08

Особенности спектра парамагнитного резонанса в районе сближения переходов центров гадолиния в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$

© В.А. Важенин, А.Н. Ивачев, М.Ю. Артёмов, А.П. Потапов, С.А. Суевалов

Институт естественных наук Уральского федерального университета, Екатеринбург, Россия

E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 26 сентября 2012 г.)

В кристаллах Pb₅(Ge_{1-x}Si_x)₃O₁₁, легированных гадолинием, в окрестности ориентации магнитного поля вдоль оптической оси обнаружен аномальный ЭПР-спектр переходов $-1/2 \leftrightarrow +1/2$ четырех димерных кластеров Gd³⁺–Si. Предполагается, что причиной такого спектра являются быстрые переходы между спиновыми пакетами исходных резонансов, обусловленные кросс-релаксацией. Проведено компьютерное моделирование спектра; его результаты удовлетворительно описывают эксперимент.

Работа выполнена при финансовой поддержке молодых ученых УрФУ в рамках реализации программы развития УрФУ.

1. В работе [1] при исследовании кристаллов твердых растворов $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ с примесью гадолиния было обнаружено расщепление тригонального спектра ЭПР одиночных ионов Gd³⁺, наблюдаемого в Pb5Ge3O11, на четыре спектра с сильно уширенными линиями. Было показано, что эти спектры обусловлены триклинными димерными центрами Gd^{3+} -Si; ион Gd^{3+} этих комплексов замещает Pb²⁺, а ионы Si⁴⁺ локализованы в позициях ближайших германиевых сфер. Предложены модели локализации ионов кремния для всех наблюдаемых центров Gd³⁺-Si. Очевидно, что присутствие ионов кремния в более далеких германиевых сферах также возмущает спектр Gd³⁺; именно наличием множества вариантов замещения $Si^{4+} \rightarrow Ge^{4+}$ в этих сферах обусловлено сильное уширение переходов димерных триклинных центров.

Авторы [1] не обращали внимания на то, что спектр ЭПР в районе резонансов $-1/2 \leftrightarrow +1/2$ центров Gd³⁺—Si вблизи **B** || C₃ (**B** — индукция магнитного поля) демонстрирует аномальные форму и поведение при уходе от **B** || C₃, а в значительной окрестности совпадения переходов $\pm 1/2 \leftrightarrow \pm 3/2$ наблюдается дополнительный сигнал [2–5]. Настоящая работа посвящена исследованию указанных особенностей в спектре ЭПР Gd³⁺ в монокристаллах твердых растворов Pb₅(Ge_{0.85}Si_{0.15})₃O₁₁.

2. Исследовались монокристаллы $Pb_5(Ge_{0.85}Si_{0.15})_3O_{11}$, выращенные методом Чохральского и содержащие 0.01 mol.% гадолиния в шихте [1]. Доля кремния в шихте при выращивании в пределах погрешности совпадала с результатами сравнения пиковых интенсивностей линий рентгеновской люминесценции свинца и германия в кристаллах с кремнием и без него. Структура кристалла $Pb_5Ge_3O_{11}$, испытывающего при 450 K сегнетоэлектрический структурный переход второго рода $P3 \leftrightarrow P\overline{6}$, исследована авторами [6,7]. Спектры ЭПР регистрировались на спектрометре трехсантиметрового диапазона EMX Plus (Bruker) в интервале температур 100-450 К. Погрешность поддержания и измерения температуры образца составляла ± 1 К.

3. Изменение формы первой производной спектра поглощения в области переходов −1/2 ↔ +1/2 центров Gd^{3+} -Si при отклонении от **B** || **C**₃ показано на рис. 1. Характер ориентационного изменения спектра не зависит от уровня микроволновой мощности, хотя при мощности, большей 1mW, заметны эффекты насыщения, аналогичные наблюдаемым на других переходах. Следует отметить, что в диапазоне полей, представленном на рис. 1, располагаются неразрешенные переходы $-1/2 \leftrightarrow +1/2$ четырех триклинных центров $(Gd_{Si}1, Gd_{Si}2, Gd_{Si}3, Gd_{Si}4$ в обозначениях [1]), каждый из которых представлен тремя сигналами структурно-эквивалентных, но различно ориентированных комплексов. Спектры димеров Gd³⁺-Si разрешаются при В || С₃ только в случае переходов $\pm 3/2 \leftrightarrow \pm 5/2$ и $\pm 1/2 \leftrightarrow \pm 3/2$, расщепление сигналов от трех структурно-эквивалентных центров наблюдается только для Gdsi4.

Аргументом в пользу того, что наблюдаемый спектр (рис. 1) обусловлен переходами комплексов Gd^{3+} —Si, является и наличие в спектре (вторая производная поглощения, рис. 2) двух пар сателлитов, которые можно объяснить сверхтонким взаимодействием с ядрами нечетных изотопов ¹⁵⁷Gd и ¹⁵⁵Gd. Ориентационное поведение спектра при 105 и 450 К качественно не отличается от поведения, полученного при комнатной температуре и приведенного на рис. 1.

Другой особенностью спектра ЭПР $Pb_5(Ge_{0.85}Si_{0.15})_3O_{11}$ является дополнительный сигнал X (рис. 3), возникающий вблизи пересечения угловых зависимостей положений переходов $\pm 1/2 \leftrightarrow \pm 3/2$ (рис. 4), при этом вид спектра не зависит от уровня микроволновой мощности. Следует отметить, что каждый сигнал на рис. 3 представляет собой сумму переходов по крайней мере трех центров (Gd_{Si}1, Gd_{Si}2, Gd_{Si}3), что хорошо видно из рис. 4.

Рис. 1. Зависимость вида спектра (первая производная сигнала поглощения) в области переходов $-1/2 \leftrightarrow +1/2$ от полярного угла θ поляризующего магнитного поля в плоскости zy ($\mathbf{z} \parallel \mathbf{C}_3$) при 300 К.

Рис. 2. Вторая производная спектра поглощения в районе переходов $-1/2 \leftrightarrow +1/2$ Pb₅(Ge_{0.85}Si_{0.15})₃O₁₁ : Gd³⁺ при **B** || **C**₃ и 105 К.

Подобный сигнал в спектре тригонального центра Gd^{3+} в $Pb_5Ge_3O_{11}$, легированном только гадолинием, был обнаружен и исследован в работах [2–5]. Его возникновение объяснялось селективным усреднением спиновых пакетов двух сигналов ($\pm 1/2 \leftrightarrow \pm 3/2$) Gd^{3+} в результате спин-решеточных переходов между со-

стояниями, участвующими в формировании этих резонансов. Основным механизмом неоднородного уширения сигналов, обеспечивающим симметричную структуру спиновых пакетов, считалась модуляция параметров спинового гамильтониана типа b_{21} и c_{21} , обусловленная статическими флуктуациями как продольной, так и поперечной компоненты локального электрического поля [8]. Эти параметры отсутствуют в используемом гамильтониане тригонального центра, но формируют спиновые пакеты уширенных линий. Важно заметить, что дополнительный сигнал можно было наблюдать лишь в небольшой окрестности ($\Delta \theta \approx \pm 1^\circ$, $\Delta \theta = \theta - \theta_0$) совпадения положений сигналов при θ_0 .

Из рис. З видно, что в $Pb_5(Ge_{0.85}Si_{0.15})_3O_{11}$: Gd диапазон углов, в котором детектируется дополнитель-

Рис. 3. Зависимость вида спектра ЭПР в районе пересечения переходов $\pm 1/2 \leftrightarrow \pm 3/2$ от полярного угла θ в плоскости *zy* при 300 К. Сигналы переходов $-1/2 \leftrightarrow -3/2$ не видны из-за доминирующих по интенсивности сигналов $-1/2 \leftrightarrow +1/2$.

Рис. 4. Экспериментальное ориентационное поведение сигнала X и переходов центров Gd–Si. Штриховые, пунктирные и штрихпунктирные кривые — расчетное (параметры [1]) поведение переходов $\pm 1/2 \leftrightarrow \pm 3/2$ центров Gd_{Si}1, Gd_{Si}2, Gd_{Si}3 соответственно.

ный сигнал X, много больше. Интенсивный переход $\pm 1/2 \leftrightarrow \pm 1/2$, полностью перекрывающий в этой области сигнал $-1/2 \leftrightarrow -3/2$ (рис. 4), делает невозможным наблюдение при $\theta > 41^{\circ}$ и сигнала X. С учетом этого факта оценка диапазона формирования дополнительного сигнала дает не меньше $\Delta \theta \approx \pm 8^{\circ}$. Из рис. 4 хорошо видно, что сигнал X появляется именно в окрестности совпадения положений переходов $\pm 1/2 \leftrightarrow \pm 3/2$.

Большой угловой диапазон наблюдения дополнительного сигнала X в Pb₅(Ge_{0.85}Si_{0.15})₃O₁₁ не удивителен. Он обусловлен большой неоднородной шириной взаимодействующих сигналов $\pm 1/2 \leftrightarrow \pm 3/2$, а также существованием последовательности совпадений этих переходов трех центров Gd_{Si}1, Gd_{Si}2, Gd_{Si}3 (рис. 4).

При **В** \parallel **С**₃ переходы $-1/2 \leftrightarrow +1/2$ всех центров $Gd_{Si}1$, $Gd_{Si}2$, $Gd_{Si}3$, $Gd_{Si}4$ собираются в узком диапазоне полей, а сигналы от эквивалентных, но различно ориентированных центров вырождаются. В связи с этим возникает предположение, что аномальный вид спектра в данной области обусловлен взаимодействием имеющихся резонансов (переносом намагниченности между наблюдаемыми переходами [9-11]). Следует заметить, что попытка моделирования спектра путем суммирования невзаимодействующих компонент при В || С₃ окончилась неудачей. Поскольку обсуждаемые резонансы принадлежат различным центрам, в роли искомого взаимодействия может выступать кросс-релаксационная передача возбуждения, а не спин-решеточная релаксация, как в случае сближения переходов $\pm 1/2 \leftrightarrow \pm 3/2$ [2,4–5]. Кстати, авторами [3] делалась попытка объяснить появление дополнительного сигнала между переходами $\pm 1/2 \leftrightarrow \pm 3/2$ центров Gd³⁺ в германате свинца именно кросс-релаксацией через поле мягких фононов.

4. В связи с этим нами предпринята попытка описания наблюдаемого спектра в предположении существования между 12 переходами $-1/2 \leftrightarrow +1/2$ центров Gd—Si кросс-релаксации с гауссовой формой линии. Расчет производился при помощи программного обеспечения, созданного в среде LabView 8.6. В процедуре компьютерного моделирования спектра использовалось выражение [9,10], полученное для описания спектра спиновой системы, имеющей несколько близких резонансов с бесконечно узкими линиями и совершающей переходы между состояниями, соответствующими этим резонансам,

$$I(B) = \operatorname{Re} \left\{ \mathbf{W} \cdot \hat{A}(B)^{-1} \cdot \mathbf{I} \right\},\tag{1}$$

где I — интенсивность поглощения, B — индукция магнитного поля, **W** — вектор с компонентами, равными вероятностям невзаимодействующих резонансов, **l** — единичный вектор. Матрица $\hat{A}(B)$ для случая двух резонансов имеет вид

$$\hat{A}(B) = \begin{vmatrix} ig\beta(B_i - B) - 1/2\tau & 1/2\tau \\ 1/2\tau & ig\beta(B_j - B) - 1/2\tau \end{vmatrix}, \quad (2)$$

где B_i и B_j — положения невзаимодействующих резонансов, g — g-фактор, β — магнетон Бора, $1/2\tau$ —

вероятность перехода между резонансами *i* и *j* за единицу времени.

Использовались два варианта расчетов. В первом моделирование спектра ЭПР заключалось в построении для (1) матрицы $\hat{A}(B)$ двенадцатого порядка, при этом в отличие от (1) форма 12 сигналов четырех центров предполагалась лоренцевой с шириной ΔB_{pp}^{L} . Учесть неоднородное уширение путем введения спиновых пакетов в этом случае оказалось невозможно из-за необходимости формирования матрицы большого порядка и, как следствие, очень длительного времени работы программы.

Во втором варианте, в отличие от (1), (2), предполагалось, что исходные линии состоят из спиновых пакетов лоренцевой формы с интенсивностями, имеющими гауссово распределение

$$Y(B) = \sum_{n=-m}^{m} \frac{I_0 \exp(-(n/\sigma_1)^2)}{1 + \left[(B - B_0 - n) / \frac{\sqrt{3}}{2} \Delta B_{pp}^L \right]^2}, \quad (3)$$

где B_0 — резонансное положение исходной линии, ΔB_{pp}^L — пирина линии между пиками первой производной, 2m + 1 — количество спиновых пакетов, σ_1 — параметр, характеризующий неоднородное уширение. Учитывалось только парное взаимодействие каждого пакета с каждым, общее число спиновых пакетов 12(2m + 1) = 156. Дальнейшее увеличение числа пакетов ограничивалось конечной скоростью работы программы. В этом случае выражение для формы ЭПР-спектра, модифицированного кросс-релаксацией, принимает вид

$$I(B) = \sum_{i=0}^{k} \sum_{j=0}^{k} \sum_{n_{1}=-m}^{m} \sum_{n_{2}=-m}^{m} \operatorname{Re}(\mathbf{W} \cdot \hat{A}(B)^{-1} \cdot \mathbf{I})$$
$$\times \exp(-(n_{1}/\sigma_{1})^{2}) \exp(-(n_{2}/\sigma_{1})^{2}), \qquad (4)$$

где k+1 — количество исходных сигналов, i, j — номера исходных сигналов, n_1, n_2 — номера спинпакетов в соответствующих сигналах.

В обоих вариантах моделирования спектра вероятность кросс-релаксационного процесса задавалась в виде

$$\frac{1}{2\tau} = \frac{1}{2\tau} \exp\left(-\left(\frac{B_{n_2} - B_{n_1}}{\sigma_2}\right)^2\right),\tag{5}$$

где σ_2 — параметр ширины формы линии кроссрелаксации, B_{n_1} , B_{n_2} — положения невзаимодействующих спин-пакетов.

Нахождение исходных положений необходимых сигналов для расчета, заключающееся в расчете ориентационного поведения переходов $-1/2 \leftrightarrow +1/2$ с использованием параметров спинового гамильтониана [1], привело к результатам, представленным на левой стороне рис. 5. Девять сигналов центров $Gd_{Si}1$, $Gd_{Si}2$, $Gd_{Si}3$ оказались практически вырожденными. Это связано с тем, что в работе [1] из-за большой ширины линий не удалось

наблюдать расщепления переходов указанных центров при уходе от **B** \parallel **C**₃ и, следовательно, оценить величины параметров типа b₂₁ и c₂₁. Однако очевидно, что эти параметры отличны от нуля, хотя имеют значения, меньшие характерных для центра Gd_{Si}4. Следует отметить, что величина сдвига в высокие поля перехода $Gd_{Si}4$ относительно сигналов $Gd_{Si}1$, $Gd_{Si}2$, $Gd_{Si}3$ при В || С₃ и скорость его расщепления при уходе от этой ориентации определяются именно значениями b₂₁ и c₂₁. В связи с этим в расчетах использовалось гипотетическое ориентационное поведение, учитывающее указанные соображения и приведенное на правой половине рис. 5. Поскольку для высокополевых сигналов на рис. 5 величина $dB/d\theta$ в среднем заметно больше, чем для низкополевых, влияние мозаичности кристалла на ширину переходов будет существенно различным. Для учета этого эффекта, а также для компенсации недостаточного количества спин-пакетов при моделировании ширина спиновых пакетов высокополевых сигналов считалась в разы большей, чем низкополевых. Безусловно, данный подход не может считаться вполне корректным, однако в данной ситуации он оказался единственно возможным.

Первый вариант моделирования формы наблюдаемого спектра при $\theta = 1^{\circ}$ дал результат, приведенный на рис. 6, при параметрах $\Delta B_{pp}^{L} = 0.45 \,\mathrm{mT}$,

Рис. 5. Расчетное и гипотетическое ориентационное поведение положений переходов $-1/2 \leftrightarrow +1/2$ центров Gd_{Si} 1, Gd_{Si} 2, Gd_{Si} 3, Gd_{Si} 4.

Рис. 6. Форма ЭПР-спектра в районе переходов $-1/2 \leftrightarrow +1/2$ (300 K, $\theta = 1^{\circ}$). *1* — эксперимент, *2* — результат первого варианта расчета.

 $1/2\tau_0 = 0.3 \text{ MHz}$, $\sigma_2 = 1 \text{ mT}$. На наш взгляд, качество описания экспериментального спектра вполне удовлетворительное. Пренебрежение в процедуре расчета эффектами неоднородного уширения должно приводить к превращению полученных параметров в эффективные, учитывающие отсутствие в расчетах указанного механизма уширения. Например, следует ожидать завышения величины однородного уширения. Естественно, попытка построить из 12 линий спектр, наблюдаемый при $\theta = 10^{\circ}$ (рис. 1), окончилась неудачей.

Результаты учета только парного кросс-релаксационного взаимодействия спиновых пакетов как внутри линии, так и между пакетами различных ЭПР-переходов (выражение (4)) приведены на рис. 7. Расчетные спектры получены при следующих параметрах: число пакетов в линии 2m + 1 = 13, $\Delta B_{pp}^L = 0.4$ mT, $\sigma_1 = 1.2$ mT, $1/2\tau_0 = 60$ MHz, $\sigma_2 = 7$ mT. Как видно, промоделированная без учета кросс-релаксации форма спектра очень далека от экспериментальной (рис. 7), тогда как с учетом кросс-релаксации описание эксперимента удовлетворительное, хотя и несколько худшее, чем в первом варианте расчета. На наш взгляд, величины параметров, полученные при моделировании спектра, вполне разумные.

На рис. 8 представлен результат моделирования спектра в этом приближении для ориентации $\theta = 10^{\circ}$ (см. рис. 1). Параметры $1/2\tau_0$ и σ_2 считались не зависящими от ориентации магнитного поля, а величины ΔB_{pp}^L и σ_1 для приемлемого описания экспериментального

Рис. 7. ЭПР-спектр в районе переходов $-1/2 \leftrightarrow +1/2$ при 300 К и $\theta = 1^{\circ}$. *I* — эксперимент, *2* — расчет без учета кросс-релаксации, *3* — расчет с учетом кросс-релаксации согласно выражению (4).

B, mT

365

370

375

380

360

345

350

355

спектра пришлось увеличивать в десятки раз. Скорее всего, это обусловлено недостаточным количеством в расчетах спиновых пакетов, формирующих индивидуальную линию ЭПР. Наряду с этим качество моделирования спектра существенно зависит от вида исходного спектра (положений и интенсивностей невзаимодействующих компонент). К сожалению, эту информацию экспериментально получить пока не удается.

5. Наблюдалось аномальное поведение спектра парамагнитного резонанса в районе сближения переходов $-1/2 \leftrightarrow +1/2$ в окрестности **В** || **С**₃ четы-

рех триклинных димерных комплексов гадолиния в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$, а также дополнительный сигнал между переходами $\pm 1/2 \leftrightarrow \pm 3/2$ вблизи совпадения их положений ($\theta \approx 40^\circ$). Проведено моделирование спектра в окрестности **B** || **C**₃ в предположении существования быстрых переходов между резонансами, обусловленных кросс-релаксацией. Полученные результаты, на наш взгляд, являются весомым аргументом в пользу наблюдения в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ кросс-релаксационных эффектов. Дополнительный сигнал ЭПР вблизи $\theta \approx 40^\circ$ можно объяснить усреднением центральной части спиновых пакетов двух переходов ($\pm 1/2 \leftrightarrow \pm 3/2$) центров Gd^{3+} в результате спин-решеточных переходов.

Список литературы

- [1] В.А. Важенин, А.П. Потапов, М.Ю. Артемов, В.Б. Гусева, А.В. Фокин. ФТТ **53**, 2190 (2011).
- [2] В.А. Важенин, К.М. Стариченко. Письма в ЖЭТФ **51**, 406 (1990).
- [3] В.А. Важенин, К.М. Стариченко. ФТТ 34, 172 (1992).
- [4] В.А. Важенин, К.М. Стариченко, А.Д. Горлов. ФТТ 35, 2450 (1993).
- [5] В.А. Важенин, В.Б. Гусева, М.Ю. Артемов. ФТТ 44, 1096 (2002).
- [6] Y.J. Iwata. J. Phys. Soc. Jpn. 43, 961 (1977).
- [7] M.I. Kay, R.E. Newnham, R.W. Wolfe. Ferroelectrics 9, 1 (1975).
- [8] В.А. Важенин, Е.Л. Румянцев, М.Ю. Артемов, К.М. Стариченко. ФТТ 40, 321 (1998).
- [9] А. Абрагам. Ядерный магнетизм. ИЛ, М. (1963). С. 415.
- [10] Э.П. Зеер, В.Е. Зобов, О.В. Фалалеев. Новые эффекты в ЯМР поликристаллов. Наука, Новосибирск (1991). С. 28.
- [11] Р.Т. Галеев. ФТТ 53, 24 (2011).

