05;12 Вязкость разрушения хромистой (12%) ферритно-мартенситной стали ЭК-181 при нагружении на сосредоточенный изгиб

© В.М. Чернов,¹ Г.Н. Ермолаев,^{1,2} М.В. Леонтьева-Смирнова¹

¹ Высокотехнологический научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара (ОАО "ВНИИНМ"),

123098 Москва, Россия

e-mail: chernovv@bochvar.ru

² Институт физики высоких давлений им. Л.Ф. Верещагина РАН,

142190 Троицк, Московская область, Россия

(Поступило в Редакцию 21 декабря 2009 г.)

Исследовано низкотемпературное разрушение российской жаропрочной, малоактивируемой ферритномартенситной 12%-ной хромистой стали ЭК-181 (RUSFER-EK-181: Fe-12Cr-2W-V-Ta-B) при испытании на ударный и статический сосредоточенный изгиб в зависимости от размеров образцов (стандартных и малых), типов концентраторов напряжений (V-надрезы, усталостная трещина) и темпрературы (от -196 до $+100^{\circ}$ C). Температура хрупко-вязкого перехода находится в интервале $-85 - + 35^{\circ}$ C. Определены температурные зависимости коэффициентов интенсивности напряжений K_{IC} и вязкости разрушения J_{IC} . Наиболее жестким видом испытаний на ударную вязкость являются испытания V-образцов, последовательно дополненными усталостной трещиной и двумя боковыми V-надрезами (трехсторонний V-надрез с центральной усталостной трещиной). Работа разрушения, зависящая от типа концентраторов напряжений и размеров образцов, определяется запасом упругой энергии и условиями пластической деформации в приповерхностных слоях образца, регулируемыми боковыми надрезами. Между ударной вязкостью и вязкостью разрушения при одинаковой температуре испытаний наблюдается корреляционная связь. Независимо от типов образцов (включая надрезы и усталостную трещину) реализуется однотипный механизм разрушения ферритномартенситной стали.

Введение

Низкотемпературное хрупкое разрушение ферритномартенситной стали в условиях эксплуатации при динамических и статических нагружениях с разными концентраторами напряжений (надрезы, трещины) является одной из серьезных причин, ограничивающих применение такой стали как конструкционного материала при относительно низких температурах, в том числе при радиационных воздействиях [1-7]. Жаропрочная 12%-ная хромистая ферритно-мартенситная сталь ЭК-181 (RUSFER-EK-181: Fe-12Cr-2W-V-Ta-B) является перспективным конструкционным материалом для ядерной техники [7-9]. Исследование закономерностей хрупкого разрушения этой стали (трещиностойкости) при статических и динамических сосредоточенных нагрузках является важной задачей, поскольку от результатов исследований зависит возможность дальнейшей модификации ферритно-мартенситной стали с целью расширения температурных и дозовых интервалов ее применения [8–10]. Несмотря на недостаточную физическую ясность прочностной трактовки ударной вязкости и вязкости разрушения (отсутствуют обоснованные критерии применения непосредственно к расчетам на прочность), методы их определения и характеристики входят в стандарты и технические условия на конструкционные материалы [2-6].

Для исследований ударной вязкости (трещиностойкости) материалов используются разные типы образцов и условий их испытаний на сосредоточенный динамический и статический изгиб при разных температурах с целью приблизить условия испытаний образцов к реальным условиям эксплуатации материалов и получить из испытаний образцов наиболее обоснованные характеристики разрушения (трещиностойкости) материалов для использования в расчетах на прочность конструкций, работающих в широких температурных интервалах и при разной степени жесткости напряженных и деформационных состояний.

Ударная вязкость (поглощенная энергия) обычно определяется работой на деформирование и разрушение образцов типа Шарпи (односторонний V-надрез-CVN-образец), включающий работу на зарождение трещины (в основном на упругое и пластическое деформирование у основания надреза) и работу на разрушение и соответствующее пластическое деформирование с образованием, в ряде случае, "губ среза" [2-6,10]. Для оценки склонности металлов к хрупкому разрушению при исследованиях образцов определяются значения ударной вязкости (поглощенной энергии) КСVN как общей работы разрушения, затраченной на зарождение и распространение трещины, на пластическую деформацию при образовании "губ среза" на боковых поверхностях и на формирование пластической зоны в вершине трещины. Из температурных зависимостей KCVN для разных образцов определяется температура вязко-хрупкого перехода T_{dbtt} (например, методом "середины") как сравнительная харакеристика склонности металлов к хрупкому разрушению при низких температурах. Значение T_{dbtt} зависит от многих факторов (прочности металла, типов образцов и концентраторов напряжений), что делает ее экспериментальное определение для реальных условий эксплуатации металлов сложной задачей.

Развитие методов определения ударной вязкости [1,5] добавило усталостную трещину (РС) в вершину V-надреза (CVN-PC-образец), что увеличивает степень жесткости испытаний и увеличивает долю сечения образца, разрушаемую в условиях плоского деформированного состояния. В этом случае исключается работа на зарождение трещины и увеличивается степень трехосности напряженного состояния в ее вершине. Ударная вязкость определяется при исключении работы на зарождение трещины, а результаты испытаний образца с трещиной соответствуют более жестким условиям эксплуатации металла. Разрушение образца с трещиной в вязком состоянии сопровождается пластической деформацией, которая приводит к появлению на боковых поверхностях образцов "губ среза". При этом разрушение в приповерхностных слоях образцов происходит преимущественно в условиях плоского напряженного состояния.

Для уточнения влияния напряженного состояния образца на ударную вязкость к основному V-надрезу добавляются [11] два боковых V-надреза (2S) как продолжение основного (образец CVN-2S с трехсторонним V-надрезом без усталостной трещины), чтобы обеспечить состояние плоской деформации во всем сечении образца и сделать большую часть излома плоской. В этом случае образование "губ среза" оказывается затрудненным, а разрушение образцов происходит преимущественно в условиях плоского деформированного состояния.

Наиболее жесткие условия испытаний образцов реализуются для случая, когда VCN-образец (V-надрез) последовательно дополняется усталостной трещиной (PC) в вершине имеющегося V-надреза и двумя боковыми V-надрезами, образуя трехсторонний V-надрез с центральной усталостной трещиной [2–5,10]. Такая геометрия образца наиболее соответствует условиям плоского деформированного состояния в вершине трещины (условия гидростатического растяжения).

В настоящей работе исследовано низкотемпературное разрушение образцов жаропрочной стали ЭК-181 при испытаниях на ударный и статический сосредоточенный изгиб в зависимости от размеров образцов (стандартные — ST и малые — SM), типа концентраторов напряжений (V-надрезы, усталостная трещина) в температурном интервале – 196– + 100°С.

Материал и методика исследований

Результаты исследований температурных зависимостей напряжений пределов текучести ($\sigma_{0.2}$), прочности (σ_B) , удлинения до разрушения (δ) при растяжении и упругих модулей стали ЭК-181 [8–10] характеризуют ее как дисперсионно-твердеющую жаропрочную сталь ферритно-мартенситного класса.

Испытания на ударную вязкость (определение величин KCVN) проводились на плоских стандартных (ST-образец: $5 \times 10 \times 55$ mm) и малых (SM-образец: $3.3 \times 3.3 \times 30$ mm) образцах. Испытания на вязкость разрушения K_{IC} и J_{IC} (статический сосредоточенный изгиб) проводились на ST-образцах. Все образцы проходили термообработку по режиму:

- 1) закалка от температуры 1100°С;
- 2) охлаждение на воздухе;
- 3) отпуск 270°С, 3 h.

Испытания образцов на статический изгиб в температурном диапазоне от -196° С до нуля проводилось на универсальной испытательной машине типа "Инстрон". Для испытаний на ударную вязкость при температуре от -196 до $+100^{\circ}$ С использовались копры с запасом энергии 195 и 50 J.

Испытания проводились с использованием CVNобразцов.

— ST- и SM-образцы с односторонним V-надрезом глубиной 1.5 и 1 mm соответственно и радиусом вершин V-надрезов r = 0.25 mm. Определялись значения ударной вязкости KCVN-ST/SM;

— ST-образцы с односторонним V-надрезом глубиной 1.5 mm и двумя боковыми V-надрезами глубиной 0.4 mm (трехсторонний V-надрез), для которых определялись значения ударной вязкости KCVN-2S-ST;

 ST- и SM-образцы с V-надрезом и усталостной трещиной с общей глубиной 2 и 1.2 mm соответственно (односторонний надрез с усталостной трещиной), для которых определялись значения ударной вязкости KCVN-PC-ST/SM;

— ST- и SM-образцы с V-надрезом, усталостной трещиной и двумя боковыми V-надрезами (трехсторонний V-надрез с центральной усталостной трещиной и двумя боковыми надрезами), для которых определялись значения ударной вязкости KCVN-PC-2S-ST/SM.

При испытаниях на ударный изгиб ST- и SM-образцов расстояния между опорами составляли 40 и 22 mm соответственно. Для выращивания усталостных трещин использовалась обычная вибрационная методика [1,5,10]. Полученные данные использовались для построения температурных зависимостей ударной вязкости и определения значений температуры хрупко-вязкого перехода $T_{\rm dbtt}$.

Важной характеристикой вязкости (трещиностойкости) металла является критический коэффициент интенсивности напряжений *K*_{IC} в условиях плоской деформации при переходе к неустойчивому (закритическому) росту трещины при статическом сосредоточенном изгибе образцов [3].

$$K_{IC}b^{2}t/(6Ml^{1/2}) = 1.93 - 3.07(l/b)$$

+ 14.53(l/b)² - 25.11(l/b)³ + 25.8(l/b)⁴

где *b* — ширина образца, *t* — толщина образца, *l* — длина надреза и трещины, *M* — приложенный изгибающий момент.

Во всем исследованном интервале температур обеспечивалось выполнение необходимого условия (рамки корректности метода) [3] $t > 2.5 \left(\frac{K_{IC}}{\sigma_{0.2}}\right)^2 < l$. Вязкость разрушения J_{IC} (J/cm²) определялась из выражения [3] $(1 - \mu^2)K_{IC}^2 = EJ_{IC}$, где E — модуль Юнга, μ — коэффициент Пуассона. Возможные корреляционные связи между значениями KCVN, KCVN-PC и J_{IC} определялись для разных образцов и разных напряженных состояний при одинаковой температуре испытаний.

Испытания стали на ударный изгиб

Для оценки склонности стали ЭК-181 к хрупкому разрушению проведены динамические испытания образцов на ударный сосредоточенный изгиб. Результаты испытаний, полученные на ST- и SM-образцах в разных напряженных состояниях (KCVN, KCVN-PC, KCVN-2S, KCVN-PC-2S), представлены на рис. 1, 2 и в таблице.

Полученные результаты показывают, что на величину T_{dbtt} более сильное влияние оказывает "жесткость" концентраторов напряжений при испытаниях SM-образцов, а для ST-образцов такое влияние не столь велико. Это свидетельствует о сильном влиянии запаса упругой энергии и пластической деформации приповерхностных слоев образцов на величину T_{dbtt} в SM-образцах.

Приведенные температурные характеристики ударной вязкости (рис. 2, см. таблицу) показывают, что при

Рис. 1. ЭК-181. Температурные зависимости ударной вязкости для стандартных (ST) и малых (SM) образцов с разными концентраторами напряжений: KCVN-ST (1), KCVN-SM (2), KCVN-2S-ST (3).

Рис. 2. ЭК-181. Температурные зависимости ударной вязкости для стандартных (ST) и малых (SM) образцов с разными концентраторами напряжений: KCVN-PC-ST (1), KCVN-PC-2S-ST (2), KCVN-PC-SM (3), KCVN-PC-2S-SM (4).

ЭК-181. Характеристики ударной вязкости для стандартных (ST : 5 \times 10 \times 55 mm) и малых (SM : 3.3 \times 3.3 \times 30 mm) CVN-образцов (r = 0.25 mm)

N₂	Тип CVN-образца	$T_{\rm dbtt},^{\circ}{\rm C}$	Ударная вязкость при высоких температурах (верхнее плато), J/cm ²
1	KCVN-ST	+10	80
2	KCVN-SM	-85	35
4	KCVN-2S-ST	+25	> 40
5	KCVN-PC-ST	0	65
6	KCVN-PC-SM	-30	40
7	KCVN-PC-2S-ST	+35	70
8	KCVN-PC-2S-SM	0	40

высоких температурах испытаний (верхнее плато) энергия, затраченная на "вязкое" разрушение ST-образцов (KCVN-PC-ST), примерно в 1.5 раза превосходит энергию, затраченную на "вязкое" разрушение SM-образцов (KCVN-PC-2S-SM), тогда как значения $T_{\rm dbtt}$ для таких образцов близки по величине (0°C). Следует также отметить (рис. 1, 2), что для разных образцов при низких температурах испытаний (нижнее плато) ударная вязкость имеет близкие значения в пределах $3-10 \, {\rm J/cm^2}$ при существенных различиях в значениях $T_{\rm dbtt}$.

Исследования вида изломов показали, что на образцах с усталостной трещиной типа KCVN-PC-SM прямой излом, характерный для условий плоской деформации в вершине трещины, наблюдается в диапазоне –196––40°C, а на образцах с усталостной трещиной и двумя боковыми надрезами типа KCVN-PC-2S-ST наблюдается при температуре –196– + 50°C. Таким образом, энергия, затраченная на образование "губ среза" для стандартных образцов, играет важную роль в переходной области температур. Для образцов типа KCVN-PC-2S-ST

Рис. 3. ЭК-181. Корреляционная связь ударной вязкости для малых (KCVN-SM) и стандартных (KCVN-ST) образцов при равных значениях температуры испытаний.

Рис. 4. ЭК-181. Корреляционные связи ударных вязкостей для стандартных образцов без боковых надрезов KCVN-PC-ST (1) и KCVN-ST (2) и для стандартных образцов с боковыми надрезами KCVN-PC-2S-ST при равных значениях температуры.

энергия разрушения в переходном состоянии расходуется в основном на работу распространения трещины и на пластическую деформацию всего образца в зоне разрушения с образованием "шейки", что приводит к "размытию" хрупко-вязкого перехода. Необходимо отметить, что такой вид испытаний (KCVN-PC-2S) точнее отражает поведение металла в жестких условиях нагружения.

Результаты исследований температурных зависимостей значений ударной вязкости для ST- и SM-образцов позволяют провести их сравнение при равных значениях температуры испытаний. На рис. 3 такое сравнение проведено для образцов типа KCVN-SM/ST. При этом энергия разрушения быстрее растет для малых образцов в области низких температур (линейно) и затем остается постоянной. Аналогичное поведение обнаруживается и для образцов с трещинами типа KCVN-ST, KCVN-PC-ST и KCVN-PC-2S-ST (рис. 4). Необходимо отметить, что для образцов типа KCVN-PC-2S-SM/ST температурное увеличение ударной вязкости наблюдается во всем исследованном интервале температур. В этом случае на образцах отсутствуют "губы среза".

Сопоставление энергии, затраченной на разрушение образцов KCVN-PC-SM/ST и KCVN-PC-2S-SM/ST температурах испытаний (рис. 2) при равных KCVN-PC-2S-ST < KCVN-PC-ST показало. что И КСVN-PC-2S-SM < КСVN-PC-SM практически во всем исследованном интервале температур. Испытания на ударную вязкость CVN-образцов с усталостной трещиной и боковыми V-надрезами типа КСVN-РС-2S-ST/SM (трехсторонний V-надрез с центральной трещиной) являются наиболее жесткими.

Испытания стандартных образцов на статический изгиб

Для определения коэффициентов интенсивности напряжений K_{IC} и вязкости разрушения J_{IC} испытания на статический изгиб ST-образцов проводились при низких температурах испытаний, при которых напряженное состояние в вершине трещины является плоско-деформированным. Температурная зависимость K_{IC} нелинейно возрастает с увеличением температуры (рис. 5).

Для сопоставления статических данных по вязкости разрушения с результатами по ударной вязкости при равных значениях температуры испытаний, температурная зависимость K_{IC} была перестроена в температурную зависимость J_{IC} (рис. 6).

Результаты для ударной вязкости ST/SM-образцов с различными концентраторами напряжений (KCVN, KCVN-PC и KCVN-PC-2S) были сопоставлены с вязкостью разрушения *J*_{*IC*} (рис. 7, 8).

Рис. 5. ЭК-181. Температурная зависимость вязкости разрушения *K*_{*IC*}.

Наблюдаются линейные корреляционные взаимосвязи при равных значениях температуры, причем коэффициент пропорциональности между КСVN-ST и J_{IC} определяется величиной 7.60, между КСVN-PC-ST и J_{IC} -2.40, а между КСVN-РС-2S-ST и J_{IC} — 0.85. Аналогичные результаты получены для взаимосвязи KCVN-PC-SM и J_{IC} (коэффициент 4.20) и для KCVN-PC-2S-SM и J_{IC} (коэффициент 2.00). Эти результаты соответствуют тому, что вязкость разрушения при увеличении скорости деформации сначала уменьшается, а затем резко возрастает. Вместе с тем величина коэффициента пропорциональности между КСVN-PC-2S-ST и J_{IC} равна около 0.85, что несколько ниже статического значения вязкости разрушения. Это позволяет при низких температурах оценивать коэффициент интенсивности напряжений K_{IC} по испытаниям на ударную вязкость образцов типа KCVN-PC-2S (для данной стали). При

Рис. 6. ЭК-181. Температурная зависимость вязкости разрушения *J*_{*IC*}.

Рис. 7. ЭК-181. Корреляционные связи ударной вязкости стандартных образцов KCVN-PC-2S-ST (1), KCVN-PC-ST (2) и KCVN-ST (3) и вязкости разрушения J_{IC} при равных значениях температуры.

Рис. 8. ЭК-181. Корреляционные связи ударной вязкости "малых" образцов KCVN-PC-2S-SM (I) и KCVN-PC-SM (2) и вязкости разрушения J_{IC} при равных значениях температуры.

этом ударные испытания образцов типа KCVN-PC-2S могут быть заменены ударными испытаниями образцов типа KCVN-2S.

Сравнение значений ударной вязкости КСVN-PC-SM и КСVN-PC-2S-SM с вязкостью разрушения J_{IC} (рис. 8) показало их существенное отличие от соответствующих результатов для стандартных ST-образцов. Наблюдается существенное различие в значениях коэффициентов пропорциональности между КСVN-PC-2S-SM и J_{IC} (2.00), и между КСVN-PC-SM и J_{IC} (4.20). Результаты для SM-образцов превышают соответствующие значения для ST-образцов в 2.0–2.5 раза. Эти свидетельствует о значительном снижении запаса упругой энергии в образцах, вызванном существенным увеличением скорости релаксации напряжений в вершине трещины при уменьшении размеров образцов исследуемой стали.

Заключение

1. Исследованы ударная вязкость и вязкость разрушения плоских образцов с V-надрезом типа Шарпи (CVNобразцы) из жаропрочной ферритно-мартенситной стали ЭК-181 (RUSFER-EK-181: Fe-12Cr-2W-V-Ta-B) в зависимости от температуры испытаний ($-196-+100^{\circ}$ C), размеров образцов (стандартные $5 \times 10 \times 55$ mm и малые $3.3 \times 3.3 \times 30$ mm), типа и геометрии концентраторов напряжений (односторонние и трехсторонние V-надрезы с r = 0.25 mm, усталостная трещина).

2. Построены температурные зависимости ударной вязкости для каждого типа образцов и определены температуры хрупко-вязкого перехода $T_{\rm dbtt}$. В зависимости от типа CVN-образцов (стандартные, малые) и напряженных состояний (усталостная трещина, боковые V-надрезы) значения $T_{\rm dbtt}$ находятся в интервале $-85-+35^{\circ}$ C.

3. Определены температурные зависимости коэффициентов интенсивности напряжений *K*_{IC} и вязкости разрушения *J*_{IC} при испытаниях плоских стандартных образцов на сосредоточенный изгиб.

4. Наиболее жестким видом испытаний на ударную вязкость являются испытания CVN-образцов, последовательно дополненных усталостной трещиной и двумя боковыми V-надрезами (трехсторонний V-надрез с центральной усталостной трещиной типа CVN-PC-2S). Для таких условий испытаний T_{dbtt} соответствует значениям $+35^{\circ}$ С (стандартные образцы) и 0°С (малые образцы).

5. Работа разрушения стали ЭК-181 зависит от типа концентраторов напряжений и размеров образцов и определяется запасом упругой энергии и условиями пластической деформации в приповерхностных слоях образца, регулируемыми боковыми надрезами.

6. Между ударной вязкостью и вязкостью разрушения J_{IC} при равных значениях температуры испытаний наблюдается корреляционная связь. Независимо от типов образцов (включая надрезы и усталостную трещину) реализуется однотипный механизм разрушения ферритномартенситной стали.

7. Вязкие характеристики низкотемпературного разрушения жаропрочной 12% хромистой стали ЭК-181 (RUSFER-EK-181: Fe-12Cr-2W-V-Та-В) характеризуют ее как конструкционный материал с хорошим уровнем устойчивости к низкотемпературному охрупчиванию (разрушению). При всех низких температурах (ниже T_{dbtt}) наблюдается заметный уровень остаточной пластичности (не менее $3-5 \text{ J/cm}^2$).

Эта работа была закончена и подготовлена к печати, обсуждены и определены планы дальнейших научных исследований незадолго до скоропостижной смерти Геннадия Николаевича Ермолаева — талантливого, высокопрофессионального и активно работающего ученого в области физики дефектов, прочности и пластичности реальных кристаллов. Друзья и коллеги Геннадия Николаевича глубоко скорбят об этой безвозвратной потере.

Список литературы

- Дроздовский Б.А., Фридман Я.Б. Влияние трещин на механические свойства конструкционных сталей. М.: Металлургиздат, 1960. 260 с.
- [2] Ударные испытания металлов. М.: Мир, 1973. 317 с. (Impact testing of metals. ASTM SNT N 466. 1969).
- [3] Браун У., Сроули Дж. Испытания высокопрочных металлических материалов на вязкость разрушения при плоской деформации. М.: Мир, 1972. 214 с. (Brown W.F., Srawley J.E. Plane strain crack toughness testing of high strength metallic materials. ASTM STP N 410. 1966).
- [4] Георгиев М.Н. Вязкость малоуглеродистых сталей. М.: Металлургия, 1973. 224 с.
- [5] Фридман Я.Б. Механические свойства металлов. Ч. 2. Механические испытания. Конструкционная прочность. М.: Машиностроение, 1974. 368 с.

- [6] Klueh R.L., Harris D.R. High-Chromium Ferritic and Martensitic Steels for Nuclear Application. ASTM MONO3. 2001. 221 p.
- [7] Ioltukhovskiy A.G., Leontyeva-Smirnova M.V., Solonin M.I., Chernov V.M., Gololvanov V.N., Shamardin V.K., Bulanova T.M., Povstyanko A.V., Fedoseev A.E. // J. Nucl. 2002. N 307–311. P. 532–535
- [8] Леонтьева-Смирнова М.В., Агафонов А.Н., Ермолаев Г.Н. и др. // Перспективные материалы. 2006. № 6. С. 40–52.
- [9] Chernov V.M., Leontyeva-Smirnova M.V., Potapenko M.M. et al. // Nuclear Fusion. 2007. N 47. P. 839–848.
- [10] Ермолаев Г.Н., Голиков И.В., Леонтьева-Смирнова М.В., Мельников Г.И., Можанов Е.М., Чернов В.М. // Вопр. атомной науки и техники. Сер. "Материаловедение и новые материалы". 2006. Вып. 2 (67) С. 271–279.
- [11] Романовский В.П. // Заводская лаборатория. 1949. № 2. С. 210–213.