. Если продолжением по параметру хаотический режим тянуть в область меньших электрических полей, то при одних частотах наблюдается обратный каскад удвоений периода (сценарий Фейгенбаума) и переход к равновесию, а при других частотах в хаотическом режиме появляется окно периодичности, потом хаос, затем периодический режим и равновесие. При частоте v = 0.27-0.28 гистерезиса нет, и переход к хаосу происходит жестким образом из равновесия.

При частоте v = 0.27 было обнаружено, что в области равновесия возникает конвективный режим колебаний *H*2, подобный режиму из области *3*, который с ростом амплитуды поля исчезает. А при больших полях жестко рождается из равновесия хаотический режим, в котором есть окна периодичности, первое из них представлено на рис. 9.

При частоте v = 0.26 начинается область неустойчивости 3. На правой границе области 3 (рядом со следующей областью) наблюдаются такая же конкуренция между разными режимами и гистерезисные переходы между ними, как на границе областей 2, 3.

Заключение

В работе в рамках маломодовой модели исследованы режимы электротермической конвекции идеального жидкого диэлектрика в периодическом электрическом поле горизонтального конденсатора. Рассмотрен случай, когда диэлектрофоретический механизм зарядообразования играет основную роль. Моделирование электроконвекции с помощью амплитудных уравнений выявило сложное динамическое поведение.

Изучены различные периодические и хаотические режимы колебаний жидкости и пути перехода к хаосу в переменном электрическом поле. Исследована модель электроконвекции в высокочастотном приближении. В рамках модели для произвольных частот на плоскости обратная частота—амплитуда модуляции определены области существования этих режимов для двух случаев: 1) невесомость; 2) подогрев сверху в поле тяжести.

Обнаружены и исследованы гистерезисные переходы между различными электроконвективными нелинейными режимами жидкого диэлектрика в переменном электрическом поле.

Исследования выполнены при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант № 07-01-96046).

Список литературы

- [1] Болога М.К., Гросу Ф.П., Кожухарь И.А. Электроконвекция и теплообмен. Кишинев: Штиинца, 1977. 320 с.
- [2] Smorodin B.L., Gershuni G.Z., Velarde M.G. // Int. J. of Heat Mass Transfer. 1999. Vol. 42. N 16. P. 3159–3168.
- [3] Smorodin B.L., Velarde M.G. // J. Electrostatics. 2000. Vol. 48.
 N 3. P. 261–277.
- [4] Smorodin B.L., Velarde M.G. // Physics of Fluids. 2008. Vol. 20. N 4. P. 044 101.
- [5] Ильин В.А., Смородин Б.Л. // Письма в ЖТФ. 2007. Т. 33. Вып. 8. С. 81–87.
- [6] Ильин В.А. // Вестн. Перм. ун-та. Физика. 2004. Вып. 1. С. 100–105.
- [7] Ильин В.А., Смородин Б.Л. // Вестн. Перм. ун-та. Физика. 2005. Вып. 1. С. 94–100.
- [8] Ильин В.А., Смородин Б.Л. // Письма в ЖТФ. 2005. Т. 31. Вып. 10. С. 57–63.
- [9] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 736 с.
- [10] Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминистском подходе к турбулентности. М.: Мир, 1991. 368 с.
- [11] Закс М.А., Любимов Д.В., Чернатынский В.И. // Изв. АН СССР. Физика атмосферы и океана. 1983. N 3. С. 312–314.
- [12] Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984. 432 с.
- [13] Smorodin B.L., Velarde V.G. // J. Electrostatics. 2001. Vol. 50. N 3. P. 205–226.